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Abstract

High dynamic range (HDR) illumination estimation from
a single low dynamic range (LDR) image is a significant
task in computer vision, graphics and augmented reality. We
present a two-stage deep learning-based method to predict an
HDR environment map from a single narrow field-of-view
LDR image. We first learn a hybrid parametric representation
that sufficiently covers high- and low-frequency illumination
components in the environment. Taking the estimated illumi-
nations as the guidance, we build a generative adversarial net-
work to synthesize an HDR environment map that enables re-
alistic rendering effects. We specifically consider the render-
ing effect by supervising the networks using rendering losses
in both stages, on the predicted environment map as well as
the hybrid illumination representation. Quantitative and qual-
itative experiments demonstrate that our approach achieves
lower relighting errors for virtual object insertion and is pre-
ferred by users compared to state-of-the-art methods.

Introduction
Learning and predicting the high dynamic range (HDR) il-
lumination from a low dynamic range (LDR) partial-view
image has a broad range of practical applications in aug-
mented reality (AR). As a convenient way, relighting virtual
objects using 360◦ HDR environment maps is able to gen-
erate appropriate lighting effects that are consistent with its
real-world surroundings. However, since images are formed
by radiometric and geometric processes to project real-world
3D scenes to 2D images, involving many factors such as
lighting conditions, surface material, scene geometry, and
camera parameters, the inverse process to estimate the global
environment lighting from a narrow field-of-view (FOV) im-
age is under-constrained. It is even more complicated to in-
fer an HDR panoramic environment map when the image is
recorded in LDR with a limited FOV.

Thanks to the emergence of deep neural networks and to
the availability of large-scale lighting-related datasets, pre-
dicting light from a single image has become achievable by
direct generation of environment maps (Gardner et al. 2017;
Song and Funkhouser 2019), or regression of lighting para-
metric models, such as spherical harmonics (SH) (Cheng
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et al. 2018; Zhao and Guo 2020) and spherical Gaussians
(SG) (Li et al. 2019a, 2020). However, parametric models
often struggle to accurately and sufficiently estimate full-
frequency lighting. As has been demonstrated, SH have lim-
ited capacity to interpret high-frequency lighting (Cheng
et al. 2018). SG (Zhan et al. 2021) enable high-quality spec-
ular reflection and highlights. But the constant ambient light-
ing term limits the capability of describing low-frequency
lighting. Meanwhile, direct predicting an HDR environment
map that retains both high- and low-frequency could suffer
from scalability issues due to the complexity of the solution
space (Gardner et al. 2017). Inspecting the rendering qual-
ity by existing methods, there still remains a large space for
further exploration in this field.

In this work, we build a novel two-stage framework to
predict an HDR environment map from a single LDR im-
age with a limited FOV, as shown in Figure 1. We first learn
parameters of a hybrid illumination representation of the en-
vironment. Specifically, we estimate SG for main lighting
sources via a Transformer, and predict the 2nd order SH
for low-frequency lighting using CNNs. The estimated pa-
rameters are transformed to a Gaussian lighting map and a
diffuse irradiance map via projection functions. In the sec-
ond stage, a generative adversarial network (GAN) takes
the transformed maps as guidance to predict an HDR en-
vironment map. We design a panoramic image-based ren-
dering layer that efficiently computes a rendering loss be-
tween the predicted and ground truth environment maps. As
a result, the generated HDR environment map enables pho-
torealistic rendering results for virtual objects with diverse
reflectances. Our main contributions are:

• A novel two-stage deep architecture that enables high-
quality HDR environment map prediction, which outper-
forms the previous approaches.

• Rendering-aware learning schemes to both the lighting
parameter and environment map prediction, including a
novel differentiable rendering layer to obtain perceptual
rendering loss from an environment map.

• Sub-network structures and learning strategies designed
to address difficulties in environment map prediction,
such as the Transformer-based SG prediction, and the hy-
brid illumination representation combining SH and SG as
complementary components.
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Figure 1: Different light estimation networks. (Gardner et al. 2017) directly generate environment map, (Garon et al. 2019;
Gardner et al. 2019) regress SH and SG parameters as their lighting representations respectively. (Zhan et al. 2021) only use
SG to guide the environment map generation. Ours takes both high and low frequency into account, utilize a transformer-based
network in the regression stage, and adopt a rendering-aware generative module to produce environment maps.

Related Works

Non-Learning Approaches typically require user input,
multiple view images, additional scene geometry, or the as-
sumption of known shape and material of objects to alleviate
the under-constrained problem. (Karsch et al. 2011) recovers
parametric 3D lighting from a single image, yet needs man-
ual annotations to initialize the lighting and get coarse geo-
metric estimation. (Gruber, Richter-Trummer, and Schmal-
stieg 2012; Zhang, Cohen, and Curless 2016; Monroy,
Hudon, and Smolic 2018) require multi-view captures to re-
construct the scene. (Barron and Malik 2013; Maier et al.
2017) add additional depth input to recover spatially-varying
SH illumination. (Marschner and Greenberg 1997; Lom-
bardi and Nishino 2015) estimate scene illumination from
a 3D surface, with the assumption of a known shape.
Learning-based Light Prediction aims to recover the lights
from real-life images. Most popular representations of lights
include SH and SG. SH are a convenient lighting represen-
tation. They can be estimated from a single object-based im-
age (Li et al. 2018) or two images taken from the front and
rear cameras of a smartphone (Cheng et al. 2018). (Garon
et al. 2019) uses a two-stream network to regress SH co-
efficients for the illumination on a local patch of a single
image. Comparing with SH, SG restore the high-frequency
illumination required to handle specular highlights. (Gard-
ner et al. 2019) represents light sources by position, inten-
sity, color and depth, and convert the above parameters into
spherical Gaussian function for illumination estimation. In-
stead of manually designing the number of light sources like
(Gardner et al. 2019), (Li et al. 2019a) uses 128 sampling di-
rections to generate corresponding SG coefficients. (Li et al.
2020) finds SG can recover high frequency lighting much
better than SH with fewer parameters, and estimate per-pixel
illumination from the input image. Some other works handle
illumination in an adversarial way. (Pandey et al. 2021) adds
an adversarial loss to remove high-frequency shading effects
from the input image. (Liu et al. 2020; Zhan et al. 2020;
Zhang, Liang, and Wang 2019) adopt generative adversar-
ial networks to generate shadows without explicit lighting
estimation.
Learning-based Environment Map Generation High-
quality environment maps are crucial for virtual reality ap-

plications (Wang et al. 2020). (Gardner et al. 2017) is the
first work for direct environment map generation from a
single image with a two-stage training scheme. (Song and
Funkhouser 2019) uses a geometry-aware warping module
to project the input image into a panoramic map, and then
complete the unobserved region. (Srinivasan et al. 2020)
proposes a 3D volumetric model based on standard volume
rendering to estimate illuminations maps. (Zhao, Chalmers,
and Rhee 2021) propose to use dynamic filtering for adap-
tively learning lighting-related features, and augment the
training data in terms of white balance, color temperature
and exposure to achieve a better performance. (Zhan et al.
2021) combines SG regression and environment map gener-
ation using a two-stage network, where the SG parameters
are used as the guidance to generate illumination maps.

The aforementioned works either directly generate envi-
ronment map or predict illumination parameters such as SH
or SG for illumination estimation. In contrast, we combine
the advantages of both SH and SG by projecting them into
guidance maps, and build a rendering-aware generative net-
work to generate panoramic environment map which con-
tains more details for photorealistic rendering.

Method
Our method has two stages, the illumination parameter re-
gression stage and the HDR environment map prediction
stage. In the first stage, we learn to regress a hybrid illumi-
nation representation that consists of SG and SH as comple-
mentary components, via two parallel regression networks.
In the second stage, we first transform the illumination pa-
rameters to Gaussian and irradiance maps indicating main
light sources and the low-frequency lighting. We then build
a generative adversarial network that takes the LDR partial-
view image as input and the illumination maps as the guid-
ance to predict an HDR environment map, with the consid-
eration of the perceptual rendering quality. Methodological
differences of our method and representative previous works
are illustrated in Figure 1.

Illumination Parameter Regression
As aforementioned, we propose to use a hybrid parametric
representation for illumination estimation, which consists of
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Figure 2: The structure of SG Regression Module: DLA-SK and a transformer based encoder-decoder are used to extract and
interpret features. For each anchor, a feedforward network (FFN) estimates its SG parameters: light distribution, depth, global
intensity, and RGB ratio.

SG and the 2nd order SH as complementary components.
We use a Transformer-based network with novel losses to
regress better SG than previous works, and use rendering-
aware CNNs to regress SH.

Spherical Gaussian Regression From an input image,
our SG regression network employs a CNN backbone to ex-
tract features, which are then feed into a Transformer-based
encoder-decoder architecture, followed by feed-forward net-
works (FFN) to interpret features into SG parameters. In-
spired by (Zhan et al. 2021), we evenly sample N = 128 an-
chor points on the sphere and assign light sources to neigh-
boring anchor points according to the minimum radian dis-
tance. Thus, the parameters to be regressed are distribution,
intensity, depth, and RGB ratio associated to each anchor.
The whole process is illustrated in Figure 2.

Feature Extraction Backbone. Illumination in a scene can
be widely distributed, and vary with objects’ materials and
scene geometry. Thus, a large receptive field is required for
SG recovery. We propose a DLA-SK module, an enhanced
version of deep aggregation (DLA) (Zhang et al. 2020) over
the SKNet backbone (Li et al. 2019b) to allow the network
to adaptively adjust the receptive fields.

Transformer Network. Due to the strong spatial relation-
ship between the anchor points and the input image, the self-
attention mechanism of Transformer can simulate the pair-
wise interactions between anchor points, which suits the SG
regression task well. Inspired by (Carion et al. 2020), we
use an Transformer encoder-decoder and multiple FFNs to
learn characteristic feature embeddings for each anchor. Us-
ing self-attentions over these embeddings, the network takes
the input image as context, and globally reasons over all the
anchor points by considering their pair-wise relations.

Loss Functions. The SG regression network employs sev-
eral losses for a faithful recovery of high-frequency light-
ing details in a scene. To robustly extract main light sources
from a ground truth HDR environment map, we first convert
the environment map from RGB color space to HSV space,
then regard those pixels whose brightness are among the top
5% as the main light sources.

Following GMLight that estimates the illumination via
geometric distribution approximation (Zhan et al. 2021), we

impose a geometric mover’s loss (GML) Lgml and a mean
square error loss Lmse to penalize the overall light intensity
distribution differences between the estimated and ground
truth illuminations, and use a depth loss Ldepth, an intensity
loss Lint, and an RGB ratio loss Lrgb to constrain other per-
spectives.

In our experiments, we found that simply using above
losses leads to evenly distributed lights over the whole
panoramic image, where even small intensity values as-
signed to anchors are not close to zero. Meanwhile, by in-
specting the light intensity distribution of typical real scenes,
we observed that the anchor points of high intensity values
should be sparse and concentrated.

In order to suppress small intensity values while retaining
the magnitude of the main light sources, we introduce the
logarithmic loss Llog for light intensity distribution:

Llog =

∑N
i=1 (ln(Ii + ε)− ln(I∗i + ε))

2

N
, (1)

where I∗i and Ii are the normalized predicted and ground
truth light intensity at the i-th anchor point respectively,
ε = 10−10 is a constant value used to prevent the numer-
ical instability.

The addition of the logarithmic loss may cause a loss of
total light intensity in the estimated results. To mitigate the
problem, we introduce a sum loss that penalizes the overall
intensity difference between the predicted and ground truth
parameters of all the anchor points:

Lsum = (
N∑
i=1

Ii −
N∑
i=1

I∗i )
2. (2)

Therefore, the loss function of the light intensity distribu-
tion is defined as:

Ld = α1 · Lgml + α2 · Lmse + α3 · Llog + α4 · Lsum, (3)
where α1 = 103, α2 = 103, α3 = 10−6, α4 = 2 are constant
weights.

For the remaining SG parameters including global inten-
sity, RGB ratio and depth, we follow GMLight (Zhan et al.
2021) and use mean square error (MSE) losses Lint, Lrgb and
Ldepth as supervisions. Please refer to the supplementary ma-
terial and (Zhan et al. 2021) for more details.
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Figure 3: The structure of SH Regression Module: SH mod-
ule adopts DLA-SK as backbone, and use a fully-connected
(FC) layer to regress 2nd SH coefficients.

Spherical Harmonic Regression SG can fit the high-
frequency lighting components of the scene very well, but it
lacks the ability to represent low-frequency lighting. Since
spherical harmonics can be used with restricted bandwidths
to simulate low-frequency lighting, we therefore use SH as
a complementary illumination representation. We adopt the
same backbone architecture of the SG module for the low-
frequency SH regression, as shown in Figure 3.

Rendering-Aware Loss Functions. We found that using
standard MSE to supervise SH coefficients prediction makes
the loss dramatically fluctuates during training. This is
mainly because the error from higher order SH coefficients
have an effect on the regression of lower order coefficients.
Therefore, we propose to use a coarse-to-fine learning strat-
egy. We use larger weights on the lower order coefficients
at the beginning, and gradually increase the weights of the
higher order coefficients and decrease the weights of lower-
order coefficients. We denote the order of SH coefficients as
k, ranging from 0 to 2 as we use 2nd SH. We introduce a
level loss Llevel which is formulated as follows:{

Lk
level =

1
3×(2k+1))

∑3
c=1

∑k
m=−k(i

m∗
k,c − imk,c)

2

Llevel =
∑2

k=0 λkLk
level

(4)

where im∗
k,c and imk,c are the predicted SH coefficients for the

c-th color channel, and λk is the weight of k-th order loss.
Just using SH coefficients difference in the loss function

is not ideal, as rotating SH with a small angle will cause a
large difference in MSE, but it may only introduce a slight
change on its rendering result. Therefore, we employ addi-
tional losses to drive high-quality SH coefficients regression.
We use the method proposed by (Ramamoorthi and Hanra-
han 2001) to reconstruct a diffuse irradiance map Psh. We
define the MSE loss for the reconstructed irradiance map as
Ldiff:

Ldiff =
∥∥∥P̂sh − Psh

∥∥∥2
2

(5)

where P̂sh and Psh are reconstructed by predicted and ground
truth SH coefficients respectively. We follow the method of
(Ramamoorthi and Hanrahan 2001), and propose a differen-
tiable rendering layer using SH coefficients to render objects
from an SVBRDF dataset (Li et al. 2018), as shown in Fig-
ure 3. The SH render loss is defined as:

Lsh
render =

∥∥∥Rsh(A,N, Ŝ)−Rsh(A,N, S)
∥∥∥2
2

(6)

where A and N are the diffuse albedo and normal texture of
the object respectively. Ŝ (S) are the predicted (w.r.t. ground
truth) SH coefficients, and Rsh(·) takes these variables to get
the final rendering result. The overall loss of SH regression
is:

L = λlLlevel + λdLdiff + λrLsh
render, (7)

where λl = 10, λd = 1, λr = 103 are constants.

Environment Map Generation
In the second stage, we first convert the SG and SH param-
eters into guidance maps, which are then fed into the gen-
erative network along with the partial view image. We uti-
lize several spherical ResNet blocks to generate the equirect-
angular representation of an environment map. A rendering
layer is employed to calculate the rendering loss to improve
the fidelity of the lighting effect generated by the predicted
HDR map. Figure 4 illustrates the pipeline of the environ-
ment map generation process.

Generative Network Compared to the parametric repre-
sentation of illumination, environment map contains more
lighting information. However, directly regressing an envi-
ronment map from a single image (Gardner et al. 2017) tends
to have insufficient generalizability. In contrast, training the
network in an adversarial manner (Zhan et al. 2021; Sajjadi,
Scholkopf, and Hirsch 2017; Pandey et al. 2021) could en-
able the network to generate more realistic predictions. We
thus leverage a GAN-based network to synthesize an envi-
ronment map from a single image with the guidance of re-
gressed SG and SH, which contain specular and diffuse in-
formation respectively.

The predicted SG parameters from the first stage include
the light intensity distribution D, light intensity I and RGB
ratio R. These parameters can be converted to a panoramic
Gaussian map Psg using the spherical Gaussian function pro-
posed in (Gardner et al. 2019). The panoramic Gaussian map
Psg and the diffuse irradiance map Psh reconstructed by the
SH regression model are the illumination guidance for the
generative network.

We use an architecture similar to SPADE (Park et al.
2019). Unlike SPADE which samples a random vector as
input, we use an encoder to transform the input image into a
panoramic feature map with an aspect radio of 2:1. Inspired
by the work of (Zhan et al. 2021), which fuses the Gaussian
maps (similar to our Psg) of different scales through spatially
adaptive modulation in the generation process, we concate-
nate Psg and Psh as the condition for the generation, as il-
lustrated in Figure 4. Compare to just using Psg (Zhan et al.
2021) that lacks the ability to handle low-frequency lighting,
our condition contains more illumination details.

The equirectangular representation of environment maps
suffers from heavy distortions and oversampling in the polar
regions, resulting in unsatisfactory results in top/bottom re-
gions if we treat them using normal 2D convolutional neural
networks. To address this issue, we use spherical convolu-
tion kernels proposed in SphereNet (Coors, Condurache, and
Geiger 2018) that can adapt to the equirectangular distortion
when sampling the neighbors for convolution. We build sev-
eral ResNet blocks to generate the final equirectangular im-
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Figure 4: The structure of the generative network: we use spherical convolutions in SPADE ResBlk (Park et al. 2019) in
Encoder. The conditional maps are fused into a multi-stage generation process. Finally, a differentiable rendering layer is used
to calculate the rendering error of the generated environment map.

age where all the convolutional operations are performed by
the spherical kernels.

Rendering Layer We propose a rendering layer to imi-
tate the image formation process for learning lighting fea-
tures of great importance, as shown in Figure 4. We adopt
the physically based microfacet BRDF model in (Karis and
Games 2013), and use a SVBRDF dataset comprised of dif-
fuse albedo, specular roughness, and surface normals from
(Li et al. 2018) to achieve differentiable rendering.

More particularly, for each pixel p, we sample light di-
rections over the upper hemisphere using the corresponding
normals as the up vectors. The diffuse part Id is computed
as follows:

Id =

P∑
p=1

A · L(P, lp) ·N · lp
π · f(p)

, (8)

where A and N are the diffuse albedo and normal respec-
tively. lp is the sampled light direction, and f(p) denotes its
probability density function. P is the generated environment
map, L(P, lp) takes both P and lp to get the sampled light-
ing. The specular part Is is computed as follows:

Is =
P∑

p=1

fs(v, lp, N,R) · L(P, lp) ·N · lp
f(p)

, (9)

where v is the viewing orientation, R is the specular rough-
ness, and fs(·) is the specular BRDF components. The final
rendering results can be illustrated as R(P) = Id + λsIs,
where λs = 10 is the weight factor of specular term.

Environment map contains enormously more parameters
than SG and SH, which takes a longer rendering time. As
all parameters are known except L(P, lp), we precompute
the product of these parameters to speed up the training pro-
cess. Furthermore, we calculate the corresponding position
of each sampled light in P , so that we can directly access
the result of L(P, lp).

Losses We employ several loss terms to supervise the gen-
eration of environment maps. As multi-scale discriminator
can largely stabilize the training of conditional GANs, we
adopt a feature matching loss Lfeat as in (Wang et al. 2018)
to match the intermediate features of the discriminator be-
tween the generated environment map generated at different

stages and the ground truth. The MSE loss only penalizes
the network based on the magnitude of errors, regardless of
the impact of different image content. Instead, we use a co-
sine similarity loss Lcos and a perceptual loss Lvgg based on
VGG-19 (Simonyan and Zisserman 2014) on the generated
environment map. Our render loss is defined as the MSE loss
between the rendered images R(P̂) and R(P) using pre-
dicted environment map and the ground truths, respectively:

Lrender = λr

∥∥∥R(P̂)−R(P)
∥∥∥2
2
, (10)

where λr = 102 is the weight of the render loss. The dis-
criminator uses the same architecture and adversarial loss
Ladv as Patch-GAN (Isola et al. 2017). Thus, we use the fol-
lowing combined loss function to optimize the generative
network:

L = min
G

max
D

(Lfeat +Lcos +Lvgg +Lrender +Ladv). (11)

The generative network is trained in an adversarial man-
ner, with all weights included in each loss. For more details,
please refer to the supplementary material.

Experiments
We conduct both qualitative and quantitative comparisons
with the state-of-the-art indoor illumination estimation
methods, and we also conduct ablation studies to demon-
strate the importance of each component of our method.

The Laval Indoor HDR Dataset (Gardner et al. 2017)
is used for evaluation. We crop eight images from each
panorama as input, and use the same warping operation in
(Gardner et al. 2017) to get ground truth environment map,
thus producing 19,557 training pairs. We randomly select
300 images as the test set, and the rest are used for training.
The virtual object models used for calculating rendering er-
rors are from (Li et al. 2018) with SVBRDF textures. Quan-
titative metrics include widely used RMSE, scale-invariant
RMSE (si-RMSE) (Grosse et al. 2009) and RGB Angu-
lar Error (LeGendre et al. 2019). In addition, the fidelity
of the relighting results generated by different methods are
subjectively evaluated by a user study. Results of (Gardner
et al. 2017, 2019; Chalmers et al. 2020; Zhao, Chalmers, and
Rhee 2021) were provided by the authors, and the method of
(Zhan et al. 2021) was implemented by ourselves.

2861



Input Images Gaussian Maps Gaussian Maps (GT) Irradiance Maps (GT)Irradiance Maps Generation Generation (GT)

Figure 5: Prediction results of our two-stage light estimation network. We show the predicted Gaussian maps, irradiance maps,
and the predicted final environment maps and their corresponding ground truths.
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Figure 6: Visual comparison with state-of-the-art methods: three different roughness spheres (roughness = 0.2, 0.4, 0.8, from
row 1 to row 3) are inserted into scenes using the predicted environment maps shown at top-left of each rendered image.

Qualitative Evaluation
Our SG regression module predicts authentic light distribu-
tion close to the ground truth, and the SH regression module
estimates accurate low-frequency lighting. As a result, our
method generates high-fidelity environment maps, as shown
in Figure 5. We show in Figure 6 the qualitative compar-
ison results with state-of-the-art light estimation methods
by inserting virtual spheres with different roughness . As
can be seen, (Gardner et al. 2017) struggles to determine
the direction of light sources, resulting in wrong direction
of shadow. (Gardner et al. 2019) uses simplified spherical
Gaussian model, lacking of the details of the scene, thus
produces unrealistic rendering with low roughness material.
Without the illumination guidance, (Chalmers et al. 2020;
Zhao, Chalmers, and Rhee 2021) directly predict blurry en-
vironment maps and result in unrealistic specular reflections.
Our method can predicts more accurate light directions and
low-frequency lighting than (Zhan et al. 2021), with the
Transformer-based SG regression module and the guidance
of irradiance map, which produces plausible and realistic
renderings with accurate shades and shadows. More results
are provided in our supplementary material.

Quantitative Evaluation and User Study
We compare our framework with four state-of-the-art meth-
ods that directly generate environment maps (Gardner
et al. 2017; Chalmers et al. 2020; Zhao, Chalmers, and
Rhee 2021) or estimate representative illumination functions

(Gardner et al. 2019). We render 300 objects with SVBRDF
textures using the environment maps predicted from the test
set, and show relighting errors of each method in Table 1. We
also quantitatively evaluate the predicted HDR environment
maps as reported in Table 2. As a result, our method outper-
forms the competing methods under RMSE, si-RMSE and
angular error metrics.

For perceptual evaluation, we conduct a user study us-
ing images with inserted virtual objects, rendered by ground
truth and the results of each compared method in 20 ran-
domly selected test scenes. For each method, we invited 25
subjects to select the more realistic picture between a pair of
results, rendered using either the ground truth environment
map or predicted one by that method. As shown in Table 1,
39.6% of the choices agree that our results are more real-
istic than the ground truth, which is the best among all the
methods.

We observe that (Gardner et al. 2019) fails to recover low-
frequency illumination, resulting in inaccurate shading and
shadows measured by si-RMSE. Meanwhile, this simplified
lighting parametric model can not restore the details of the
scene except for main light sources , which are vital to render
objects with high specular reflections, thus gets low scores
in the user study. In (Gardner et al. 2017; Chalmers et al.
2020; Zhao, Chalmers, and Rhee 2021), direct generation of
environment maps without any guidance tends to overfit to
the training data and generate blurry results. In contrast, our
method regresses SG coefficients for main light sources, SH
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Methods RMSE si-RMSE Angular
Error

User
Study

[Gardner 17] 0.0873 0.0703 12.24 27.0%
[Gardner 19] 0.0741 0.0603 10.55 20.2%

[Chalmers 20] 0.0811 0.0583 10.31 32.2%
[Zhao 21] 0.0821 0.0615 10.78 30.4%

Ours 0.0494 0.0420 7.35 39.6%

Table 1: Quantitative comparisons on relighting errors. We
report the RMSE, si-RMSE, and Angular Error for each
method. The last column is the preference rate in our user
study, where higher means more confusions with ground
truth.

Methods RMSE si-RMSE Angular Error
[Gardner 17] 0.4196 0.1645 30.67
[Gardner 19] 0.2117 0.2220 37.78

[Chalmers 20] 0.3054 0.1539 30.23
[Zhao 21] 0.2842 0.1588 31.05

Ours 0.1877 0.1411 27.20

Table 2: Quantitative comparisons on the quality of pre-
dicted HDR environment maps.

Network Loss RME
DLA-SK GMLight 1.385
DLA-SK GMLight +Llog 1.120
DLA-SK GMLight+Llog + Lsum 1.233

DLA-SK+Transformer GMLight 1.041
DLA-SK+Transformer GMLight+Llog 0.639
DLA-SK+Transformer GMLight+Llog + Lsum 0.363

Table 3: Ablation study on SG regression. Ranked matching
error (RME) of light intensity distribution between regressed
and ground truth SG parameters.

coefficients for low-frequency lighting, then uses a genera-
tive network to predict high-quality environment maps under
the guidance of the estimated lighting parameters.

Ablation Study
SG Regression We evaluate the SG regression module
structure and the design of loss function by examining the
estimated light intensity distribution in Table 3. We use the
ranked matching error (RME) to evaluate the light intensity
distribution of all anchors, defined as

∑N
k=1 |Irk − I∗r∗k

| ×
dis(rk, r

∗
k), where rk the k-th anchor point in I sorted by

corresponding intensity value in descending order, and r∗k
is similarly defined in I∗. dis(rk, r∗k) represents the spatial
distance between the two anchor points rk and r∗k. Please
refer to the supplementary material for the validity of RME.
As a result, our method using DLA-SK and Transformer as
network components with full set of losses performed better
than other alternative solutions.

SH Regression We evaluate the impact of the rendering
layer and the weighting schemes on different orders of SH
coefficients. We use the predicted SH coefficients to render
virtual object models and report the relighting errors in Ta-

RMSE si-RMSE Angular Error
Lmse 0.0461 0.0370 5.90
Ldiff 0.0452 0.0354 5.66

Lmse + Ldiff 0.0440 0.0341 5.46
Llevel + Ldiff 0.0437 0.0337 5.41
Llevel + Ldiff

+ Lsh
render

0.0271 0.0224 3.56

Table 4: Ablation study on SH regression. We report the
RMSE, si-RMSE and angular error of rendering results be-
tween the predicted and ground truth SH illuminations.

RMSE si-RMSE Angular Error
GM 0.0526 0.0441 7.68

GM+IM 0.0508 0.0431 7.49
GM+IM+Rd 0.0494 0.0420 7.35

Table 5: Ablation study on environment map generation.
GM and IM denote the Gaussian map and irradiance map
respectively, Rd denote the rendering layer.

ble 4. Higher order SH coefficients get larger Lmse at the be-
ginning of training, it effects the convergence of low-order
coefficients, resulting in a low accuracy. Llevel sets lower
weights on higher order coefficients and avoids the above
issue. Due to the sparsity of SH, large difference in coeffi-
cients may have little impact on rendering. By introducing
Ldiff that densely measures the irradiance map reconstruc-
tion error, we further improves the accuracy. Even better
result is obtained by simulating the rendering process and
supervising the network with Lrender.

Environment Map Generation We evaluate the effec-
tiveness of the Gaussian map, irradiance map and the ren-
dering layer for environment map generation in the sec-
ond stage, using the same relighting metrics. As shown in
Table 5, adding irradiance maps generated by the SH re-
gression module can bring more accurate ambient lighting
information, thus achieves better prediction. Besides, the
novel rendering layer and the render loss introduce stronger
supervision on network training, demonstrating that image
formation-based rendering supervision can improve the ac-
curacy of prediction.

Conclusion
In this paper, we present a novel two-stage lighting es-
timation pipeline that enables high-quality HDR environ-
ment map prediction from a partial view LDR image. We
regress spherical Gaussians and spherical harmonics in the
regression stage, to represent main light sources and low-
frequency lighting respectively. In the generation stage, we
use the estimated lighting parameters as the guidance for en-
vironment map generation. We apply rendering-aware learn-
ing schemes to both stages, which promotes the networks
learning from the process of image formation. Quantitative
and qualitative experiments show merits of our method. In
the future, we will explore the usage of scene contexts and
semantics for HDR environment map prediction.
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