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Abstract

Model generalization to the unseen scenes is crucial to real-
world applications, such as autonomous driving, which re-
quires robust vision systems. To enhance the model general-
ization, domain generalization through learning the domain-
invariant representation has been widely studied. However,
most existing works learn the shared feature space within
multi-source domains but ignore the characteristic of the fea-
ture itself (e.g., the feature sensitivity to the domain-specific
style). Therefore, we propose the Domain-invariant Repre-
sentation Learning (DIRL) for domain generalization which
utilizes the feature sensitivity as the feature prior to guide
the enhancement of the model generalization capability. The
guidance reflects in two folds: 1) Feature re-calibration that
introduces the Prior Guided Attention Module (PGAM) to
emphasize the insensitive features and suppress the sensitive
features. 2): Feature whiting that proposes the Guided Fea-
ture Whiting (GFW) to remove the feature correlations which
are sensitive to the domain-specific style. We construct the
domain-invariant representation which suppresses the effect
of the domain-specific style on the quality and correlation
of the features. As a result, our method is simple yet effec-
tive, and can enhance the robustness of various backbone net-
works with little computational cost. Extensive experiments
over multiple domains generalizable segmentation tasks show
the superiority of our approach to other methods.

Introduction

Recently deep learning-based methods (Chen et al. 2017;
Lin et al. 2017; Zheng et al. 2021) have obtained great
progress in semantic segmentation, which greatly benefits
from large-scale densely-annotated training data. However,
when applying these models trained on the labeled dataset
(source domain) to the unlabeled dataset (target domain),
the performance drops significantly due to the huge domain
gap. Therefore, how to reduce the domain gap to improve
the model performance in the target domain has become a
longstanding challenge in computer vision.

To tackle this challenge, Domain Adaptation (DA) (Tsai
et al. 2018; Saito et al. 2018; Zou et al. 2018; Chu et al. 2019;
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Figure 1: Illustration on feature sensitivity to the domain-
specific style. We visualize some feature maps generated
by the first residual group in ResNet50. The images share
the same content but differ in style. (a) Original image. (b)
Augmented image through photo-metric transform. (c) Aug-
mented image through BDL-GAN (Li, Yuan, and Vasconce-
los 2019). ‘Dif” means the mean squared loss between the
extracted features from the original and augmented images.

Lee et al. 2020; Yu et al. 2021; Zhang et al. 2021) reduces
the domain gap by aligning the data distribution between the
source and target domains. However, DA requires to access
the target domain which limits its application. In particular,
this requirement is hard to be satisfied in the model adap-
tation to the real world since it is quite difficult to create
a dataset that covers all real unseen scenes. Therefore, Do-
main Generalization (DG) has been widely studied to over-
come this limitation. DG aims to improve the model gen-
eralization to the target domain without the target data in
training. The essence of domain generalization is to learn
domain-agnostic features. (Li et al. 2018b,a; Dou et al. 2019;
Seo et al. 2020) learn the shared feature space within multi-
source domains to construct domain-invariant representa-
tion. However, the question is the characteristics of the fea-
ture itself (e.g., the feature sensitivity to the domain-specific
style) are usually overlooked. The feature sensitivity reflect-
ing how likely the feature is domain-invariant can act as the
useful prior knowledge to guide the learning of the domain-
invariant representation. As shown in Fig. 1, when send-
ing the images with the same content but different styles to



the same network, some features are insensitive to the style
while some are sensitive, which indicates that different fea-
tures have different sensitivities to the domain-specific style.

In this paper, we explore the feature sensitivity to
domain-specific style as the feature prior and propose a
novel Domain-invariant Representation Learning (DIRL)
for domain generalization in semantic segmentation. First,
a Sensitivity-aware Prior Module (SAPM) is proposed to
quantify the feature sensitivity as a guiding vector, which
distinguishes the degree of feature change caused by the
variance of style. Next, to embed the guidance of the feature
prior into the network, we develop a Prior Guided Attention
Module (PGAM) to re-calibrate the features under the guid-
ance. The Sensitivity Guidance loss supervises the learning
of the channel-wise attention weights to suppress the sensi-
tive features and emphasize the insensitive features. In addi-
tion, we further adopt the feature whiting to promote model
generalization, which has been proven effective in (Pan et al.
2019; Roy et al. 2019). However, directly adopting the fea-
ture whiting may eliminate the domain-specific style and
domain-invariant content encoded in the features covari-
ance in the meanwhile (Choi et al. 2021). Therefore, it is
necessary to first decouple the features covariance into the
domain-specific style and domain-invariant content, then se-
lectively remove the domain-specific ones. Fortunately, the
feature sensitivity to the domain-specific style is highly re-
lated to the features covariance sensitivity to the domain-
specific style. The Guided Feature Whiting (GFW) is pro-
posed to utilize the guidance of feature prior to decouple
the features covariance, then the domain-specific ones are
selectively removed. In general, our contributions are sum-
marized as follows:

* To the best of our knowledge, this is the first work to ex-
plore feature sensitivity to the domain-specific style. We
utilize the guidance of feature sensitivity to perform the
feature re-calibration and feature whiting, which enhance
the generalization capability.

* We propose a simple yet effective Domain-invariant Rep-
resentation Learning (DIRL) algorithm, which consists
of SAPM, PGAM, and GFW to realize the quantifica-
tion and utilization of the feature prior (e.g., the feature
sensitivity to the domain-specific style). These modules
can be easily applied to existing models and significantly
improve the generalization ability.

* We employ our method on multiple domains generaliza-
tion tasks tailed to urban-scene segmentation. Extensive
experiments show the superiority of DIRL over other ex-
isting approaches qualitatively and quantitatively.

Related Works
Domain Generalization

Domain Generalization (DG) aims to obtain a generalized
model from the “known” source domain, which can perform
well in various “unseen” target domains. Most DG meth-
ods can be broadly divided into two categories: Multi-source
DG (Muandet, Balduzzi, and Scholkopf 2013; Ghifary et al.
2015; Li et al. 2018a; Seo et al. 2020; Bau et al. 2017,
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Mancini et al. 2018; Li et al. 2019) and single-source DG
(Tobin et al. 2017; Yue et al. 2019; Qiao, Zhao, and Peng
2020; Choi et al. 2021; Huang et al. 2021).

Multi-source DG methods mainly learn a shared repre-
sentation across multiple-source domains based on meta-
learning (Li et al. 2018a), adversarial learning (Li et al.
2018a), metric learning (Dou et al. 2019) or auto-encoder
(Seo et al. 2020). However, multiple domains are some-
times unavailable for training, and collecting multi domains
is costly and labor-intensive. Hence, it’s necessary to de-
velop an effective learning paradigm for single-source DG.
Single-source DG methods can be divided into two cate-
gories: 1) Image-level based methods: Enrich the variation
of synthetic images in the source domain through domain
randomization (Tobin et al. 2017; Volpi et al. 2018; Yue
etal. 2019; Huang et al. 2021). 2) Feature-level based meth-
ods: Introduce the instance normalization layers (Ulyanov,
Vedaldi, and Lempitsky 2016) or feature whitening transfor-
mation (Pan et al. 2018; Seo et al. 2020; Choi et al. 2021)
to eliminate the domain-specific style information. Differ-
ent from the previous feature-level based single-source DG
methods, we introduce the feature sensitivity to the domain-
specific style as the feature prior to handle the domain gen-
eralization task, which is ignored in previous works but does
improve the robustness of the learned representation.

Domain Adaptation for Semantic Segmentation

Domain adaptation methods aim to transfer the knowledge
learned from the source domain to a specific target domain.
Most DA methods can be divided into three categories: 1)
Feature alignment through adversarial training (Valada et al.
2017; Vu et al. 2019). 2) Domain-specific knowledge learn-
ing through self-training (Zou et al. 2018, 2019). 3) Translat-
ing the source image to the target style to reduce the domain
gap (Yang and Soatto 2020). DG is closely related to DA,
but DG requires no access to the target domain. Moreover, a
DG method can provide a good model initialization for DA.

Model Interpretability

It has been observed that many single hidden units can be
aligned with human-explainable semantic concepts which
are not explicitly taught to the network: Units have been
found to detect objects, parts, textures, colors, scenes (Bau
et al. 2017; Olah et al. 2018; Bau et al. 2018, 2020). Nat-
urally, features extracted by the units matched well with
the domain variant semantics, such as textures and colors,
are sensitive to style, while features extracted by the units
matched well with domain-invariant semantics, such as ob-
jects and parts, are insensitive to style. This inspires us to
find out that the features have different sensitivities to the
domain-specific style. Then we utilize the feature sensitivity
to promote the domain generalization.

Method

The key of DIRL is the introduction of feature sensitivity to
enhance the robustness of extracted features. As shown in
Fig. 2, we first obtain the feature sensitivity through SAPM,
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Figure 2: Overview of our proposed DIRL. (a) Prior Guided Attention Module. (b) Guided Feature Whiting. Enc: The encoder.
FW: The feature whiting transform. GAP: The global average pooling. Conv: The convolution operation. 1 x 1: The kernel size.
CxHxW: The tensor shape (depth, height, width). M: The intermediate feature map. M: The standardized feature map. M:
The output feature map. Lgg: The Sensitivity Guidance loss. Lgpyw: The Guided Feature Whiting loss.

then utilize the feature sensitivity to guide the feature re-
calibration and feature whiting, and finally feed the aug-
mented features to the subsequent network to get the pre-
diction result. Next, we will explain in detail each module
and elaborate on our complete network structure.

Sensitivity-aware Prior Module (SAPM)

To quantify the feature sensitivity to the domain-specific
style, we propose the Sensitivity-aware Prior Module as
shown in Fig. 3. We think the domain-specific style infor-
mation mainly reflects in color and blurriness, therefore we
first simulate the style shift through photo-metric augmenta-
tion such as color jittering and Gaussian blurring.

Then we extract the corresponding feature maps by infer-
ring from two input images, namely an original and a photo-
metric transformed image, and calculate the differences be-
tween two different feature maps, which is defined as the
difference vector d. Finally, we normalize each element of
the difference vector into the same scale, i.e., between zero
to one, to get the feature sensitivity, which is defined as the
sensitive guiding vector s. Here it is worth noting that we
can conveniently realize the calculation on the two inputs
through the concatenating and splitting of the batch dimen-
sion. For brevity, we do not show the operation of the batch
dimension in Fig. 2.

Formally, the feature difference vector d € RO*1x1 jg.

d = GAP(Ly(M, — M,)),

where M, M, € R'C*HXW mean the feature maps for
the original image and photo-metric transformed image. The
normalization of the feature difference vector to get the sen-
sitive guiding vector s is defined as:

d — Min(d)
S =
Mazx(d) — Min(d)
where M az(-) and Min(-) compute the maximum and min-
imum value along the channel dimension. We denote each

scalar in s as the Guiding Factor, where s; is the Guiding
Factor for channel j. The larger s; is, the more sensitive the

€ [0,1],
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Figure 3: Illustration of Sensitivity-aware Prior Module. L2
indicates Euclidean norm.

feature of channel j is to the style. It is worth mentioning
that no additional trainable parameters or supervision are in-
troduced in this module. We can apply SAPM at any position
of the network to get the corresponding feature sensitivity.

Prior Guided Attention Module (PGAM)

After getting the feature prior, we need to utilize the
guidance of the feature sensitivity to perform feature re-
calibration. We hope the network to learn a collection of
per-channel attention weights, which realize the emphasis of
insensitive features and the suppression of sensitive features.
Therefore we introduce the PGAM incorporating a Sensitiv-
ity Guidance loss to learn the respective channel-wise atten-
tion weights under the guidance of feature sensitivity.
Specifically, we firstly adopt the global average pooling to
aggregate feature maps across their spatial dimensions, then
use the simple 1 x 1 convolution operation and a sigmoid
activation to produce the channel-wise attention weights.
These weights are applied to the original feature maps to
generate the output of the PGAM, which can be fed directly
into the subsequent layers of the network. To constrain the
attention weights to reflect the feature sensitivity, we addi-
tionally introduce the Sensitivity Guidance loss Lgg.
Mathematically, we denote the attention weights as w €
RE*1x1 4 has the same dimension with the sensitivity
guidance vector s. We want the attention weights w and
the sensitivity guidance vector s to be negatively correlated.



Therefore the Sensitivity Guidance loss Lg¢ is defined as:
Lsc = [[log(w)log(s) — 1||2,

where w,s € [0,1]. The loss can constrain the attention
weight to be close to 0 when the feature sensitivity is close
to 1 for each channel.

Discussion. Why not directly adopt the feature sensitiv-
ity to re-calibrate the features? The reasons are two folds:
1) The obtainment of the feature sensitivity needs two in-
puts: original images and augmented images, which is not
efficient in the inference stage. 2) The learnable attention
weights are more flexible than the unlearnable feature sensi-
tivity. The flexibility can promote the model generalization
to the unseen scenes.

Guided Feature Whiting (GFW)

In addition to obtaining the re-calibrated features, we hope
to further remove the effect of domain-specific style on the
feature correlation through the whiting transform adopted in
the pioneering work ISW (Choi et al. 2021). While perform-
ing the whitening transform, we firstly decouple the features
covariance into the domain-specific and domain-invariant
parts, then selectively suppress domain-specific ones.

The difference between our method and ISW (Choi et al.

2021) is that we utilize the feature sensitivity to guide de-
coupling while ISW utilizes the high-level statistics of the
features covariance to perform decoupling. We argue the
domain-specific features covariance mainly reflects in fea-
tures covariance between the sensitive features and other
features. Therefore, we adopt the sensitive guiding vector to
generate Sensitive Prior Map (SPM) for the features covari-
ance, where the larger the value of the position is, the more
sensitive the position is to the style. Then we sort the values
of every position and select the most sensitive positions to
suppress them. Specifically, GFW contains three steps:
1) Generate a covariance matrix ¥4 from a standardized
feature map. We send the feature map M to an instance nor-
malization and get the normalized features M. Then the co-
variance matrix of the normalized features is calculated by

1
- HW
2) Derive the selective mask for the covariance matrix from

the sensitive guiding vector. We use the sensitive guiding
vector to generate the SPM which is defined as:

SPM = (5)(S)T € RE*¢.

Then we select the top largest positions in the SPM to gener-
ate the Selective Mask (SM), which is a binary classifier to
distinguish which position is sensitive to the domain-specific
style. Since the covariance matrix is symmetric, SM only
contains the strictly upper triangular part. The selective ratio
« is set as 0.3 empirically.

3) Adopt the SM to guide the feature whiting, which controls
the selected covariance values to 0. We use the Guided Fea-
ture Whiting loss Lgrw to remove the feature correlation
in the selected positions, which is defined as

Lerw = B[l () SM]],

¥, (M) (M,)T € RE*C.
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where E means the the arithmetic mean and SM indicates
the generated selective mask.
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Figure 4: Architecture comparison with other methods: (a)
IBN-Net mdule (Pan et al. 2018). (b) ISW module (Choi
et al. 2021). (c) Our proposed layer which realizes the fea-
ture whiting and feature re-calibration under the guidance of
the feature sensitivity s at the same time. L;gy is Instance
Selective Whitening loss proposed in (Choi et al. 2021).

Network Architecture in DIRL

Our design is inspired from IBN-Net (Pan et al. 2018)
and ISW (Choi et al. 2021), as shown in Fig. 4. IBN-Net
adopts the instance normalization to prevent over-fitting in
the source domain and ISW further introduces whiting trans-
form to solve DG. However, they both ignore the character-
istics of the feature itself. We adopt a similar network archi-
tecture but introduce feature sensitivity as the guidance of
feature re-calibration and feature whiting. The feature sensi-
tivity serves as the useful prior knowledge for constructing
the domain-invariant representation to enhance the model
generalization. Specifically, we further add PGAM after the
instance normalization and apply our proposed Lgry and
Lg¢ to the instance normalization layer and the PGAM, re-
spectively. Our entire loss is described as:

N N

1 ; 1 .

Ltotal = Lseg + Al(ﬁ Z LSG) + )‘Q(N ZLG’FW)’
=1 i=1

where A; and )\, are two constants balancing each loss, ¢
denotes the layer index, and N is the number of applying this
layer, L., means the segmentation loss which is defined as
the pixel-wise cross entropy loss:

M HxW C

Lseg = - Z Z Zyijclog(pijc)v

i=1 j=1 c=1

where M is the number of training images, H and W mean
the image size, j denotes the pixel index, C represents the
number of categories, c is the category index, y;;. € {0,1}
is the one-hot vector representation of the ground-truth label
and p; ;. is the predicted category probability.



mloU

Method Lse¢ Lisw Larw C B M
Baseline 2805 25.14 28.18
DA 30.81 2632 29.05
DU 3357 28.74 3024
v 36.60 30.66 33.55
Our Method | ¢/ v 4020 38.10 40.79
v v | 41.04 39.15 41.60

Table 1: Abalation experiment for domain generalization
task: GTAV—{Cityscapes, BDD and Mapillary} (using
ResNet-50 as backbone) in mloU. Notation: ‘Baseline’
means the DeepLabV3+ (Chen et al. 2017). ‘DA’ means the
direct addition of PGAM to re-calibrate the features with-
out the guidance of feature sensitivity. ‘DU’ means the di-
rect utilization of the feature sensitivity to re-calibrate the
features. Lgc means the Sensitivity Guidance loss. Lygyw
means the Instance Selective Whitening loss (Choi et al.
2021). Lgrw denotes the Guided Feature Whiting loss.

Experiments

In this section, we first introduce our used model and dataset.
Then we explain our training details. After that, we illustrate
the effectiveness of each component in our method through
the ablation experiments. Finally, we present evaluation re-
sults to prove the effectiveness of our method on model gen-
eralization with comparisons to other methods.

Model and Dateset

Model. To illustrate the wide applicability of our proposed
methods, We adopt DeepLabV3+ (Chen et al. 2017) with
three backbones: ResNet (He et al. 2016), ShuffleNet (Ma
et al. 2018) and MobileNet (Sandler et al. 2018) as the seg-
mentation model, respectively.

Dataset. We evaluate the proposed algorithm on two
challenging and important unsupervised domain general-
ization tasks: GTAV—{Cityscapes, BDD, Mapillary} and
Cityscapes—{BDD, Synthia, GTAV} which involve two
synthetic datasets and three real datasets.

Synthetic Dataset. GTAV (Richter et al. 2016) is a large-
scale dataset containing 24,966 high-resolution synthetic
images. It contains 12,403, 6, 382, and 6, 181 images of size
1914 %1052 for training, validating, and testing respectively.
It has 19 object categories compatible with Cityscapes. Syn-
thia (Ros et al. 2016) consists of 9,400 synthetic images
with a resolution of 960 x 720, which shares 16 classes with
the three target datasets.

Real Dataset. Cityscapes (Cordts et al. 2016) is a large
semantic segmentation dataset, which is split into the train-
ing, validation, and testing parts with 2,975, 500 and 1, 525
images respectively. BDD (Yu et al. 2020) is another real-
world dataset that contains diverse urban driving scene im-
ages with the resolution of 1280 x 720. BDD provides 7, 000
images for training and 1,000 images for validating. The
last real-world dataset we adopt is Mapillary (Neuhold et al.
2017) consisting of 25,000 high-resolution images with
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Choice of o
Value 0.2 0.3 0.4 0.5
Mean mloU 3830 40.60 39.07 38.11
Choice of \;

Value 0.4 0.6 0.8 1.0
Mean mloU 37.85 39.77 40.60 39.50
Choice of \o

Value 0.2 0.4 0.6 0.8
Mean mloU 38.79 3894 40.60 39.57

Table 2: Performance with different parameters o, A1, Ao in
domain generalization task: GTAV—{Cityscapes, BDD and
Mapillary }. Mean mIoU here is obtained in three datasts.

a minimum resolution of 1920x 1080 collected from all
around the world.

Training Details

We implement our method in Pytorch (Paszke et al. 2019).
The optimizer is SGD with an initial learning rate of 0.01
and momentum of 0.9. Besides, we adopt the polynomial
learning rate scheduling (Liu, Rabinovich, and Berg 2015)
with the power of 0.9. We train all the models for 40K it-
erations with the batch size of 8. We adopt the color and
positional augmentations such as color jittering, Gaussian
blur, random cropping, random horizontal flipping, and ran-
dom scaling with the range of [0.5, 2.0] to avoid the model
overfitting. For the photo-metric transformation in SAPM,
we apply color jittering and Gaussian blurring. As shown
in IBN-Net, earlier layers tend to encode the style informa-
tion. Therefore we add the instance normalization layer and
PGAM after the first three convolution groups.

Ablation Experiments

We examine each component of DIRL to find out how they
contribute to the network generalization in semantic seg-
mentation in Table 1. First, it is observed that the baseline
model does not perform well due to the huge domain bias.
Then, directly adopting the feature sensitivity or adding the
PGAM to re-calibrate the features will bring in a certain
performance improvement but is limited by the unlearnable
feature sensitivity and the absence of feature guidance. The
addition of the Sensitivity Guidance loss provides the learn-
able attention weights for feature re-calibration which brings
in the significant improvement in the model generalization
performance, especially in the task: GTAV—Cityscapes.
Next, we further compare two feature whiting losses in
the last two columns. As we can see, Guided Feature Whit-
ing loss obtains better performance because the feature sen-
sitivity to the domain-specific style is closely related to the
features covariance sensitivity to the domain-specific style,
which demonstrates the importance of introducing the fea-
ture sensitivity as the guidance for domain generalization.

Sensitivity to Hyper-parameters. We further investi-
gate the sensitivity of our method to the hyper-parameters
@, A1, A2 and show the results in Table 2. It can be seen
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Figure 5: Qualitative illustration of domain generalizable semantic segmentation. DIRL introduces the feature sensitivity as the
guidance to realize the domain-invariant representation learning which improves the segmentation performance.

Backbone Method C B M Mean Backbone Method B S G Mean
Bascline | 2805 25.12 28.18 | 2742 Bascline | 44.06 2329 42.55 | 36.93
SW | 2991 2748 2971 | 29.03 SW | 4849 2610 44.87 | 39.82
IBN-Net | 33.85 3230 37.75 | 34.63 IBN-Net | 48.56 26.14 45.06 | 39.92
ResNetso | lerNorm | 3181 3270 3388 | 32.80 ResNetso | lerNorm | 4923 2598 45.73 | 40.31
DPRC | 3742 32.14 34.12 | 34.56 DPRC | NA NA NA | NA
IW | 3321 32.67 3735 | 34.41 IW | 48.19 2581 4521 | 39.74
IRW | 3357 3318 3842 | 35.06 IRW | 48.67 2605 45.64 | 40.12
ISW | 3658 3520 4033 | 37.37 ISW | 5073 2620 45.00 | 40.64
DIRL | 41.04 3915 41.60 | 40.60 DIRL | 51.80 2650 4652 | 41.61
Baseline | 2556 2217 28.60 | 25.44 Baseline | 38.00 2125 3645 | 31.93
IBN-Net | 27.10 31.82 34.89 | 3127 IBN-Net | 41.80 22.99 4091 | 3526
ShuffleNet | “row ™ | 3008 3206 3531 | 32.78 ShuffleNet | “rqw ™ | 4104 2282 40.17 | 34.98
DIRL | 31.88 3257 36.12 | 33.52 DIRL | 42.55 2374 4123 | 35.84
Baseline | 2502 25.73 2645 | 26.03 Baseline | 40.13 2164 3732 | 33.03
MopileNer | TBN-Net | 30.14 27.66  27.07 | 28.29 MobileNer | TBN-Net | 4497 2323 4113 | 36.44
ISW | 30.86 3005 30.67 | 30.53 ISW | 4517 2291 41.17 | 3642
DIRL | 34.67 3278 3431 | 33.92 DIRL | 47.55 2329 4143 | 37.42

Table 3: Domain generalization performance for the task:
GTAV —{Cityscapes, BDD and Mapillary} in mIoU. Com-
pared methods include SW (Pan et al. 2019), IBN-Net (Pan
et al. 2018), IterNorm (Huang et al. 2019), DPRC (Yue et al.
2019), IW (Choi et al. 2021), IRW (Choi et al. 2021) and
ISW (Choi et al. 2021).

that the generalization performance firstly increases then de-
creases with the increase of three hyper-parameters, illus-
trating a bell shape curve. We empirically set the weight
a, A1, Az as 0.3, 0.8, 0.6 to achieve the best performance.

Comparisons with State-of-the-Art Methods

Here we prove the superiorty of our method with other
state-of-the-art DG methods. First, as shown in Table 3, our
method outperforms other methods clearly and consistently
across three different network backbones in the task from
synthetic scenes to the real scenes. The superior segmen-
tation performance is largely attributed to the introduction
of the feature sensitivity, which guides the network to per-
form the feature re-calibration and feature whiting. DIRL
provides robust representations which suppress the effect of
the domain-specific style. Qualitative comparisons are pro-
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Table 4: Domain generalization performance for the task:
Cityscapes—{BDD, Synthia and GTAV} in mloU. ‘N/A’
means the results are not reported in the paper.

Models | Params(M) GFLOPS Inference Time(ms)
Baseline 45.082 554.31 10.71
IBN-Net 45.083 554.31 10.18

ISW 45.081 554.31 10.50

DIRL 45414 554.98 10.93

Table 5: Comparison of computational cost. Notation: the
adopted backbone is ResNet50. The testing is performed
with the image size of 2048x 1024 on NVIDIA V100 GPU.
The inference time is averaged over 500 times experiments
to avoid the influence of volatility.

vided in Fig. 5 to better illustrate the superiority of DIRL.
Then we further conduct the domain generalization task
Cityscapes—{BDD, Synthia and GTAV} to provide the
model generalization from the real scenes to the synthetic
scenes and adverse scenes in Table 4. DIRL provides more
reasonable predictions than other methods for the adverse
conditions not included in Cityscapes, such as low illumina-



Target Image Baseline

Isw

DIRL Ground Truth

Figure 6: Segmentation results on adverse conditions in BDD (Yu et al. 2020) and RainyCityscapes (Hu et al. 2019) with
the models trained on Cityscapes. Though Cityscapes does not contain scenes of adverse conditions, DIRL makes reasonable

predictions in these cases.

tion and rainy in Fig. 6. Though these types of scenes are not
included in the training data, they are unavoidable and cru-
cial for real-world applications (e.g., autonomous driving).

Computational Cost Analysis. Though our approach
adds the additional module in the network, this brings in
only a little additional computational cost. As shown in
Fig. 4, our approach shares the similar architecture with
other methods and only differs in the normalization layer
and the introduction of PGAM. We report the number of pa-
rameters, GFLOPS, and inference time in Table 5, which
proves the efficiency of DIRL.

Qualitative Analysis

Comparison of Channel-wise Attention Weights. To
show how the feature sensitivity guides feature re-
calibration, we show the relation between the feature sen-
sitivity to domain-specific style with the channel-wise at-
tention weights before and after adding the sensitivity guid-
ing loss in Fig. 7. It can be seen that the attention weights
learned by the network itself have no obvious distinction and
are almost around 0.5, while the guidance of feature sensitiv-
ity constrains the network to emphasize the insensitive fea-
tures and suppress the sensitive features. Interestingly, the
features with similar sensitivity have inconsistent attention
weights. It seems after the network satisfies the guidance
constraint, it further models the interdependencies among
different channels, similar to (Hu, Shen, and Sun 2018).

Difference between ISW and GFW. ISW explores the
sensitivity of feature convariances to style, while GFW fur-
ther explores the sensitivity of feature itself to style. Sen-
sitivity of the feature itself not only reflects the importance
of the different feature parts in representation learning (for
feature re-calibration), but also provides the guidance on de-
coupling sensitive and insensitive parts (for feature whiting),
which both improve the robustness of learnt representation.
GFW promotes more thorough decoupling between the sen-
sitive and insensitive parts of the learnt feature than ISW. As
shown in Fig. 8, the distribution of ISW is more averaged
than GFW, which effectively proves the two parts has been
separated well in GFW while not enough good in ISW. Bet-
ter decoupling can avoid the affect of the domain-specific
style on the learnt representation (Wu et al. 2021).
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Figure 7: The relation between the feature sensitivity with
the channel-wise attention weights, which is induced by the
PGAM in the third convolution group in ResNet50.

2 10 Above 0.7:

s = GFW GFW (14.06%)
S 08 | mmm ISW ISW (4.69%) S,
z.

Z 06

=

H 04 Below 0.03:

& GFW (39.06%)

2 ISW (15.63%
B0l

I I ——

20 30 40
The Number of Feature Channel

50

Figure 8: Comparison between GFW and ISW in feature
sensitivity of the first convolution in ResNet50, which has
been sorted to highlight differences.

Conclusion

This paper introduces the feature sensitivity to the domain-
specific style as the prior knowledge to guide the feature re-
calibration and feature whiting, which promotes the learn-
ing of the domain-invariant representation. We show the
potential of our proposed Domain-invariant Representation
Learning (DIRL) in the urban segmentation, including the
domain generalization from synthetic scenes to real scenes,
and from general conditions to adverse conditions. In the
future, we strive to improve the model generalization to pro-
mote the application of deep neural networks on outdoor
scenes, such as autonomous driving.
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