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Abstract

In object re-identification (ReID), the development of deep
learning techniques often involves model updates and deploy-
ment. It is unbearable to re-embedding and re-index with the
system suspended when deploying new models. Therefore,
backward-compatible representation is proposed to enable
“new” features to be compared with “old” features directly,
which means that the database is active when there are both
“new” and “old” features in it. Thus we can scroll-refresh the
database or even do nothing on the database to update.
The existing backward-compatible methods either require a
strong overlap between old and new training data or simply
conduct constraints at the instance level. Thus they are dif-
ficult in handling complicated cluster structures and are lim-
ited in eliminating the impact of outliers in old embeddings,
resulting in a risk of damaging the discriminative capability
of new features. In this work, we propose a Neighborhood
Consensus Contrastive Learning (NCCL) method. With no
assumptions about the new training data, we estimate the sub-
cluster structures of old embeddings. A new embedding is
constrained with multiple old embeddings in both embedding
space and discrimination space at the sub-class level. The ef-
fect of outliers diminished, as the multiple samples serve as
“mean teachers”. Besides, we propose a scheme to filter the
old embeddings with low credibility, further improving the
compatibility robustness. Our method ensures the compatibil-
ity without impairing the accuracy of the new model. It can
even improve the new model’s accuracy in most scenarios.

Introduction
General object re-identification (ReID) aims at finding a
significant person/vehicle of interest in a large amount of
collection, called “gallery”. It has attracted much interest
in computer vision due to its great contributions in urban
surveillance and intelligent transportation (Ye et al. 2021;
Khan and Ullah 2019). Specifically, existing ReID methods
typically map each image into vector space using a convolu-
tional neural network. The output in vector space is usually
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Figure 1: The Deployment Process. Without backward com-
patibility, the process to update the gallery is “backfilling”
with the system suspended until re-index has been done.
With backward compatibility, the process to update is “scroll
refreshing” with the system always active. Notice that the
classifier is abandoned when deployed as it is useless for re-
trieval but only a waste of space. Thus the old classifier is
unavailable when the old model is from a third party.

called “embedding”. Given query images of a specific ob-
ject, the process of ReID is to find the same identity in the
gallery by finding its nearest neighbors in embedding space.

As the new training data or the improved model designs
are available, the deployed model will be updated to a new
version with better performance. Then we need to refresh
the gallery to harvest the benefits of the new model, namely
“backfilling”. As it is common to have millions or even bil-
lions of images in the database/gallery (Radenović et al.
2018), backfilling is a painful process, which requires re-
extracting embeddings and re-building indexes with the sys-
tem suspended, as shown in Figure 1. An ideal solution is
enabling “new” embeddings to be compared with “old” em-
beddings directly. Then we can gradually replace “old” em-
bedding with “new” embeddings in the gallery while the sys-
tem is still active, named “scroll refreshing”. What’s more,
if the gallery is in scroll-refreshed mode initially (e.g., only
keep the surveillance data in the past x days), the propor-
tion of new embeddings in the gallery increases from 0% to
100% over some time automatically.
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To achieve backfilling-free, backward-compatible repre-
sentation learning methods have recently arisen. Under a
backward-compatible setting, given an anchor sample from
new embeddings, no matter the positives and negatives from
old/new embeddings, the anchor is consistently closer to the
positives than the negatives. Recently, metric learning meth-
ods are adopted to optimize the distances between new and
old embeddings in an asymmetric way (Budnik and Avrithis
2020). However, the adopted pair-based triplet losses can not
well consider the feature cluster structure differences across
different embeddings. They are sensitive to the outliers in
the old embeddings and hard to convergence on the large-
scale dataset. Alternatively, the classifier of the old model is
used to regularize the new embeddings in training the new
model (Shen et al. 2020), termed as “backward-compatible
training (BCT)”. The old classifier is based on a weight ma-
trix, where each column can be viewd as a “prototype” of
a particular class in old training sets. Such prototype is also
limited in characterizing the cluster structure. What’s more,
BCT can only work when the new and old training sets have
common classes and the old classifier is available.

The old embedding space is often not ideal and faces com-
plicated cluster structures. For example, due to the intra-
class variance caused by varied postures, colors, viewpoints,
and lighting conditions, the cluster structure often tends to
be scattered as multiple sub-clusters. Moreover, the old em-
bedding space also inevitably contains some noise data and
outliers in clusters. Simply constraining the learned “an-
chor” of new embeddings close to the randomly sampled
“fixed positives” of old embeddings has a risk of damaging
the discriminative capability of new embeddings. Therefore,
it is necessary to consider the entire cluster structure across
new and old embeddings in backward-compatible learning.

In this work, we propose a Neighborhood Consensus Con-
trastive Learning (NCCL) method for backward-compatible
representation. Previous methods mainly constrain the dis-
tributions of the new embeddings to be consistent with the
old. We design a supervised contrastive learning method to
constrain the distance relationship between the new and old
embeddings to be consistent. Specifically, we estimate the
sub-cluster structures in old embeddings. A new embedding
is constrained by multiple old embeddings from different
sub-clusters. The priorities of different sub-clusters are care-
fully designed to dominate the optimizing progress. Also,
the effect of outliers in old embeddings diminished, as the
multiple old embeddings serve as “mean teachers” and the
outliers contribute little during the optimizing progress. Typ-
ically, the classifier head in a network converts the embed-
ding space to discrimination space for classification. There-
fore, the discrimination space contains rich class-level in-
formation (Zhong et al. 2020a). Correspondingly, we fur-
ther design a soft multi-label task to exploit such knowledge
to enhance compatible learning. Such labels are an auxil-
iary apart from the real-word labels, making the new em-
beddings more discriminative. Besides, since the quality of
the old model is unpredictable, we estimate the entropy dis-
tribution of the old embeddings and remove the ones with
low credibility. It helps to maintain robustness when learning
backward-compatible representation from old models with

various qualities.
Our contributions are summarized as follows:

• We propose a Neighborhood Consensus Contrastive
Learning (NCCL) method for backward-compatible rep-
resentation. With no assumptions about the new training
data, we start from a neighborhood consensus perspec-
tive, and constrain at the sub-cluster level to keep the dis-
criminative capability of new embeddings. The impact of
outliers is reduced as they contribute little to such opti-
mizing progress.

• We perform compatible learning from both embedding
space and discrimination space, with priorities of differ-
ent sub-clusters dominating the optimizing progress. We
further propose a novel scheme to filter the old embed-
dings with low credibility, which is helpful to maintain
robustness with the qualities of old models various.

• The proposed method obtains state-of-the-art perfor-
mance on the evaluated benchmark datasets. We can en-
sure backward compatibility without impairing the accu-
racy of the new model. In most cases, it even improves
the accuracy of the new model.

Related Work
Object Re-identification
Object re-identification can realize cross-camera image re-
trieval, tracking, and trajectory prediction of pedestrians or
vehicles. In recent years, research in this field has mainly
focused on network architecture design (Wang et al. 2018;
Zhou et al. 2019), feature representation learning (Zhao et al.
2017; Yao et al. 2019; Dai et al. 2021b), deep metric learn-
ing (Wojke and Bewley 2018; Chen et al. 2018; Zhong et al.
2019; Dai et al. 2021a), ranking optimization (Ye et al. 2015;
Bai et al. 2019), and recognition under video sequences
(Hou et al. 2019; Fu et al. 2019; Li et al. 2019). Deep
metric learning aims to establish similarity/dissimilarity be-
tween images. This paper is to design based on the metric
learning paradigms and establish similarity/dissimilarity be-
tween new and old embeddings, aiming to learn backward-
compatible representation.

Backward-compatible Representation
Backward-compatible learning encourages the new embed-
dings closer to the old embeddings with the same class
ID than that with different class IDs. It is an emerging
topic. To the best of our knowledge, there only exist two
pieces of research. Budnik et al. (Budnik and Avrithis 2020)
adopts the metric learning loss, e.g., triplet loss and con-
trastive loss, in an asymmetric way to achieve backward-
compatible learning. We call this method “Asymmetric” for
convenience. Shen et al. (Shen et al. 2020) proposes BCT,
a backward-compatible representation learning model. BCT
feeds the new embeddings into the old classifier. Then the
output logits are optimized with cross-entropy loss. BCT
and Asymmetric are essentially identical, as it is equivalent
to a smoothed triplet loss where each old embedding class
has a single center (Qian et al. 2019). With the newly added
data, BCT needs to use knowledge distillation techniques. In
general, existing methods simply adopt embedding losses or
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classification losses in an asymmetric way. However, such
loss is limited in handling the complicated cluster structures
of fixed old embeddings. In this article, we consider this
problem from a neighborhood consensus perspective with
both embedding structure and discrimination knowledge.

Contrastive Learning
Contrastive learning is a sub-topic of metric learning, which
learns representations by contrasting positive pairs against
negative pairs. Asymmetric has adopted a contrastive loss
(Hadsell, Chopra, and LeCun 2006) in backward-compatible
learning. However, it is margin-based and only able to cap-
ture local relationships. Another kind of contrastive learning
paradigm is based on InfoNCE (Oord, Li, and Vinyals 2018),
which proves its contrastive power increases with more pos-
itives/negatives. It has been widely used in unsupervised
representation learning tasks with various variants, includ-
ing instance-based (Chen et al. 2020b,a; Grill et al. 2020),
cluster-based (Caron et al. 2020; Li et al. 2020), mixed in-
stance and cluster-based (Wang, Liu, and Yu 2020; Zhong
et al. 2020b). In this article, we start from InfoNCE and de-
sign a compatible learning framework. Specifically, we gen-
eralize InfoNCE to constrain the new embeddings in both
embedding space and discrimination at the sub-class level.

Methods
Problem Formulation
Following the formulation in (Shen et al. 2020), a embed-
ding model contains two modules: an embedding function
ϕ : X → Z that maps any query image x ∈ X into vector
space Z and a classifier φ : Z → RK . Assume that we have
an old embedding function ϕold trained on the old training
dataset Dold with Kold IDs. Then we have a new embedding
function ϕnew and a new classifier φnew trained on the new
training data Dnew with Knew IDs. Dnew can be a superset
of Dold. The label space is set to Y .

We define the gallery set as G, and query set as Q.
M(ϕm1

, ϕm2
), ∀(m1,m2)∈{new, old} is an evaluation

metric, e.g., mAP, to evaluate the effectiveness of the re-
trieval when Q is processed by ϕm1

and G processed by
ϕm2

. M(ϕnew, ϕnew) ≥ M(ϕold, ϕold) is naturally estab-
lished, as it is why we update the model. When ϕnew is
not compatiable with ϕold, M(ϕnew, ϕold) is very low, even
0%, which means retrievals in the “old gallery” with “new
query” return with poor results. We have to suspend the
system and backfill G to harvest M(ϕnew, ϕnew). How-
ever, when ϕnew is compatiable with ϕold, M(ϕnew, ϕold)
is comparable than M(ϕold, ϕold) or even outperforms it.
Thus G can be scroll-refreshed with the system active. Em-
pirically, the goal of backward-compatible learning is to ac-
complish M(ϕnew, ϕold) ≥ M(ϕold, ϕold) without impact-
ing M(ϕnew, ϕnew).

Backward-compatible Criterion
Shen et al. (Shen et al. 2020) give a strict criterion of
backward-compatible compatibility in BCT.

Figure 2: The distance relationship in the feature space.
ϕnew is compatiable with ϕold, but pair (i, j) and (j, k) does
not satify Inequality (1) and (2).

d(ϕnew(i), ϕold(j)) ≥ d(ϕold(i), ϕold(j)),

∀(i, j) ∈ {(i, j) : yi ̸= yj}. (1)

d(ϕnew(i), ϕold(j) ≤ d(ϕold(i), ϕold(j)),

∀(i, j) ∈ {(i, j) : yi = yj}. (2)

Such definition is the sufficient and unnecessary condition
to achieve compatiblity, and it may impact M(ϕnew, ϕnew).
As shown in Figure 2, ϕnew is compatible with ϕold. How-
ever, we can find d(ϕnew(j), ϕold(k))≤d(ϕold(j), ϕold(k)),
d(ϕnew(i), ϕold(j))≥d(ϕold(i), ϕold(j)), which do not sat-
isfy Inequality (1) and (2). Constraining ϕnew to satisfy
them enlarge the class boundary of new features. Therefore,
we come up with a new backward-compatible criterion:

d(ϕnew(i), ϕold(j)) < d(ϕnew(i), ϕold(k)),

∀(i, j, k) ∈ {(i, j, k) : yi = yj ̸= yk}. (3)
Inequality (3) is the minimal constraints to accomplish
M(ϕnew, ϕold) ≥ M(ϕold, ϕold). Given image i, the dis-
tance between anchor (termed as ϕnew(i)) and other fixed
positives (termed as ϕold(j)) is smaller than the distance be-
tween it and fixed negatives (termed as ϕold(k)).

Neighborhood Consensus Compatible Learning
To satisfy Inequality (3), a naive solution is to adopt the
metric learning loss in an asymmetric way, e.g., triplet loss
(Budnik and Avrithis 2020) and cross-entropy (Shen et al.
2020) . However, there are several limitations: 1) The po-
tential manifold structure of the data can not be character-
ized by random sampling instances or classifiers (Qian et al.
2019). 2) They are susceptible to those boundary points or
outliers with the newly added data, making the training re-
sults unpredictable. 3) They treat all the old embeddings
equally important, which can be overwhelmed by less infor-
mative pairs, resulting in inferior performance (Wang et al.
2019).

In this work, we propose a neighborhood consen-
sus supervised contrastive learning method for backward-
compatible learning. We proposed the neighborhood con-
sensus weight to estimate the potential manifold structure. A
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Figure 3: An illustration of our method NCCL. The left part shows the pipeline of using the old embeddings to regularize the
new embeddings; The middle part shows that we use a soft multi-label task to align the discrimination distribution; The right
part shows that we learn the compatible embeddings at cluster view.

FIFO memory queue is adapted to store the estimated clus-
ters, updating by batches, termed as B. Then we propose a
contrastive loss to regularize the new embeddings with the
old clusters. Define A(i) ≡ B{i} and P (i) ≡ {p ∈ A(i) :
yp = yi}, our training objective on the embedding space is
a weighted generalization of contrastive loss, given by

L1 =
∑

i∈Dnew

∑
p∈P (i)

−wip log sip, (4)

wip =
1

2
(

ϕold(i)ϕold(p)

||ϕold(i)||||ϕold(p)||
+ 1) ∈ [0, 1], (5)

sip =
exp(ϕnew(i)ϕold(p)/τ)∑

a∈A(i) exp(ϕnew(i)ϕold(a)/τ)
. (6)

wip estimates the sub-cluster structures by measuring the
affinity relationship between anchors i and fixed positives
p. Ideally, each new anchor embedding should focus on the
fixed positives from its corresponding old embedding clus-
ter. However, the boundaries between local clusters may be
blurred. Thus we adopt the soft weight to concentrate more
on the positives, which are more informative. “More infor-
mative” means a higher probability to belong to a local clus-
ter corresponding to the anchor. Given a positive image pair
(i, p) and view i as the anchor, it is intuitive that the weight
wip of ϕold(p) rises in inverse proportion to the distance be-
tween ϕold(i) and ϕold(p). Specifically, wip is calculated
on the embeddings after L2 normalized by the cosine dis-
tance, regarded as the prior knowledge. We have tried other
kernel-based similarity functions to calculate wip, e.g., t-
distribution kernel w′

ip = (1+||ϕold(i)−ϕold(p)||2)−1∑
a∈A(i)(1+||ϕold(i)−ϕold(a)||2)−1 ,

and gaussian kernel w′′
ip = exp(ϕold(i)ϕold(p)/τ)∑

a∈A(i) exp(ϕold(i)ϕold(a)/τ)
. We

find that such wip differs only slightly, and the mean aver-
age precision changes smaller than 0.5% (detailed in sup-
plementary). Therefore, we calculate wip by Equation (5)
for simpilfily.

sip represents the affinity score of positive p contrasted
with an anchor i, where τ is a temperature parameter that
controls the sharpness of similarity distribution. Minimizing
L1 is equivalent to maximize the affinity scores between an-
chors and positives. The existence of weight forces the op-
timized gradient direction to be more biased towards those
positive pairs that are geometrically closer. Therefore, the
neighborhood consensus contrastive learning procedure on

the embedding space actually ensures the alignment of the
old and new embeddings at the granularity of local clusters.

Soft Multi-label Task on Discrimination Space
As the embedding space represents the instance-level knowl-
edge, the proposed neighborhood consensus supervised con-
trastive learning can be regarded as an intra-class alignment
between old and new embeddings. While the discrimina-
tion space represents the class-level knowledge, which de-
fines the probability distribution of each sample belonging
to the underlying class centers on the simplex (Zhang et al.
2021). Intuitively, we can impose constraints on classifiers
to achieve the class-level alignment and tightening.

With the new classifier, we construct a pseudo-multi-label
task from a different perspective than semantic-level label
learning. Specifically, given image i, its positive image set
P and negative image set N , we compare the discrimina-
tion vector φnew(ϕnew(i)) with discrimination vector set
{φnew(ϕold(p)), p ∈ P} and {φnew(ϕold(n)), n ∈ N}.
Intuitively, φnew(ϕnew(i)) should be similar to any posi-
tive discrimination vector φnew(ϕold(p)) and dissimilar to
any negative discrimination vector φnew(ϕold(n)). Thus, the
positive/negative discrimination vectors can be regarded as
pseudo-multi-labels as a supplement to ground truth. As the
ground truth may only reflect a single facet of the complete
knowledge encapsulated in real-world data (Xu et al. 2020a),
such label is an auxiliary to mine richer knowledge, result-
ing in the new embeddings with better performance. Here
we imitate the contrastive procedure in the embedding space
for harmonization. A FIFO memory queue is also utilized to
store the positive/negative discrimination vector. We give the
dual soft contrastive loss on the discrimination space below,

L2 =
∑

i∈Dnew

∑
p∈P (i)

−wip log s̃ip, (7)

s̃ip =
exp(φnew(ϕnew(i))φnew(ϕold(p))/τ)∑

a∈A(i) exp(φnew(ϕnew(i))φnew(ϕold(xa))/τ)
.

(8)
where the weight wip is the same as in Equation (5).

Discussion. Regarding how to constrain the new and old
discrimination vectors, there are the following options: 1)
Constrain the new and old discrimination vectors to be con-
sistent with their one-hot semantic label (e.g., using the
cross-entropy). Such vectors with the same ID tend to fall
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in the same hyperplane block. However, it is difficult to con-
verge to an ideal one-hot form, especially in a large amount
of IDs scenario. Thus, the distance between new and old em-
beddings with the same ID may be large, which means back-
ward compatibility is not ensured. 2) Constrain the new dis-
crimination vectors to be consistent with their corresponding
old ones (e.g., using the KL divergence). Such vectors corre-
sponding to the same image tend to be consistent. However,
the divergence or variance of the discrimination distribution
for each class may be larger, impacting the performance of
the new model. 3) To achieve compatibility with the new
embeddings more compact, we jump out of the constrain
of pair-based methods. We use the discrimination vectors of
other samples with the same ID in the neighborhoods to con-
strain each other. As a result, such new vectors tend to be
consistent at a cluster level, as a new vector and its neighbor
are regularized by the same old discrimination vectors.

Highly Credible Sample Detection
Due to the variations of object morphology, illumination,
and camera view in the real-world data, the intra-class vari-
ance of old embeddings can be huge (Bai et al. 2018). Poor
old embeddings are often located in the fuzzy region be-
tween classes. Compatible learning with such outlier sam-
ples would affect the retrieval accuracy of the new model.

Here, we introduce entropy to measure the uncertainty of
sample classification. With greater entropy, the classifica-
tion vectors tend to have smaller credibility. One straightfor-
ward method to construct the classification vectors is to use
the old classifier. However, the old classifier can not han-
dle newly added classes. Besides, it is not available when
a third party deploys the old model, as shown in Figure
1. Therefore, we construct the pseudo classification vec-
tors p̃(x) by calculating the similarity score of each sam-
ple belonging to old class centers. Specifically, suppose the
µ̂k = 1

|{i:yi=k}|
∑

yi=k ϕold(i) is the k-th (1 ≤ k ≤ Knew)
old class center. Here we test the reliability of µ̂k through a
simple experiment: for the model ResNet18 trained by 50%
data on Market1501, the mAP is only 63.26%. However, the
discrimination accuracy of using the nearest geometry cen-
ter is 96.35% and 99.17% for the test set and training set,
respectively, proving its effectiveness. Then we utilize mul-
tiple Gaussian kernel functions to obtain the similarity score
between samples and centers,

p̃(i)k =
exp(− ||ϕold(i)−µ̂k||2

σ̂k
)∑Knew

j=1 exp(− ||ϕold(i)−µ̂j ||2
σ̂j

)
. (9)

Where σ̂k represents the variance of k-th distance set
{||ϕold(i) − µ̂k||2 : yi = k}. Then the uncertainty
of i-th sample is the entropy of p̃(i), namely H(i) =∑Knew

k=1 −p̃(i)k log p̃(i)k. Since logKnew is the maximum
value of H, the uncertainty threshold boundary is set as Û
which is related to logKnew. Then we remove those sam-
ples with entropy larger than Û , and they do not participate
in the soft supervised contrastive learning procedure.

Overall loss function. Combining with classification loss
Lossnew on the new model trained independently, we give

the final objective below,

Ltotal = Lnew + αL1 + βL2. (10)

Where the α and β are two hyperparameters to control the
relative importance of embedding space learning and dis-
crimination space learning, respectively.

Experiments
We evaluate our proposed method on two widely-used per-
son ReID datasets, i.e., Market-1501 (Zheng et al. 2015),
MSMT17 (Wei et al. 2018), and one vehicle ReID dataset
VeRi-776 (Wang et al. 2017). We first implement several
baselines, and then test the potential of our method by apply-
ing it to the case of multi-factor changes, including model
changes and loss changes. We also conduct a multi-model
test to evaluate the sequential compatibility.

Datasets and Evaluation Metrics
Market1501 consists of 32,668 annotated images of 1,501
identities shot from 6 cameras in total. MSMT17 is a large-
scale ReID dataset consisting of 126,441 bounding boxes
of 4,101 identities taken by 15 cameras. VeRi-776 contains
over 50,000 images of 776 vehicles captured by 20 cameras.

Mean average precision (mAP) and top-k accuracy
are adopted to evaluate the performances of retrieval.
M(ϕnew, ϕnew) (termed as “self-test”) and M(ϕnew, ϕold)
(termed as “cross-test”) are used to evaluate the perfor-
mances of backward-compatible representation.

Implementation Details
The implementations of all compared methods and our
NCCL are based on the FastReID (He et al. 2020). The de-
fault configuration in “SBS” is adopted for the model using
“CircleSoftmax” and “ArcSoftmax”. And the default config-
uration in “bagtricks” is adopted for the model using “Soft-
max”. The size of B is 2048 and τ is 1.0. We set α and β
around 0.01 so that L1 loss and L2 loss are on the same or-
der of magnitude as Lnew loss. Û is set to logKnew

2 as the
credible sample selection threshold. More detail is shown
in the suplementary. Without additional explanation, all the
experiments take “ResNet-18” and “Softmax” as default.

Baseline Comparisons
In this section, we conduct several baseline approaches with
backbone ResNet-18 and ResNet-50. With the same model
architectures and loss functions, we set the old training data
of 50% IDs subset and the new training data of 100% IDs
complete set. The results are shown in Table 1.

No regularization between ϕnew and ϕold. We denote
the new model trained without any regularization as ϕnew∗.
A simple case directly performs a cross-test between ϕnew∗
and ϕold. As is shown in Table 1, backward compatibility
is achieved at a certain degree. However, the cross-test ac-
curacy fluctuates dramatically with the change of data set
and network architecture, which is insufficient to satisfy our
backward-compatibility criterion. Subsequent experimental
results will further confirm this opinion.
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Market1501 MSMT17 VeRi-776
Methods Self-Test Cross-Test Self-Test Cross-Test Self-Test Cross-Test

R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP
Ori-Old(R18) 82.96 63.26 - - 57.02 29.24 - - 89.35 56.91 - -
L2 regression 91.66 78.69 3.03 2.27 67.3 39.57 0.51 0.26 91.13 63.75 4.23 2.97
BCT 91.69 77.47 84.74 66.86 67.91 39.11 58.18 30.44 92.02 64 80.86 56.41
Asymmetric 91.98 81.08 85.45 68.4 71.95 45.29 53.90 28.15 91.26 66.59 81.01 56.28
NCCL(Ours) 92.87 81.90 85.51 69.15 73.43 46.00 59.64 30.92 92.62 70.15 81.37 58.82
Ori-New(R18) 92.37 80.84 22.71 13.81 70.52 42.86 10.06 4.11 92.26 67.21 19.70 10.00
Ori-Old(R50) 87.23 70.48 - - 64.29 36.45 - - 91.90 62.91 - -
L2 regression 93.97 84.31 47.30 28.97 72.43 47.16 30.91 13.22 93.15 70.61 47.50 25.64
BCT 93.35 82.51 90.50 75.21 71.25 45.07 68.77 40.45 92.02 67.49 88.44 64.89
Asymmetric 94.39 86.42 90.32 77.34 75.37 51.44 70.43 41.68 92.27 70.19 89.70 63.41
NCCL(Ours) 94.80 87.24 91.60 77.69 77.55 52.97 71.45 42.87 94.4 75.42 89.70 66.74
Ori-New(R50) 94.30 85.10 81.98 60.78 73.58 48.42 52.46 26.47 93.69 70.70 65.48 37.90

Table 1: Performance comparison on Market1501, MSMT17 and VeRi-776 datasets.

L2-regression between ϕnew and ϕold output embed-
dings. An intuitive idea to achieve backward-compatibility
is using L2 loss to minimize the output embeddings’ eu-
clidean distance between ϕnew and ϕold, which was dis-
cussed in (Shen et al. 2020). Such a simple baseline could
not meet the requirement of backward-compatibility learn-
ing. The possible reason for L2 loss failure is that L2 loss
is too local and restrictive. It only focuses on decreasing the
distance between feature pairs from the same image, ignor-
ing the distance restriction between negative pairs.

Asymmetric. It works better on small datasets than on
large-scale datasets, probably owing to its inadequacy in uti-
lizing the intrinsic data structure. For instance, Asymmet-
ric’s cross-test outperforms the old model’s self-test on Mar-
ket1501, but not on VeRi-776, as is shown in Table 1.

BCT. As is shown in Table 1, BCT underperforms ϕnew∗
in all self-test cases. The most likely reason is that BCT
use synthesized classifier weights or knowledge distilla-
tion to deal with the newly added data. Synthesized clas-
sifier weights for the newly added data are susceptible to
those boundary points or outliers, making the training re-
sults unpredictable. Knowledge distillation assumes that the
teacher model (old model) outperforms the student model
(new model), which is not true in the application scenario of
backward-compatible representation. As a result, it impairs
the performance of the new model.

NCCL(Ours) with better self-test accuracy. As the ef-
fective utilization of the intrinsic structure, NCCL outper-
forms all compared methods. Besides, it significantly out-
performs ϕnew∗ in all self-test cases. Although all the data
are accessible from the new model, the old model provides
external knowledge due to its different architectures, initial-
izations, training details, etc (Zhang et al. 2018). The key
to better self-test accuracy is in extracting useful knowledge
from the old model and eliminating the impact of outliers in
the old embeddings. BCT does not take it into account but
distills at the instance level and constrains the distributions
of the new embeddings to be consistent with the old. We use
entropy to measure the uncertainty of sample classification,
so most outliers are filtered. Besides, we take a contrastive
loss with multiple positives and negatives at the sub-class
level. Thus the effects of the outliers are diminished as mul-
tiple old embeddings serve as “mean teachers”, similar to

ResNet18-Ibn ResNet50 ResNeSt50
Methods mAP1 mAP2 mAP1 mAP2 mAP1 mAP2

Ori-Old 63.26 - 63.36 - 63.26 -
L2 regression 80.05 1.19 84.54 0.56 83.03 0.59
BCT 78.92 66.70 82.03 68.65 86.64 68.76
Asymmetric 82.23 68.54 83.96 67.31 87.81 68.76
NCCL(Ours) 83.23 69.12 85.91 69.26 88.31 68.94
Ori-New 81.59 5.12 84.88 0.20 88.21 0.20

Table 2: Performance comparison between different models
on Market1501. The old model uses ResNet-18 with 50%
training data. “mAP1” and “mAP2” represent the mean av-
erage precision of self-test and cross-test, respectively.

(Xu et al. 2020b). Such loss constrains the distance relation-
ship between the new and old embeddings to be consistent.

Changes in Network Architectures and Loss
Functions
Here we study whether each method can be stably applied
to various model changes and loss function changes.

Model Changes. We first test the new model on
ResNet18-Ibn, ResNet-50 and ResNeSt-50 (Zhang et al.
2020) instead of the old model ResNet-18 under the same
loss function. ResNet18-Ibn only changes the normaliza-
tion method of the backbone from batch normalization to
instance batch normalization (Pan et al. 2018), and it keeps
the structure consistent. It can be seen as a slight modifica-
tion to the old model. ResNet-50 is composed of the same
components with different capacities compared to ResNet-
18, which can be regarded as a middle modification to the
old model. ResNeSt-50 introduces the split attention mod-
ule into ResNet50, which makes it the most different from
ResNet18. Note that the dimension of the feature vector in
ResNet-50 and ResNeSt-50 is 2048. We will not directly
feed the old feature with dimension 512 to ϕnew but use the
zero-padding method to expand it to 2048-dimension.

As shown in Table 2, the comparison between indepen-
dently trained new models and old models is an epic failure.
BCT, Asymmetric, and our proposed method have learned
compatible representation. Besides, our approach remains
the the-state-of-art and is more robust to model changes.

Loss Changes. Then we change the “Softmax” based loss
function Lnew to “ArcSoftmax” (Deng et al. 2019), “Circle-
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CircleSoftmax ArcSoftmax Softmax+Triplet
Methods mAP1 mAP2 mAP1 mAP2 mAP1 mAP2

Ori-Old 63.26 - 63.36 - 63.26 -
L2 regression 62.67 3.29 54.03 0.85 81.27 23.53
BCT 67.63 53.20 63.49 39.96 79.62 67.43
Asymmetric 67.27 28.77 56.71 5.09 81.75 68.07
NCCL(Ours) 79.62 49.28 71.06 31.38 82.36 69.15
Ori-New 78.96 3.69 67.31 0.93 81.55 14.20

Table 3: Performance comparison between different losses
on Market1501. The old model uses ResNet-18 with 50%
training data. “mAP1” and “mAP2” represent the mean av-
erage precision of self-test and cross-test, respectively.

Softmax” (Sun et al. 2020) and “Softmax + Triplet” in the
new model. The first two are both used in the classification
head, and the last “Triplet” is used in the embedding head.

As shown in Table 3, the performances of various meth-
ods are consistent with the baseline under the change of
embedding loss. In contrast, all methods have a significant
decline in self-test and cross-test under classification loss
changes. The possible reason is that classification loss in the
new models determines the class structure, while the embed-
ding loss tightens the sample’s representation. Among these
methods, Asymmetric fails in both self-test and cross-test.
BCT achieves slightly better performance in cross-test but
significantly reduces new models’ performance, making it
unnecessary to deploy new models. Our method can improve
the performance of the new model stably while ensuring the
performance of the cross-test.

No Overlap Between Dold and Dnew

When the old model is from a third party, all of its informa-
tion, including the classifier and training sets, are unavail-
able, except for the embedding backbone. In the previous
experiments, we always assume that the Dnew is a superset
of Dold. Here we investigate whether no overlap between
them could sharply affect the compatibility performance of
each method. The old model is trained with the randomly
sampled 25% IDs subset of training data in the Market1501
dataset, and the new model is trained with the other 75% IDs
subset. We show the results in Table 4.

Compared with baseline, the accuracy of all evaluated
methods has dropped, except for NCCL. The performance
degradation of BCT is the most severe because it can only
use synthesized classifier weights or knowledge utilization
in this case. Both of them can be regarded as a kind of
knowledge distillation at the instant level. As the old model
is not good enough, BCT is difficult to extract useful knowl-
edge and eliminate the impact of outliers in the old embed-
dings. Our model has carefully considered such cases. Thus
we achieve the same effect as the baseline in this case.

Multi-model and Sequential Compatibility
Here we investigate the sequential compatibility case of
multi-model. There are three models: ϕ1, ϕ2 and ϕ3. ϕ1 is
trained with the randomly sampled 25% IDs subset of train-
ing data in the Market1501 dataset. ϕ2 is trained with a 50%
subset. And ϕ3 is trained with the full dataset. We constrain

Self-Test Cross-Test
Methods R1 R5 mAP R1 R5 mAP

Ori-Old 70.13 86.07 46.42 - - -
L2 regression 90.29 96.32 76.24 15.86 35.33 9.41
BCT 86.73 94.86 69.60 62.29 83.49 41.63
Asymmetric 91.03 96.67 78.91 74.55 90.23 53.07
NCCL(Ours) 92.22 97.09 80.88 77.73 90.94 55.91
Ori-New 90.17 96.32 77.52 6.00 16.60 3.92

Table 4: Performance comparison of no overlap between
Dold (25% IDs) and Dnew (75% IDs) on Market1501.

Market1501 (mAP)
Methods (ϕ1, ϕ1)(ϕ2, ϕ1)(ϕ2, ϕ2)(ϕ3, ϕ2)(ϕ3, ϕ3)(ϕ3, ϕ1)

Ori 46.42 7.49 63.30 14.15 80.85 5.62
L2 regression - 24.01 61.87 16.15 78.39 1.47
BCT - 45.78 60.29 65.45 77.07 45.20
Asymmetric - 45.68 62.88 67.51 81.28 48.85
NCCL(Ours) - 45.89 64.27 69.76 82.28 52.76

Table 5: Performance comparison in sequential multi-modal
experiment on Market1501. We train three models ϕ1

(ResNet18+25% IDs), ϕ2 (ResNet18+50% IDs) and ϕ3

(ResNet18+100% IDs).

ϕ2 to be compatible with ϕ1 and ϕ3 to be compatible with
ϕ2. Thus, ϕ3 has no direct influence on ϕ1. The results of the
sequential compatibility test are shown in Table 5.

We observe that, by training with NCCL, the last model
ϕ3 is transitively compatible with ϕ1 even though ϕ1 is not
directly involved in training ϕ3. It shows that transitive com-
patibility between multiple models is achievable through our
method, enabling a sequential update of models. It is worth
mentioning that our approach still has significant advantages
over other methods in cross-model comparison ϕ32ϕ1.

Discussion

Generally, three motivations drive us to deploy a new model:
1) growth in training data, 2) better model architecture, and
3) better loss functions. We have conducted detailed exper-
iments on these three aspects. BCT can deal with the data
growth and model architecture changes when the old and
new training data have common classes. Asymmetric can
handle data growth and model architecture changes well on
small datasets, even better than BCT, but it is too local to
work on large datasets reliably. Our method is state-of-the-
art under the changes of training data and model architec-
tures. It achieves better cross-test performance and gives bet-
ter performance than the new model trained independently.

For loss functions, the change of embedding loss usually
does not affect backward-compatible learning. In contrast,
the change of classification loss will lead to both BCT fail-
ure and Asymmetric failure, which means that the cross-test
performance drops sharply or the new model’s performance
is significantly damaged. However, our method can still im-
prove the performance of the new model under the varia-
tion of classification loss. At the same time, the backward-
compatible version is obtained.
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Figure 4: Visualization results of Market1501-R18 baseline.
“x” means the old features while “o” means the new fea-
tures.

Visualization Result
We visualize the results of different methods under
Market1501-R18 baseline, as shown in Figure 4. We ran-
domly select 6 classes in the gallery set and map the features
into 2D-dimension by t-SNE. It is shown that NCCL makes
the new clusters closer to their corresponding old clusters,
with smaller intra-class variance.

Conclusion
This paper proposes a neighborhood consensus contrastive
learning framework for feature compatible learning. We val-
idate the effectiveness of our method by conducting thor-
ough experiments in various reality scenarios using three
ReID datasets. Our method achieves the state-of-the-art per-
formances and shows convincing robustness in different case
studies.

Acknowledgments
This work was supported by the National Natural Science
Foundation of China under Grant 62088102, and in part by
the PKU-NTU Joint Research Institute (JRI) sponsored by a
donation from the Ng Teng Fong Charitable Foundation.

References
Bai, S.; Tang, P.; Torr, P. H.; and Latecki, L. J. 2019. Re-
ranking via metric fusion for object retrieval and person re-
identification. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 740–749.
Bai, Y.; Lou, Y.; Gao, F.; Wang, S.; Wu, Y.; and Duan, L.-Y.
2018. Group-sensitive triplet embedding for vehicle reiden-
tification. IEEE Transactions on Multimedia, 20(9): 2385–
2399.
Budnik, M.; and Avrithis, Y. 2020. Asymmetric met-
ric learning for knowledge transfer. arXiv preprint
arXiv:2006.16331.
Caron, M.; Misra, I.; Mairal, J.; Goyal, P.; Bojanowski, P.;
and Joulin, A. 2020. Unsupervised Learning of Visual Fea-
tures by Contrasting Cluster Assignments. In Thirty-fourth
Conference on Neural Information Processing Systems.
Chen, D.; Xu, D.; Li, H.; Sebe, N.; and Wang, X. 2018.
Group consistent similarity learning via deep crf for person
re-identification. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 8649–8658.
Chen, T.; Kornblith, S.; Swersky, K.; Norouzi, M.; and Hin-
ton, G. 2020a. Big self-supervised models are strong semi-
supervised learners. arXiv preprint arXiv:2006.10029.

Chen, X.; Fan, H.; Girshick, R.; and He, K. 2020b. Improved
baselines with momentum contrastive learning. arXiv
preprint arXiv:2003.04297.
Dai, Y.; Li, X.; Liu, J.; Tong, Z.; and Duan, L.-Y. 2021a.
Generalizable person re-identification with relevance-aware
mixture of experts. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 16145–
16154.
Dai, Y.; Liu, J.; Bai, Y.; Tong, Z.; and Duan, L.-Y. 2021b.
Dual-refinement: Joint label and feature refinement for un-
supervised domain adaptive person re-identification. IEEE
Transactions on Image Processing, 30: 7815–7829.
Deng, J.; Guo, J.; Xue, N.; and Zafeiriou, S. 2019. Arcface:
Additive angular margin loss for deep face recognition. Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 4690–4699.
Fu, Y.; Wang, X.; Wei, Y.; and Huang, T. 2019. Sta: Spatial-
temporal attention for large-scale video-based person re-
identification. In Proceedings of the AAAI conference on
artificial intelligence, 33(1): 8287–8294.
Grill, J.-B.; Strub, F.; Altché, F.; Tallec, C.; Richemond,
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