
Towards Fully Sparse Training: Information Restoration with Spatial Similarity

Weixiang Xu1,2, Xiangyu He1,2, Ke Cheng1,2, Peisong Wang1, Jian Cheng1∗

1NLPR, Institute of Automation, Chinese Academy of Sciences
2School of Artificial Intelligence, University of Chinese Academy of Sciences

{xuweixiang2018,chengke2017}@ia.ac.cn, {xiangyu.he, peisong.wang, jcheng}@nlpr.ia.ac.cn

Abstract

The 2:4 structured sparsity pattern released by NVIDIA Am-
pere architecture, requiring four consecutive values contain-
ing at least two zeros, enables doubling math throughput for
matrix multiplications. Recent works mainly focus on in-
ference speedup via 2:4 sparsity while training acceleration
has been largely overwhelmed where backpropagation con-
sumes around 70% of the training time. However, unlike in-
ference, training speedup with structured pruning is nontriv-
ial due to the need to maintain the fidelity of gradients and
reduce the additional overhead of performing 2:4 sparsity
online. For the first time, this article proposes fully sparse
training (FST) where ‘fully’ indicates that ALL matrix mul-
tiplications in forward/backward propagation are structural-
ly pruned while maintaining accuracy. To this end, we be-
gin with saliency analysis, investigating the sensitivity of dif-
ferent sparse objects to structured pruning. Based on the ob-
servation of spatial similarity among activations, we propose
pruning activations with fixed 2:4 masks. Moreover, an Infor-
mation Restoration block is proposed to retrieve the lost infor-
mation, which can be implemented by efficient gradient-shift
operation. Evaluation of accuracy and efficiency shows that
we can achieve 2× training acceleration with negligible ac-
curacy degradation on challenging large-scale classification
and detection tasks.

Introduction
Network pruning (Han et al. 2015; Wen et al. 2016; He et al.
2019b) has drawn significant attention of researchers to alle-
viate the high computational complexity and intensive mem-
ory footprint in convolutional neural networks. Recent Am-
pere architecture, released by NVIDIA and equipped with
Sparse Tensor Cores (NVIDIA 2020b), is the first commer-
cial GPU architecture that supports fine-grained structured
sparsity. Concretely, matrix-multiply operations can achieve
2× acceleration when one of the two arguments in GEM-
M meets the 2:4 structured sparsity requirement, providing
a possibility for training/inference speedup. Here, the 2:4 s-
parsity means that each chunk of four adjacent elements in
matrix rows has at least two zeros.

Attracted by the new characteristic, recent works focus
on utilizing it to accelerate inference. For example, AS-

∗Corresponding Author.
Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Computation Graph for (a) conventional train-
ing and (b) fully sparse training (FST). S(·) denotes the
2:4 structured pruning. GEMM/SPMM represents gener-
al/structured sparse matrix multiplications. IR indicates our
information restoration block.

P (Mishra et al. 2021) obtains 2:4 pruned models by ini-
tializing from dense pre-trained models and training with a
fixed mask. Independent of computationally expensive pre-
training, SR-STE (Zhou et al. 2021) further proposes train-
ing from scratch with dynamic masks. However, the pow-
er of 2:4 sparsity in accelerating training has not been ex-
plored.

Unlike inference time acceleration, training with struc-
tured pruning is more challenging. First, the backpropaga-
tion dominates training costs. As shown in Figure 2, the
backward procedure occupies up to 80% of the total calcula-
tion burden in SR-STE, to which previous inference speedup
methods can not directly apply. Second, due to the accumu-
lation in gradient descent optimization, the backpropagation
is more sensitive to perturbation than inference (Zhou et al.
2016). As a result, the compression in backpropagation jeop-
ardizes the optimization stability, causing severe accuracy
degradation.

Moreover, unstructured pruning methods on gradients
proposed by previous works (Sun et al. 2017; Goli and
Aamodt 2020; Ye et al. 2020; Chmiel et al. 2021; M Ab-
delmoniem et al. 2021) are no longer applicable to struc-
tured cases for two reasons: 1) 2:4 structured sparsity en-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

2929

Dense
Speed:1x

SR-STE
Speed:1.2x

Ours
Speed:2x

(a)

0

2

4
M

AC
s (

G)

1.81
0.905 0.905

3.62 3.62

1.81

33%
20% 33%

66% 80%
66%

Forward
Backward

Figure 2: MACs for convolution layers with ResNet-18.

forces a stricter constraint than unstructured sparsity, which
inevitably leads to misleading gradients during the back-
ward pass, resulting in poor performance or even non-
convergence (details in Table 1). 2) The extra time overhead
introduced by pruning may be disastrous because the gradi-
ents involved in backpropagation are computed online (de-
tails in Table 2).

To investigate the above problem, we start with pruning
saliency analysis and find activations X are relatively more
robust to structured pruning than gradients ∂L

∂Y . In addition
to the sensitivity, the extra overhead introduced should also
be noticed. Compared with network parameters, the dimen-
sion of intermediate activations is extremely vast. Thus to
avoid the time-consuming sorting operation on X, we pro-
pose 2:4 sparsity with a fixed mask based on the observation
of spatial similarity in activations.

Moreover, we further propose an Information Restoration
(IR) block to retrieve the lost information caused by fixed-
position pruning, which can be implemented by the compu-
tationally efficient gradient-shift operation in practice.

Together, these contributions enable our FST framework
with 2:4 structured pruning, as shown in Figure 1. To the best
of our knowledge, it is the first systematic framework that
structurally pruning all three multiplications (Eq.1-3) in both
forward and backward pass. Evaluations show that about 2×
training acceleration can be obtained on various tasks with
almost no performance degradation.

Related Work
Various methods have been proposed to compress or accel-
erate deep networks, such as low-bit quantization (Rastegar-
i et al. 2016; Wang et al. 2020; He et al. 2020; Xu et al.
2020; Chen et al. 2021), knowledge distillation (Gou et al.
2021), efficient convolution (Lavin and Gray 2016; Zhao
et al. 2021) and specific hardware design (Chen et al. 2016;
Li et al. 2020, 2021).

Network pruning, removing unimportant parameters, also
attracts much attention. According to the procedure of ob-
taining a sparse model, pruning methods can be categorized
into ‘scratch-dense-sparse’ and ‘scratch-sparse’. The for-
mer depends on a well-trained dense model and needs fur-
ther retraining (Han et al. 2015; He et al. 2019b; Mishra
et al. 2021), which is not the scope of this work. The lat-
ter, training sparse models from scratch, saves training time
but at the cost of performance. Based on the sparse object,
‘scratch-sparse’ can be further divided as follows.
Pruning Weight from Scratch Various influential work-
s have emerged to explore dynamic sparsity training from

scratch, which enable sparse weight changes during train-
ing. DeepR (Bellec et al. 2018) applies random walk
in parameter space, and weights are determined to be
pruned or reactivated during training. SET(Mocanu et al.
2018) simplifies the pruning-regrowing process based on
weight magnitude. The prune-redistribute-regrowth cycle is
adopted in (Dettmers and Zettlemoyer 2019; Mostafa and
Wang 2019; Evci et al. 2020) to change weights accord-
ing to different criteria dynamically. Instead of hand-crafted
redistribute-regrowth cycles, recent DMPF (Lin et al. 2020)
uses error compensation mechanisms. DST (Liu et al. 2020)
directly trains sparse models with learnable masks, where
non-differentiable step function is replaced with derivable
approximation. Despite the high compression rate, all these
methods perform sparsity in an unstructured way, which is
hardware-unfriendly and can not be accelerated by commer-
cial GPUs.
Pruning Activation Gradient Some other works focus on
pruning activation gradients to speed up the communication
stage of distributed training. meProp (Sun et al. 2017) and
ReSprop (Goli and Aamodt 2020) apply unstructured prun-
ing on activation gradients by keeping the top-k elements
and updating only the corresponding small portion of pa-
rameters. Recent works (Ye et al. 2020; Chmiel et al. 2021;
M Abdelmoniem et al. 2021) calculate the analytical result
of pruning threshold for unstructured-sparsity gradients by
assuming the gradients obey normal or log-normal distribu-
tion. However, all these methods apply unstructured prun-
ing, which reduces communication bandwidth pressure but
can not accelerate matrix multiplication in practice. Further-
more, we will show that activation gradients are fragile in
sparsity, and applying structured pruning on gradients will
lead to severe optimization collapse.

Problem Formulation
We define a convolutional layer as a tuple 〈W,X〉. W ∈
RCout×[Cin·k·k], where (Cout, Cin, k) refer to output chan-
nels, i.e., filter number, input channels and kernel size, re-
spectively. X ∈ R[Cin·k·k]×[H·W], where (H,W) are height
and width of output feature maps. There are three major
matrix multiplications for each layer during training: for-
ward propagation, activation gradient backpropagation and
weight gradient computation.
Forward propagation

Y = WX (1)

Backward propagation

∂L
∂X

= WT ∂L
∂Y

(2)

∂L
∂W

=
∂L
∂Y

XT (3)

where Y ∈ RCout×[H·W] represents the output feature map.
∂L
∂Y ∈ RCout×[H·W] denotes the activation gradient, which
involves in the calculation of gradients of input ∂L

∂X and gra-
dients of weight ∂L

∂W . Then ∂L
∂X will be backpropagated lay-

er by layer, while the weight gradients will participate in

2930

weight updating as W = W − η ∂L
∂W , where η represents

the learning rate.
The multiplications between large matrixes with enor-

mous computational complexity account for up to 90%
of training time (Johnson 2016; Sun et al. 2017). Among
them, backpropagation consumes around 70% of the train-
ing time (Goli and Aamodt 2020). The computational bur-
den motivates us to design a fully sparse training framework
with the help of A100’s 2:4 sparse property, which speeds
up not only the forward propagation, but also the two mul-
tiplications in the backward pass. Therefore, our target is to
speed up training 2:4 sparsity neural networks by sparsifying
Eq.1-3 while maintaining accuracy.

Analysis of Pruning Saliency
Sparse Tensor Core introduced in NVIDIA Ampere GPU ar-
chitecture enables a 2× acceleration of regular matrix mul-
tiplications when one of the two matrixes is 2:4 sparsified.
Therefore, we first need to decide which matrices in Eq.1-3
to be 2:4 structurally pruned.

Since X commonly has a much larger dimension than pa-
rameter matrix W, it is intuitive to prune W in Eq. 1 due to
the extra cost. However, when it comes to Eq. 2 and Eq. 3,
deciding which matrix to prune is nontrivial because they
may show different sensitivity against pruning, inevitably
affecting the final performance. Exhaustively, according to
different sparse objects, there are four pruning strategies as
follows:

WG:
∂̃L
∂X

= S(WT)
∂L
∂Y

,
∂̃L
∂W

= S(∂L
∂Y

)XT

WX:
∂̃L
∂X

= S(WT)
∂L
∂Y

,
∂̃L
∂W

=
∂L
∂Y
S(XT)

GG:
∂̃L
∂X

= WTS(∂L
∂Y

),
∂̃L
∂W

= S(∂L
∂Y

)XT

GX:
∂̃L
∂X

= WTS(∂L
∂Y

),
∂̃L
∂W

=
∂L
∂Y
S(XT)

(4)

where ∂̃L
∂X and ∂̃L

∂W represent approximated input activations
and weight activations respectively, and S(·) represents 2:4
sparsity operation.

Several studies have focused on pruning activation gra-
dients in an unstructured way (Sun et al. 2017; Goli and
Aamodt 2020; Ye et al. 2020; Chmiel et al. 2021; Wiede-
mann et al. 2020; M Abdelmoniem et al. 2021) and find that
∂L
∂Y are almost full of small values close to zero, indicating
that the third ‘GG’ strategy can be the best choice. However,
our further experiments and analysis find that is not the case.

The straightforward strategy for deciding which to prune
is selecting the matrix with small saliency, i.e., the pruned
matrix has the smallest impact on the final accuracy. In or-
der to explore the pruning saliency with 2:4 structured spar-
sity pattern, we begin with comparative experiments with
the four different strategies above. Table 1 shows the perfor-
mance.

Surprisingly, the third ‘GG’ and fourth ‘GX’ strategy with
sparse activation gradients performs the worst and even col-
lapse. In contrast, the second ‘WX’ strategy with sparse

Method Top1(%)
Dense 71.2
WG 67.5
WX 69.9

GG&GX 0.1

Table 1: Top-1 accuracy
with ResNet-18.

Sparsity Time(s)
Dense 0.179
S(W) 0.0017
S(∂L/∂Y) 0.29
S(XT) 0.48

Table 2: Execution time
on sorting-based sparsity.

weights and activations performs the best, indicating that
∂L
∂Y is more sensitive to structured sparsity than W and X
in the process of backpropagation. A similar phenomenon
exists in fixed bit quantization, where DoReFa-Net (Zhou
et al. 2016) argues that gradients need more bit-width than
weights and activations to compensate for the accuracy
degradation. We conjecture that this is because gradients are
propagated layer by layer during backpropagation, and s-
parse reconstruction error will accumulate across multiple
layers.

Besides performance, Table 2 further shows the averaged
execution time on pruning different objects in an iteration,
where the time on S(∂L/∂Y) and S(XT) is even larger than
the original training because of the vast dimensions. Taking
the second layer of ResNet-18 with batch size 256 as an ex-
ample, the number of elements in W is 64×64×3×3, while
this number for X is 256× (64×3×3)× (56×56), about
12000× than the former.

Methodology
Based on the saliency analysis above, we use sparse weight-
s for Eq. 2 and sparse activations for Eq. 3 as our bench-
mark method. In this section, we will present pruning W
of forward propagation, pruning WT of activation gradient
backpropagation, and pruning XT of weight gradient com-
putation respectively.

Forward Propagation with Sparse W
We first introduce our approach on 2:4 sparsity for Eq. 1.
Considering the vast dimension of X, we prune the parame-
ter matrix W to avoid a large extra burden. During the for-
ward propagation, output features are calculated as

Y = S(W)X (5)
where S(·) is implemented by conducting Top-2 in every
group of four consecutive absolute values. As shown in Ta-
ble 2, the extra time is negligible because of the relatively s-
mall dimensions (compared with X) and parallel implemen-
tation in deep learning libraries. During backward pass, the
network parameters are updated as

W = W − η ∂L
∂S(W)

− λ[W − S(W)] (6)

Here, ∂L
∂S(W) is an approximation to ∂L

∂W according to
STE (Bengio, Léonard, and Courville 2013). The second re-
fined term W−S(W) is a gradual decay on pruned weight-
s to reduce their changes during training according to SR-
STE (Zhou et al. 2021). Following SR-STE, we set the decay
coefficient λ as 0.0002 in all our experiments.

2931

…

1 1 3 3

2 2 4 4

6 6 8 8

7 7 9 9

6 6 8 8

7 7 9 9

11 11 13 13

12 12 14 14

26 26 28 28

27 27 29 29

31 31 33 33

32 32 34 34

31 31 33 33

32 32 34 34

36 36 38 38

37 37 39 39

18

19

23

24

43

44

48

49

18

19

23

24

43

44

48

49

26 27 28 29 30

31 32 33 34 35

36 37 38 39 40

41 42 43 44 45

46 47 48 49 50

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

…

1 2 3 4

2 3 4 5

6 7 8 9

7 8 9 10

6 7 8 9

7 8 9 10

11 12 13 14

12 13 14 15

26 27 28 29

27 28 29 30

31 32 33 34

32 33 34 35

31 32 33 34

32 33 34 35

36 38 38 39

37 39 39 40

𝐻 ×𝑊

19

20

24

25

44

45

49

50

18

19

23

24

43

44

48

49

𝐶
𝑖𝑛
×
𝑘
×
𝑘

im2col shift

（a） （b） （c）

Figure 3: Pruning with fixed mask and retrieving lost information. The numbers indicates the location indexes. (a) A 2×2
convolutional kernel slides over a feature map of size [2,5,5]. (b) The operation im2col unfolds the original feature and stacks
it as a 2D matrix X in certain layout order. Elements on two adjacent columns correspond to neighboring pixels on the original
input channel. The second (red indexes) of the two adjacent columns is pruned fixedly. (c) Complementing the pruned columns
with the corresponding adjacent columns (blue indexes), which is implemented by gradient-shift as Eq. 10 in practice.

Input Gradient Calculation with Sparse WT

Though W has been 2:4 sparsified for WX, it can not be
utilized to speed up WT ∂L

∂Y because of the transposition.
The recent work (Hubara et al. 2021) presents Transposable
Sparse Masks (TSM), requiring W and WT to satisfy 2:4
sparsity pattern simultaneously. We show that TSM is sub-
optimal in two aspects: 1) The simultaneous sparse require-
ment is a strong constraint, destructing the sparsity diversity.
For weights with n 4×4 patches, the number of all candidate
configurations with 2:4 sparsity is 1296n, but the number for
TSM degenerates to 90n, which weakens model capacity. 2)
It is not easy to find the optimal transposable weights, and
TSM formulates it as a min-cost flow problem. Due to the
huge time complexity O(n3), TSM updates it every 40 iter-
ations in a greedy manner. Both of the above reasons lead to
suboptimal performance.

In this work, we consider the time overhead and the effec-
t of sparsity diversity on model capacity. Instead of simul-
taneously forcing both W and WT to satisfy 2:4 sparsity
pattern like TSM, we separately sparsify WT during back-
ward. Experiments show that the simple separate sparsity
performs better than simultaneous sparsity in terms of both
time overhead and accuracy.

Weight Gradient Calculation with Sparse XT

Although activation is less sensitive to structured sparsity
than gradient, the tradeoff between time cost and accuracy
is still challenging. Since our target is training speedup, the
time overhead of performing 2:4 sparsity should be negli-
gible. Therefore, conducting 2:4 structured pruning by sort-
ing every four continuous elements is no longer suitable for
activations. As shown in Table 2, performing sorting-based
sparsity on X takes even longer time than the training pro-
cedure, which is disastrous and unacceptable.

Observation Our method is based on the observation that
neighboring activations in the convolution tend to be close
in value. Specifically, it is obvious that adjacent pixels share
close values for natural images, and we find that this proper-
ty will be preserved throughout neural network layers. This

is because that CNNs are established by convolutional lay-
ers that conduct in sliding window form, and the same small
filter slides over the feature to produce the output channel.
We will further explore this phenomenon from qualitative
and quantitative aspects.

Before performing the general matrix multiplications
(GEMM), im2col is first applied to the 3D input, turning it
into the 2D domain (Chellapilla, Puri, and Simard 2006).
Here pixels in the im2col domain are arranged according to
a certain regularity. Figure 3 illustrates a toy example with
a two-channel input, and the kernel size is 2×2. As can be
seen in Figure 3(b), the elements of two adjacent column-
s (e.g. indexes {1, 2, 6, 7, 26, 27, 31, 32} in the first column
versus {2, 3, 7, 8, 27, 28, 32, 33} in the second column) cor-
respond to neighboring pixels on the original input channel
in Figure 3(a), which share close values. The spatial simi-
larity phenomenon and the layout regularity in the im2col
domain motivate us to prune XT at fixed positions.

Information Restoration Block To utilize Sparse Ten-
sor Core on Ampere GPU, XT should be 2:4 sparsified a-
long the H ·W direction. Instead of pruning by the time-
consuming sorting, we prune X with a fixed mask by utiliz-
ing the correlation between adjacent columns. Concretely,
we keep only one of the two adjacent columns in X while
leaving the other column zeros. As shown in Figure 3(b),
the indexes of pruned columns are shown in red. XT is s-
parsified alternately from column to column, which can be
expressed as

S(XT)ij =

{
XT

ij i = 1, 3, 5 · · ·
0 else

(7)

Obviously, the pruning approach with the fixed mask pattern
naturally satisfies the requirement of 2:4 sparsity in theH·W
direction. We denote the pruned activation as:

S(XT) = XT − S(XT) (8)

which results in the weight gradient error, i.e., ∂L
∂W −

∂̃L
∂W =

∂L
∂YXT − ∂L

∂YS(X
T) = ∂L

∂YS(X
T). Based on the observa-

2932

3.4

2.4
2.9

2.1
1.7

1.0

0.1
0.2 0.7

0.4

Figure 4: Feature entropy and conditional entropy from dif-
ferent layers. (a) Natural images from ImageNet as inputs.
(b) White noise as inputs.

tion that neighboring elements share close values, we com-
plement the pruned columns in S(XT) with the correspond-
ing adjacent columns. As shown in Figure 3(c), the indexes
of complements are shown in blue.

Due to the interleaved property between S(XT) and
S(XT), S(XT) can be approximated by shifting the whole
S(XT) down by one pixel (note here it is XT , while the one
shown in Figure 3b is X):

S(XT) ≈ TS(XT) (9)

where T is a transformation matrix obtained from the prod-
uct by a series of elementary matrixes of size HW×HW .
And the physical meaning of pre-multiplying by T is e-
quivalent to performing down-shift by one pixel. Following
weight gradient calculation of Eq. 3, by filling up the pruned
activations with Eq. 8, we have the following modified gra-
dient calculation formulation,

∂L
∂W

=
∂L
∂Y

(S(XT) + S(XT))

≈ ∂L
∂Y

(S(XT) + TS(XT))

= (
∂L
∂Y

+
∂L
∂Y

T)S(XT)

(10)

Here the activation gradient ∂L
∂Y is post-multiplied by the

corresponding transformation matrix T , which is equivalen-
t to shifting ∂L

∂Y left by one element. Details can be found
in Appendix. Therefore, in Eq. 10, the activation gradient
∂L
∂Y is first shifted and then added to the original one, and
the new gradient is then multiplied by the 2:4 sparse activa-
tion, which can be accelerated on Ampere architecture. We
call the process as Information Restoration, as shown in Fig-
ure 1(b). We will show that the shift-based implementation is
hardware-friendly and time-efficient in experiment section.

Exploring Spatial Similarity
In the above section, we alternately prune X by columns and
complement the pruned columns with neighboring pixels,
based on the observation that adjacent pixels share close val-
ues even for deeper layers. In this section, we further demon-
strate it in terms of qualitative and quantitative studies.

Spatial Entropy of Input Features
In order to quantitatively evaluate the property that adja-
cent elements of input features share close value, we re-

Features Adjacent difference

(a) 6-th conv

(b) 11-th conv

0.0

0.2

0.4

0.6

0.8

1.0

Reconstruction

Figure 5: Intermediate features X, adjacent difference maps
Xad and reconstruction features Xr from different layers of
ResNet-18. Most of the values in Xad are near 0, indicating
that neighboring elements in X share close values.

sort to the well-known information entropy, which is usu-
ally a measure of how much total information the mes-
sage contains. The metric used to measure the amount of
information contained in an image is the so-called image
entropy, which is originally introduced by (Frieden 1972)
in the context of image reconstruction. An image X is re-
garded as a set of positive numbers x1, x2, ..., xN to be
determined, and on which the image entropy is defined as
H(X) = −

∑N
i=1 p(xi) log p(xi).

Based on the adjacent similarity hypothesis, an intuition is
that if the information in the adjacent columns X′ has been
known, the new information amount that the original fea-
ture X contains will be less. Namely, the uncertainty will
decrease. A counterexample is the white noise image, for
which the uncertainty of it does not decrease even if its ad-
jacent columns are known. Based on this intuition, we intro-
duce conditional entropy as

H(X|X′) =
N∑
i=1

p(x′i)H(X|X′ = x′i) (11)

which quantifies the information amount of X given that its
neighboring X′ is known. We use H(X)−H(X|X′) to de-
note the ‘similarity’ between adjacent columns in features.
Figure 4(a) details the results on five layers in ResNet-18,
averaged over 1000 images. Concretely, we uniformly quan-
tize the continuous intermediate features with 8-bit (256 dis-
crete intervals), such that we can obtain a histogram of fea-
ture distribution. It can be seen that the similarity proper-
ty is kept throughout networks, even for deep layers such
as ‘layer4.0.conv1’. For comparison with unnatural images,
we use randomly generated white noise as network inputs.
As shown in Figure 4(b), since the random noise image does
not have the spatial similarity as natural images, the decline
of uncertainty in X is slight.

Neighboring Difference Visualization
To further demonstrate the spatial similarity, we visualize
the intermediate input features X and their corresponding

2933

adjacent difference maps Xad of ResNet-18 in Figure 5.
The adjacent difference map indicates the difference be-
tween two adjacent columns, and its i-th column is ob-
tained by Xad

:,i = X:,i −X:,i+1. The reconstruction features
Xr

:,i+1 = Xr
:,i (i = 0, 2, 4...) is also visualized to demon-

strate the approximation degree of Eq. 9. All values are nor-
malized into [0, 1] for comparison. As can be seen, except
for edges in the original features, values at most positions
are close to zero, which is also the reason that our approxi-
mation in Eq. 10 can achieve better performance.

Experiments
In this section, we evaluate the proposed FST in terms of
accuracy and efficiency. Our experiments are conducted on
image classification and object detection.

Implementation Details
Different from SR-STE (Zhou et al. 2021), which imple-
ments 2:4 structured sparsity pattern by directly reshaping
the 4-D weight (Cout, Cin, k, k) into a 2-D matrix (b(Cout ·
Cin ·k ·k)/4e, 4) and keeping Top-2 elements along the sec-
ond dimension, we reshape weight as (Cout, (Cin·k·k)/4, 4)
and conduct 2:4 pruning on the third dimension, such that
the layout of sparsity pattern matches the arrangement of
im2col when performing convolution as Eq. 1. When Cin ·
k · k is not divisible by 4 (only happens for the first convolu-
tion in ResNet), we make it a multiple of 4 by zero padding.

Image Classification
To verify the effectiveness of our method, we first evaluate it
on the large-scale ImageNet.We follow hyperparameter set-
tings as (Zhou et al. 2021): all models are trained with batch
size 256 for 120 epochs, and learning rate is annealed from
0.1 to 0 with a cosine scheduler. In order to reproduce their
reported accuracy, we set weight decay as 7e-5 and use la-
bel smooth. The ColorAugmentation released in their imple-
mentation is not adopted in our experiments because we find
that it will actually degrade accuracy slightly.

ASFP takes channel pruning on weights and allows the
pruned filters to be updated during the training procedure.
ASP (Mishra et al. 2021) utilizes the ‘scratch-dense-sparse’
procedure and relies on the pre-trained dense models. Note
that TSM (Hubara et al. 2021) utilizes 4:8 rather than 2:4
sparsity pattern, which also has a 50% compression rate.
4:8 structured sparsity relaxes the constraints on sparse pat-
terns, which improves accuracy but at the cost of increasing
the hardware overhead. Moreover, Ampere’s Sparse Tensor
Core does not support 4:8 sparsity pattern because it on-
ly provides 4×4 matrix processing array (NVIDIA 2020a).
Therefore, we only consider 2:4 pruning in this work.

Table 3 shows the results compared with other state-
of-the-art methods. With negligible accuracy degradation
(0.2% on ResNet-18 compared with conventional dense
training), our FST can achieve nearly 2× actual accelera-
tion on the newest NVIDIA GPUs. Although a higher com-
pression rate can be achieved, the unstructured sparsity pat-
tern (Sun et al. 2017; Goli and Aamodt 2020; Lin et al. 2020;
Evci et al. 2020) cannot be directly employed to commercial

Dataset Model Sparsity mAP(%) Speedup

VOC
VGG16-SSD Dense 75.8 1×

FST 76.2 2×
R50 Faster-RCNN Dense 79.5 1×

FST 79.4 2×

COCO
VGG16-SSD Dense 25.5 1×

FST 25.5 2×
R50 Faster-RCNN Dense 37.4 1×

FST 37.2 2×

Table 4: Object detection results (bounding box AP) on PAS-
CAL VOC and COCO2017.

GPUs due to lacking CUDA instructions support (Han et al.
2016, 2017; Mishra et al. 2021). In contrast, structured prun-
ing (He et al. 2019a), also known as channel pruning, can be
directly accelerated without dedicated hardware, but at the
expense of a ∼3% accuracy drop when structurally pruning
30% weights.

Object Detection
To further evaluate the effectiveness, we conduct experi-
ments on object detection task. The PASCAL VOC dataset
contains around 16k training images with 20 different class-
es, while the COCO dataset consists of about 80k training
images from 80 different categories. The single-stage objec-
t detector SSD (Liu et al. 2016), and the two-stage Faster
RCNN (Ren et al. 2015) are evaluated with different back-
bones. All experiments on object detection tasks are con-
ducted with MMDetection (Chen et al. 2019), and the mean
average precision (mAP) is used as the evaluation criterion.
The results are shown in Table 4. We can observe that, on
both one/two-stage detection algorithms, our approach can
fully 2:4 sparsify the forward and backward pass with less
than 0.2% accuracy drop, which demonstrates the general-
ization ability of our method.

Ablation Study
In this section, we perform ablation studies to clearly show
the influence of pruning different parts S(W), S(WT) and
S(XT), and the effectiveness of our Information Restoration
block on retrieving performance. Among them, the sparsity
on weights, namely S(W) and S(WT) is conducted by set-
ting the two minimum elements in every four consecutive
elements as zeros, while the sparsity on activations S(XT)
is performed by pruning columns at fixed positions, avoiding
the sizeable time overhead.

We take vanilla ResNet-18 on ImageNet as our base-
line and design five ablation experiments. As shown in Ta-
ble 5, it is worth noticing that: 1) In the third line, prun-
ing weights in both forward and backward passes does not
degenerate the accuracy and even makes a small improve-
ment because of regularization introduced by sparsity. 2) In
the fourth line, the activations are further pruned at fixed
positions as Eq. 7. Compared with magnitude-based prun-
ing, fixed-position-based pruning inevitably cast away more
critical elements, significantly impacting the training perfor-
mance because of the misleading weight updating directions

2934

Model Method Pattern Ratio Eq. 1 Eq. 2 Eq. 3 Top-1(%) Scratch AS Speedup

ResNet-18

Baseline Dense 0 – – – 71.2 3 7 1×
meProp (Sun et al. 2017) Unstructured 50%×2 – ∂L/∂Y ∂L/∂Y 32.5 3 7 –
ReS (Goli and Aamodt 2020) Unstructured 50%×2 – ∂L/∂Y ∂L/∂Y 69.8 3 7 –
ASFP (He et al. 2019a) Channel 30%×1 W – – 68.0 7 3 1.1×
ASP (Mishra et al. 2021) 2:4 structured 50%×1 W – – 70.7 7 7 –
SR-STE (Zhou et al. 2021) 2:4 structured 50%×1 W – – 71.2 3 3 1.2×
TSM (Hubara et al. 2021) 2:4 structured 50%×2 W WT – 70.7 3 3 1.5×
FST 2:4 structured 50%×2 W WT – 71.3 3 3 1.5×
FST 2:4 structured 50%×3 W WT XT 71.0 3 3 2×

ResNet-50

Baseline Dense 0 – – – 77.3 3 7 1×
DPF (Lin et al. 2020)∗ Unstructured 50%×1 W – – 76.5 3 7 –
RigL (Evci et al. 2020)∗ Unstructured 50%×1 W – – 76.2 3 7 –
ASFP (He et al. 2019a) Channel 30%×1 W – – 75.5 7 3 1.1×
PruneT (Lym et al. 2019) Channel - W WT – 75.0 3 3 1.5×
ClickT (Zhang et al. 2021) Predefined - W WT – 76.2 3 3 1.6×
SparseT (Gong et al. 2020) Unstructured - X ∂L/∂Y XT NA 3 3 1.3×
ASP (Mishra et al. 2021) 2:4 structured 50%×1 W – – 76.8 7 7 –
SR-STE (Zhou et al. 2021) 2:4 structured 50%×1 W – – 77.0 3 3 1.2×
TSM (Hubara et al. 2021) 2:4 structured 50%×2 W WT – 76.8 3 3 1.5×
FST 2:4 structured 50%×2 W WT – 77.1 3 3 1.5×
FST 2:4 structured 50%×3 W WT XT 77.0 3 3 2×

Table 3: Performance of ResNet-18/50 from scratch on ImageNet. The sparsity ratio (how much being pruned) and sparse
objects in Eq.1-3 are reported. ‘×n’ represents n objects are pruned. ‘AS’ indicates actual speedup on commodity GPU instead
of on dedicated hardware. * indicates that results are reproduced with their released code by setting target sparse ratio as 50%.

∂̃L
∂W = ∂L

∂YS(X
T). 3) In the fifth line, the IR block reme-

dies the accuracy degeneration, indicating that neighboring
pixels help retrieve pruned information in X.

S(W) S(WT) S(XT) IR Top-1(%)
1 7 7 7 7 71.2
2 3 7 7 7 71.2
3 3 3 7 7 71.3
4 3 3 3 7 69.4
5 3 3 3 3 71.0

Table 5: Ablation studies with ResNet-18 on ImageNet. ‘IR’
indicates our Information Restoration block as Eq. 10.

Extra Overhead Evaluation
Since our motivation is speeding up the training process, the
extra computation overhead introduced in our FST frame-
work should be considered. In other words, the extra time
overhead introduced must be less than the time saved to
achieve an overall acceleration. The extra latency in FST
mainly comes from 1) sorting weights inside its 4-sized
groups, which can be accelerated in parallel with popular
deep learning frameworks. 2) shifting gradient by one ele-
ment, which can be efficiently implemented by re-allocating
the index with the CUDA kernel.

Therefore, to further justify the effectiveness in practice,
we report the actual time overhead versus the training time.
We take ResNet-18 with batch size 256 as an example, and
the training time in an iteration is recorded. As for the extra
latency, the time spent on performing 2:4 structured sparsity

Training (s)
Extra Time Overhead (s)

S(W) S(WT) shift(∂L
∂Y) Total

0.184 0.0017 0.0017 0.0008 0.0042

Table 6: Actual execution time in an iteration. Averaged on
1000 iterations with batch size 256.

and conducting shift on gradients is reported in Table 6. The
execution environment is as below: Tesla A100 GPU×1, Py-
Torch 1.7, CUDA 11.1. From the table, we observe that the
total extra overhead consumes about 2% of the training time
in an iteration, demonstrating our approach’s value in prac-
tical acceleration. Recall that in Table 2, the time of sorting-
based 2:4 sparsity on activations S(XT) is up to 0.48s. The
efficiency experiments show that the Information Restora-
tion block cooperates well with the fixed-position sparsity.

Conclusion
This work proposes FST (fully sparse training) framework
under NVIDIA’s newly released Ampere architecture. We
select weights and activations, which are relatively more ro-
bust to structured pruning, as pruning objects. Based on the
spatial similarity of activations, fixed-position 2:4 pruning
is proposed to avoid large overhead. To alleviate the mis-
leading weight updating directions, we further propose an
IR block to retrieve the performance. Overall, FST achieves
around 2× accelerating training without performance drop.
In future, we will further study the effects of FST on natural
language processing tasks with self-attention modules.

2935

Acknowledgments
This work was supported in part by National Key
Research and Development Program of China (No.
2020AAA0103402), the Strategic Priority Research
Program of Chinese Academy of Sciences (No. X-
DA27040300), National Natural Science Foundation of
China (No.61906193) and the Central Hardware Engineer-
ing Institute, 2012 Laboratories of Huawei.

References
Bellec, G.; Kappel, D.; Maass, W.; and Legenstein, R. A.
2018. Deep Rewiring: Training very sparse deep networks.
In International Conference on Learning Representations.
Bengio, Y.; Léonard, N.; and Courville, A. 2013. Estimat-
ing or propagating gradients through stochastic neurons for
conditional computation. arXiv preprint arXiv:1308.3432.
Chellapilla, K.; Puri, S.; and Simard, P. 2006. High perfor-
mance convolutional neural networks for document process-
ing. In Tenth international workshop on frontiers in hand-
writing recognition. Suvisoft.
Chen, K.; Wang, J.; Pang, J.; Cao, Y.; Xiong, Y.; Li, X.;
Sun, S.; Feng, W.; Liu, Z.; Xu, J.; et al. 2019. MMDetec-
tion: Open mmlab detection toolbox and benchmark. arXiv
preprint arXiv:1906.07155.
Chen, W.; Wang, P.; Cheng, K.; and Cheng, J. 2021. Towards
Mixed-Precision Quantization of Neural Networks via Con-
strained Optimization. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), 5350–
5359.
Chen, Y.-H.; Krishna, T.; Emer, J. S.; and Sze, V. 2016. Eye-
riss: An energy-efficient reconfigurable accelerator for deep
convolutional neural networks. IEEE journal of solid-state
circuits, 52(1): 127–138.
Chmiel, B.; Ben-Uri, L.; Shkolnik, M.; Hoffer, E.; Ban-
ner, R.; and Soudry, D. 2021. Neural gradients are near-
lognormal: improved quantized and sparse training. In 9th
International Conference on Learning Representations, I-
CLR 2021, Virtual Event, Austria, May 3-7, 2021.
Dettmers, T.; and Zettlemoyer, L. 2019. Sparse network-
s from scratch: Faster training without losing performance.
arXiv preprint arXiv:1907.04840.
Evci, U.; Gale, T.; Menick, J.; Castro, P. S.; and Elsen, E.
2020. Rigging the lottery: Making all tickets winners. In In-
ternational Conference on Machine Learning, 2943–2952.
PMLR.
Frieden, B. R. 1972. Restoring with maximum likelihood
and maximum entropy. JOSA, 62(4): 511–518.
Goli, N.; and Aamodt, T. M. 2020. Resprop: Reuse spar-
sified backpropagation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
1548–1558.
Gong, Z.; Ji, H.; Fletcher, C. W.; Hughes, C. J.; and Tor-
rellas, J. 2020. SparseTrain: Leveraging Dynamic Sparsity
in Software for Training DNNs on General-Purpose SIMD
Processors. In Proceedings of the ACM International Con-
ference on Parallel Architectures and Compilation Tech-
niques, 279–292.

Gou, J.; Yu, B.; Maybank, S. J.; and Tao, D. 2021. Knowl-
edge distillation: A survey. International Journal of Com-
puter Vision, 129(6): 1789–1819.
Han, S.; Kang, J.; Mao, H.; Hu, Y.; Li, X.; Li, Y.; Xie, D.;
Luo, H.; Yao, S.; Wang, Y.; et al. 2017. Ese: Efficient speech
recognition engine with sparse lstm on fpga. In Proceedings
of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 75–84.
Han, S.; Liu, X.; Mao, H.; Pu, J.; Pedram, A.; Horowitz,
M. A.; and Dally, W. J. 2016. EIE: Efficient inference en-
gine on compressed deep neural network. ACM SIGARCH
Computer Architecture News, 44(3): 243–254.
Han, S.; Pool, J.; Tran, J.; and Dally, W. J. 2015. Learn-
ing both Weights and Connections for Efficient Neural Net-
work. In Advances in neural information processing system-
s, 1135–1143.
He, X.; Mo, Z.; Cheng, K.; Xu, W.; Hu, Q.; Wang, P.; Liu,
Q.; and Cheng, J. 2020. Proxybnn: Learning binarized neu-
ral networks via proxy matrices. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–
28, 2020, Proceedings, Part III 16, 223–241. Springer.
He, Y.; Dong, X.; Kang, G.; Fu, Y.; Yan, C.; and Yang, Y.
2019a. Asymptotic soft filter pruning for deep convolutional
neural networks. IEEE transactions on cybernetics, 50(8):
3594–3604.
He, Y.; Liu, P.; Wang, Z.; Hu, Z.; and Yang, Y. 2019b. Filter
pruning via geometric median for deep convolutional neu-
ral networks acceleration. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
4340–4349.
Hubara, I.; Chmiel, B.; Island, M.; Banner, R.; Naor, S.; and
Soudry, D. 2021. Accelerated sparse neural training: A prov-
able and efficient method to find n: m transposable masks. In
Advances in Neural Information Processing Systems.
Johnson, J. 2016. cnn-benchmarks. https://github.com/
jcjohnson/cnn-benchmarks. Accessed: 2022-03-16.
Lavin, A.; and Gray, S. 2016. Fast algorithms for convo-
lutional neural networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 4013–
4021.
Li, F.; Li, G.; Mo, Z.; He, X.; and Cheng, J. 2020. FSA: A
Fine-Grained Systolic Accelerator for Sparse CNNs. IEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 39(11): 3589–3600.
Li, G.; Liu, Z.; Li, F.; and Cheng, J. 2021. Block convolu-
tion: Towards memory-efficient inference of large-scale C-
NNs on FPGA. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems.
Lin, T.; Stich, S. U.; Barba, L.; Dmitriev, D.; and Jaggi, M.
2020. Dynamic Model Pruning with Feedback. In Interna-
tional Conference on Learning Representations.
Liu, J.; Xu, Z.; Shi, R.; Cheung, R. C. C.; and So, H. K.
2020. Dynamic Sparse Training: Find Efficient Sparse Net-
work From Scratch With Trainable Masked Layers. In In-
ternational Conference on Learning Representations.

2936

Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.;
Fu, C.-Y.; and Berg, A. C. 2016. Ssd: Single shot multibox
detector. In European conference on computer vision, 21–
37. Springer.
Lym, S.; Choukse, E.; Zangeneh, S.; Wen, W.; Sanghavi, S.;
and Erez, M. 2019. PruneTrain: fast neural network training
by dynamic sparse model reconfiguration. In Proceedings
of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, 1–13.
M Abdelmoniem, A.; Elzanaty, A.; Alouini, M.-S.; and
Canini, M. 2021. An Efficient Statistical-based Gradient
Compression Technique for Distributed Training Systems.
Proceedings of Machine Learning and Systems, 3.
Mishra, A.; Latorre, J. A.; Pool, J.; Stosic, D.; Stosic, D.;
Venkatesh, G.; Yu, C.; and Micikevicius, P. 2021. Accel-
erating sparse deep neural networks. arXiv preprint arX-
iv:2104.08378.
Mocanu, D. C.; Mocanu, E.; Stone, P.; Nguyen, P. H.; Gibes-
cu, M.; and Liotta, A. 2018. Scalable training of artificial
neural networks with adaptive sparse connectivity inspired
by network science. Nature communications, 9(1): 1–12.
Mostafa, H.; and Wang, X. 2019. Parameter efficient train-
ing of deep convolutional neural networks by dynamic s-
parse reparameterization. In International Conference on
Machine Learning, 4646–4655. PMLR.
NVIDIA. 2020a. Matrix multiply-accumulate operation us-
ing mma.sp instruction with sparse matrix. https://docs.
nvidia.com/cuda/parallel-thread-execution/index.html. Ac-
cessed: 2022-03-16.
NVIDIA. 2020b. NVIDIA A100 Tensor Core GPU
Architecture. https://images.nvidia.com/aem-dam/en-
zz/Solutions/data-center/nvidia-ampere-architecture-
whitepaper.pdf. Accessed: 2022-03-16.
Rastegari, M.; Ordonez, V.; Redmon, J.; and Farhadi, A.
2016. Xnor-net: Imagenet classification using binary convo-
lutional neural networks. In European conference on com-
puter vision, 525–542. Springer.
Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster r-cnn:
Towards real-time object detection with region proposal net-
works. Advances in neural information processing systems,
28: 91–99.
Sun, X.; Ren, X.; Ma, S.; and Wang, H. 2017. meprop: Spar-
sified back propagation for accelerated deep learning with
reduced overfitting. In International Conference on Machine
Learning, 3299–3308. PMLR.
Wang, P.; Chen, Q.; He, X.; and Cheng, J. 2020. Towards
accurate post-training network quantization via bit-split and
stitching. In International Conference on Machine Learn-
ing, 9847–9856. PMLR.
Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; and Li, H. 2016.
Learning structured sparsity in deep neural networks. Ad-
vances in neural information processing systems, 29: 2074–
2082.
Wiedemann, S.; Mehari, T.; Kepp, K.; and Samek, W. 2020.
Dithered backprop: A sparse and quantized backpropagation
algorithm for more efficient deep neural network training.

In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, 720–721.
Xu, W.; He, X.; Zhao, T.; Hu, Q.; Wang, P.; and Cheng, J.
2020. Soft Threshold Ternary Networks. In IJCAI, 2298–
2304.
Ye, X.; Dai, P.; Luo, J.; Guo, X.; Qi, Y.; Yang, J.; and Chen,
Y. 2020. Accelerating CNN training by pruning activation
gradients. In European Conference on Computer Vision,
322–338. Springer.
Zhang, C.; Yuan, G.; Niu, W.; Tian, J.; Jin, S.; Zhuang,
D.; Jiang, Z.; Wang, Y.; Ren, B.; Song, S. L.; et al. 2021.
ClickTrain: efficient and accurate end-to-end deep learning
training via fine-grained architecture-preserving pruning. In
Proceedings of the ACM International Conference on Super-
computing, 266–278.
Zhao, T.; Hu, Q.; He, X.; Xu, W.; Wang, J.; Leng, C.; and
Cheng, J. 2021. ECBC: Efficient Convolution via Blocked
Columnizing. IEEE Transactions on Neural Networks and
Learning Systems.
Zhou, A.; Ma, Y.; Zhu, J.; Liu, J.; Zhang, Z.; Yuan, K.; Sun,
W.; and Li, H. 2021. Learning N: M Fine-grained Struc-
tured Sparse Neural Networks From Scratch. In Interna-
tional Conference on Learning Representations.
Zhou, S.; Wu, Y.; Ni, Z.; Zhou, X.; Wen, H.; and Zou, Y.
2016. Dorefa-net: Training low bitwidth convolutional neu-
ral networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160.

2937

