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Abstract
In recent years, tree decoders become more popular than La-
TeX string decoders in the field of handwritten mathematical
expression recognition (HMER) as they can capture the hi-
erarchical tree structure of mathematical expressions. How-
ever previous tree decoders converted the tree structure labels
into a fixed and ordered sequence, which could not make full
use of the diversified expression of tree labels. In this study,
we propose a novel tree decoder (TDv2) to fully utilize the
tree structure labels. Compared with previous tree decoders,
this new model does not require a fixed priority for different
branches of a node during training and inference, which can
effectively improve the model generalization capability. The
input and output of the model make full use of the tree struc-
ture label, so that there is no need to find the parent node in
the decoding process, which simplifies the decoding process
and adds a priori information to help predict the node. We ver-
ified the effectiveness of each part of the model through com-
prehensive ablation experiments and attention visualization
analysis. On the authoritative CROHME 14/16/19 datasets,
our method achieves the state-of-the-art results.

Introduction
Handwritten mathematical expression recognition (HMER)
has attracted more and more attention in academia and in-
dustry due to its huge application value. Different from text
line recognition (Shi, Bai, and Yao 2016; Cheng et al. 2017;
Li et al. 2019), handwritten mathematical expressions usu-
ally have complex structures, which means that HMER not
only needs to accurately recognize each handwritten symbol
in various forms, but also needs to analyze the correspond-
ing relationship between the symbols. This complex spatial
structure not only makes the process more complicated, but
also puts forward higher requirements on the generalization
of HMER algorithms.

Many recent handwritten mathematical expression recog-
nition works use end-to-end algorithms, which can per-
form symbol recognition and structural analysis in a sin-
gle pipeline. These works are mainly based on the encoder-
decoder framework to convert pictures or a series of tra-
jectory points into LaTeX strings (Deng et al. 2017; Zhang
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et al. 2017a; Zhang, Du, and Dai 2019). They do not in-
dependently model the spatial relationship of mathemati-
cal expressions, so the generalization of the model is of-
ten poor. When recognizing mathematical expressions with
more complex structures, the performance of these methods
is unsatisfactory (Zhang et al. 2020).

Besides, tree-structured decoder (TD) (Zhang et al. 2020)
describes mathematical expressions with a tree structure la-
bel and uses different modules to separately predict the node
category and the spatial relationship between nodes. This
separate modeling of spatial relationships can effectively im-
prove the generalization of the model to complex structures.
But unfortunately, in the process of training, they converted
the tree structure label into a fixed and ordered sequence,
which could not make full use of the diversified expression
brought by the tree structure label. On the other hand, in the
decoding process of this model, a complex attention mem-
ory module is needed to find the parent node of the current
node, which makes the decoding process more complicated
and inefficient.

In this article, we propose a novel tree decoder (TDv2)
that can fully utilize the tree structure tags of mathemat-
ical expressions to obtain more generalization and higher
accuracy. The overall architecture of TDv2 is based on the
encoder-decoder model, which is shown in Figure 1. The
encoder uses a convolutional neural network (CNN) to ex-
tract high-dimensional features of offline mathematical ex-
pression pictures. The decoder includes a node classification
module and a branch prediction module to predict the sym-
bol category of the current node and branches of the current
node separately. After getting the node information, we put
it into the stack table to build a tree of mathematical expres-
sion. In the inference stage, the stack table is also responsi-
ble for automatically popping the parent node and the spatial
relationship between the current node and the parent node as
the input of the decoder. For HMER, we also propose two
novel and effective improvements: adding “thinking” labels
and pixel-level auxiliary classification loss. We add a “think-
ing” label to let the attention mechanism observe first, and
make better preparations for finding child nodes, so that the
attention mechanism can focus on the child nodes more ac-
curately. In addition, in order to better optimize the encoder
to obtain a stronger ability of extracting features, we directly
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Figure 1: Overal architecture of TDv2.

classify each position feature vector in the feature map ob-
tained by the encoder, and then calculate the probability of
the current child node category through the attention mech-
anism.

The main contributions of this article are as follows:

• Through the tree structure label of the mathematical ex-
pression, we propose a novel tree decoder (TDv2) with
only a node classification module and a branch prediction
module to simplify the decoding process and improve the
generalization.

• For HMER, we also present two novel improvements:
adding “thinking” labels and pixel-level auxiliary clas-
sification loss, which effectively boost the performance
of TDv2.

• We verify the effectiveness of each part of the proposed
method through ablation experiments and attention visu-
alization analysis, and achieve very competitive results
on the CROHME 14/16/19 datasets.

• The source codes of our proposed TDv2 are available at
https://github.com/yqingli123/TDv2.git.

Related Work
Traditional Methods
Symbol recognition and structural analysis are two major
problems for mathematical expression recognition, while
can be solved sequentially or globally. Sequential ap-
proaches (Zanibbi, Blostein, and Cordy 2002; Álvaro,
Sánchez, and Benedı́ 2014) first segmented the whole math-
ematical expression into several instances and then recog-
nized them into math symbols. The structural analysis was
performed to find the most likely math tree based on symbol
segmentation and recognition results. In contrast, global ap-
proaches (Awal, Mouchère, and Viard-Gaudin 2014; Álvaro,
Sánchez, and Benedı́ 2016) optimized symbol recognition
and structural analysis simultaneously, which can utilize the

global contextual information from symbol recognition and
structural analysis.

Latex Modeling
In LaTeX modeling methods, the input can be static image
or dynamic traces and the output is LaTex sequence, cor-
responding to offline recognition and online recognition re-
spectively. Both can be modeling based on encoder-decoder
framework, which has been applied to many sequence-to-
sequence tasks (Cho et al. 2014; Chan et al. 2016; Cho,
Courville, and Bengio 2015; Huang et al. 2016).

For offline methods, the encoder is usually based on
VGG (Simonyan and Zisserman 2014) or DenseNet(Huang
et al. 2017) for feature extraction. WYGIWYS (Deng et al.
2017) was proposed with coarse-to-fine attention mecha-
nism for machine-printed mathematical expression recogni-
tion, while Zhang (Zhang et al. 2017b; Zhang, Du, and Dai
2018a) proposed more robust model structures which per-
form better in HMER. Besides, adversarial learning strat-
egy was (Wu et al. 2018, 2020; Le 2020) adopted to help
learning more semantic invariant feature. For online meth-
ods, some works (Le and Nakagawa 2017; Zhang, Du, and
Dai 2018b) utilize RNN-based encoder to extract feature
from dynamic formula strokes. Hong (Hong et al. 2019) em-
ployed residual connection in BiRNN to improve feature ex-
traction. Besides, multi-modal learning was also introduced
into HMER with both online and offline information for bet-
ter encoding (Wang et al. 2019) and decoding (Wang et al.
2021). There are also approaches which apply data augmen-
tation (Le and Nakagawa 2017; Le, Indurkhya, and Naka-
gawa 2019; Li et al. 2020).

Tree Structure Modeling
There are some studies using neural network to encode
or decode a tree in various tasks, such as machine trans-
lation (Eriguchi, Hashimoto, and Tsuruoka 2016) and se-
mantic parsing (Dong and Lapata 2016). Generally, the re-
search of tree structure encoder (Tai, Socher, and Manning
2015; Zhu, Sobhani, and Guo 2015; Socher et al. 2011)
has achieved good performance. However, the design of the
tree-structured decoder is more difficult and complicated.
Some models (Rabinovich, Stern, and Klein 2017; Parisotto
et al. 2017) need to rely on specific prior knowledge of spe-
cific tasks, thus they are task-specific tree decoder and dif-
ficult to generalize to other tasks. Meanwhile, by utilizing
the structural knowledge, general tree decoders have also
been investigated in several studies (Chen, Liu, and Song
2018; Chakraborty, Allamanis, and Ray 2018). Recently,
Zhang (Zhang et al. 2020) proposed a novel tree-structured
decoder (TD) which produced a parent node, a child node
and their relationship simultaneously at each step. It aban-
dons the constraint of complex prior knowledge and can eas-
ily generalize to other tasks.

As described above, with the help of structured models,
fully mining the structural information of formulas is the
key to enhancing generalization. Graph-to-graph model (Wu
et al. 2021) introduced to online HMER has also proved that.
Therefore, in this paper, we fully tap the diversity of tree
structure label and simplify TD for better generalization.
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Figure 2: Multiple descriptions of a mathematical expression

Methodology
In this section, we first introduce the diverse tree structure
labels of mathematical expressions in Subsection 3.1. Next,
we show the main framework of the proposed TDv2. In Sub-
section 3.2, we briefly introduce the encoder. In Subsection
3.3, we introduce the two main modules in the decoder in
detail. Finally, we introduce two novel improvements for
HMER in Subsection 3.4 and Subsection 3.5.

Diverse Tree Structure Label
As shown in the Figure 2, mathematical expressions are ac-
tually data in a tree structure. Each node in the tree repre-
sents a mathematical symbol, and the path between nodes
represents the spatial relationship between nodes, such as
subscripts, superscripts, etc. What we need to pay attention
to is that some nodes in the tree may have multiple spatial re-
lationships (branches), but these spatial relationships are not
in strict order. For example, the left and right descriptions in
the Figure 2 all represent the same mathematical expression
x2i − y. In order to prevent different annotations from caus-
ing ambiguity, the previous methods need to strictly ensure
that the spatial relationship of the same formula is described
in a fixed order. In TDv2, the priority of spatial relations can
be specified or randomly disrupted. This means that when a
node has multiple branches, the model can choose any path
freely, regardless of their order. We believe that this choice
of out-of-order decoding paths can not only allow more pat-
terns in the training phase, but also improve the generaliza-
tion by weakening contexual dependence. In each epoch of
training, we randomly shuffle the branches, and convert the
shuffled tree structure label into node list and branch list
recording node categories and braches separately accord-
ing to the depth-first traversal principle. Taking the formula
x2i − y as an example, if its tree structure is the left-hand
situation in Figure 2, we can get the node list: [x, 2, i, -, y]
and the branch list: [(sup, sub, right), (end), (end), (right),
(end)]. With these two lists, we can generate the input list
[(root, start), (x, sup), (x, sub), (x, right), (-, right)] of the
decoder to help predict nodes. This process transfers a tree
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Figure 3: Illustration of tree decoder with two modules. Left
part in ‘orange’ represents node classification module. Right
part in ‘blue’ represents branch prediction module.

structure into ordered list for latter modeling.

Encoder
The encoder used in this model is a densely connected net-
work (DenseNet). Since the focus of this work is to propose
a new tree decoder, some other classic convolutional neural
networks are also recommended, and there will be no further
discussion on the encoder. The input picture of the encoder
is I ∈ RH×W×C , H , W , C are the height, width and num-
ber of channels. We define the high-dimensional features of
the output of the last convolutional layer as A:

A = CNN(I),A ∈ RH′×W ′×D (1)

A can be regarded as a collection of elements ai ∈ RD,
where ai is the feature vector corresponding to the local area
of the image.

Decoder
In each decoding step of the decoder, the tree decoder needs
to predict the current child node information, including the
category of the child node and the branches of the child
node. The branch of a node represents the spatial relation-
ship between the node and its child nodes. We can grad-
ually build a mathematical tree through node categories
and branches. As shown in Figure 3, in order to decouple
node classification and spatial relationship prediction, we
designed two modules in the decoder: node classification
module and branch prediction module.

Node Classification Module. As shown in Figure 3, the
node classification module mainly includes two gated recur-
rent units (GRU) (Chung et al. 2014), an attention mecha-
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nism (Zhang et al. 2017a) and a classifier. In the node classi-
fication module, we first use two embedding layers to obtain
the high-dimensional feature vectors ep

t and er
t of the parent

node pt and the spatial relationship rt. Then, the previous
hidden state of the node decoder snode

t−1 is taken as the pre-
vious hidden state of the GRUnode

1 layer. The parent node
embedding ep

t and the spatial relationship node embedding
er
t are stacked together as the input of GRUnode

1 . In this way
we can get the current hidden state s̃node

t of GRUnode
1 .

ep
t = Emdnode (pt) (2)

er
t = Emdre (rt) (3)

s̃node
t = GRUnode

1

(
[ep

t , e
r
t], s

node
t−1

)
(4)

Then, a node attention module f node
att is used to calculate the

attention probability αnode
t on the feature map A. The node

context vector cnode
t is obtained by performing weighted

summation on A. We use s̃node
t as the query, and A as key

and value.
αnode

t = f node
att

(
A, s̃node

t

)
(5)

cnode
t =

∑
i

αnode
ti ai (6)

The function f node
att is designed as follows:

Fnode = Qnode ∗
t−1∑
l=1

αnode
l (7)

enodeti = V T
node tanh

(
Wnode

att s̃nodet +Unode
att ai + Ûnode

F fnodei

)
(8)

αnode
ti =

exp
(
enodeti

)∑
k exp

(
enodetk

) (9)

where αnode
ti denotes the node attention probability of i-th

element at step t, enode
ti denotes the output energy of i-th step.

fnodei denotes the i-th element of Fnode , which represents
the history attention for avoiding over-parsing or under-
parsing problem. Qnode, V T

node, Wnode
att , Unode

att , Ûnode
F are

all learnable parameters.
Then, we use cnode

t and s̃node
t as the input of GRUnode

2 to
calculate the hidden state snode

t of the node prediction mod-
ule:

snode
t = GRUnode

2

(
cnode
t , s̃node

t

)
(10)

Finally, the probability of each predicted node onode
t is

computed from the concatenation of parent node ep
t , parent

relation er
t, node hidden state snode

t and child context vector
cnode
t :

hnode
t = maxout

(
Wnode

1

[
ep
t , e

r
t, s

node
t , cnode

t

])
(11)

onode
t = softmax

(
Wnode

2 hnode
t

)
(12)

where Wnode
1 , Wnode

2 are learnable parameters.
We use the cross-entropy function to calculate the classi-

fication loss:

Lnode = −
∑
t

log onode
t · nt (13)

where nt denotes the one-hot vector of ground-truth node at
time step t.

Branch Prediction Module. The overall structure of the
branch prediction module is roughly the same as that of node
classification module, except that the spatial attention mech-
anism is slightly different. In the branch prediction module,
we first take the previous hidden state of the branch predic-
tion module sbr

t−1 as the previous hidden state of the GRUbr
1

layer. The context vector cnode
t of the node works as input

of GRUbr
1 , and we can get the hidden state s̃br

t of the GRUbr
1

layer:
s̃br
t = GRUbr

1

(
cnode
t , sbr

t−1

)
(14)

Then, a branch attention module f br
att is used to calculate the

attention probability αbr
t on the feature map A. The branch

context vector cbr
t is obtained by performing weighted sum-

mation on A. We use s̃br
t as the query, and the A as key and

value.
αbr

t = f br
att

(
A, s̃br

t

)
(15)

cbr
t =

∑
i

αbr
tiai (16)

The function f br
att is designed as follows:

ebrti = VT
br tanh

(
Wbr

atts̃
br
t +Ubr

attai
)

(17)

αbr
ti =

exp
(
ebrti
)∑

k exp
(
ebrtk
) (18)

where αbr
ti denotes the branch attention probability of i-th

element at step t, ebr
ti denotes the output energy of branch

module at i-th step.
Then, we use cbr

t and s̃br
t as the input of GRUbr

2 to calculate
the hidden state sbr

t of the branch prediction module:

sbr
t = GRUbr

2

(
cbr
t , s̃

br
t

)
(19)

The embedding enode
t of the current node, the branch pre-

diction module’s hidden state sbr
t and branch context vector

cbr
t are connected as the input of full-connection layer to cal-

culate the prediction probability of the current branch obr
t .

enode
t = Emdnode(o

node
t ) (20)

hbr
t = maxout

(
Wbr

1

[
enode
t , sbr

t , c
br
t

])
(21)

obr
t = softmax

(
Wbr

2 h
br
t

)
(22)

We use the binary cross entropy function to compute the
classification loss:

Lbr = −
∑
t

log obr
t · rt (23)

where rt denotes the ground-truth branch label at time step
t.

Adding “thinking” Label
When the spatial positional relationship between the par-
ent node and the child node is too far away, the attention
mechanism needs to span a far position to focus on the
child node. We hope to add a “thinking” label before look-
ing for the child node, so that the attention mechanism can
observe and think first. The thinking label makes the atten-
tion mechanism pay attention to the position closer to the
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child node first, and then pay attention to the child node.
Therefore, the model becomes more accurate in predicting
nodes and branches. From the perspective of tree structure,
each node is the starting node of a subtree. Taking mathe-
matical expressions as an example, we treat each subtree as
a new mathematical expression. At this point, the thinking
label can be understood as the root node of each mathemat-
ical formula. Each time the current node is predicted, a root
symbol is predicted first, which indicates the beginning of
the next subexpression. When encountering mathematical
expressions with more nested structures, each nested sub-
expression will be treated as a new mathematical expression
by the model, so the generalization ability of the model can
be improved.

Pixel-level Auxiliary Classification Loss
In order to better optimize the encoder to obtain a stronger
ability to extract features, we add a pixel-assisted classifica-
tion loss. We directly classify each position feature vector
ai in the feature map A obtained by the encoder. Using the
pixel-level feature ai, we can obtain the pixel-level classifi-
cation probability ppixel

i through two fully connected layers
and two activation layers:

hpixel
i = maxout

(
Wpixel

1 ai

)
(24)

ppixel
i = softmax

(
Wpixel

2 hpixel
i

)
(25)

At each decoding step t, the attention probability αnode
t

is used to perform a weighted summation of the pixel-level
classification probability ppixel

i to obtain the classification
probability opixel

t at step t:

opixel
t =

∑
i

αnode
ti ppixel

i (26)

Same as the node classification module, we use the cross-
entropy function to calculate the auxiliary classification loss:

Lpixel = −
∑
t

log opixel
t · nt (27)

Where nt denotes the one-hot vector of ground-truth node
at time step t.

The gradient backpropagation produced by this loss skips
the decoder. This is a shortcut to better optimize the encoder.
We only use the auxiliary classification loss in the training
phase, and do not use the auxiliary classification probability
in the inference phase.

Implementation Details
Training
TDv2 has three losses in the training process: node classi-
fication loss Lnode, pixel-level auxiliary classification loss
Lpixel and branch classification loss of Lbr. These three
losses are minimized under end-to-end training, and we set
the optimization goal of the model as:

L = λ1Lnode + λ2Lbr + λ3Lpixel (28)
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Figure 4: The tree construction process with the stack chang-
ing in inference stage. Node in green denotes current decod-
ing node. Branch in blue denotes current decoding branch.

In our experiment, we set λ1 = λ2 = 1, λ3 = 0.5. The
node classification module and the branch prediction module
are the most important parts of the model, so the weights are
set relatively large. The pixel-level auxiliary classification
loss only plays an auxiliary role, and does not participate in
the prediction in the inference stage, so the weight setting
is relatively small. The encoder uses a DenseNet, which is
mainly composed of a DenseBlock and a Transition layer.
We set the depth of each DenseBlock to 22, the channel of
each layer to 24. After each convolutional layer, batch nor-
malization (Ioffe and Szegedy 2015) is used, and the activa-
tion function is ReLU (Nair and Hinton 2010). Both the node
classification module and branch prediction module adopt 2
GRU layers. The dimension of the GRU unit, the dimension
of the word embedding layer and the dimension of the rela-
tion embedding layer are set to 256. The dimension of the
node attention mechanism and the branch attention mecha-
nism is set to 512. The optimization algorithm is Adadelta
(Zeiler 2012) with gradient clipping, and the learning rate
is set to 1. We implement TDv2 using PyTorch and conduct
experiments on a Nvidia Tesla V100 with 12GB RAM.

Testing
In the inference stage, we use a stack table to record the
node information: the symbol category and the branches for
building a mathematical expression tree. In each step, we
pop parent node and spatial relationship as the input of the
current decoding step, and TDv2 only needs to be respon-
sible for predicting current symbol and branches, which are
then pushed into stack. The specific construction process is
shown in Figure 4. First, we initialize the parent node as
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System Thinking Pixel ExpRate

14 16 19

E1 49.46 47.32 51.90
E2 X 53.65 50.87 55.91
E3 X X 53.62 54.16 58.72

Table 1: Results of Ablation Experiment (in %) on
CROHME 2014, CROHME 2016 and CROHME 2019.

“root” and the spatial relationship as “start”. When the tree
decoder decodes the node “x” and the spatial relationship
“sup” and “right” in the first step, we store them in the stack
table and fill in “x” in the mathematical expression tree and
create two branches on the “x” node. As shown in the sec-
ond line of Figure 4, when we need to decode the superscript
node of “x”, we can automatically pop up the parent node
“x” and the spatial relationship “sup” through the stack ta-
ble. In essence, it is equivalent to finding its parent node
and spatial relationship along the empty node marked with a
green question mark in Figure 4. After the node “2” and the
branch “end” are decoded, they are stored in the stack table
and the mathematical expression tree is further constructed.
This step is repeated until the stack table is empty or the
nodes of the mathematical expression tree are completely
traversed.

Dataset
We verified the proposed model on CROHME benchmark
(Mouchere et al. 2016; Mouchère et al. 2016; Mahdavi et al.
2019), which is the most widely used public dataset for
HMER. The training set has 8836 mathematical expressions,
including 101 mathematical symbol classes and 9 mathe-
matical spatial relations. We define the spatial relationship
as: start, leftsup, inside, below, above, subscript, superscript,
right and end. CROHME 2014/2016/2019 test sets contain
986/1147/1199 handwritten mathematical expressions re-
spectively. Among them, CROHME 2016 is the most dif-
ficult data set, and most methods have achieved lower accu-
racy on it.

Experiments
Ablation Experiment and Visualization
In order to verify whether the two improvements proposed
in Section 3.4 and Section 3.5 can effectively improve the
performance of TDv2, we do this set of ablation experiments
on the CROHME dataset. According to the idea proposed in
Section 3.4, we add a “thinking” label before each real node
and denote this system as E2. As shown in Table 1, adding
“thinking” labels increases the accuracy of the mathematical
expressions of the model on the test sets of CROHME 2014,
CROHME 2016 and CROHME 2019 by 4.19%, 3.55% and
4.01% respectively.

In order to more intuitively explain the effect of adding
thinking labels, we visualize the attention in the process of
node recognition. As shown in Figure 5, when the decod-

<s> 1 <s> 0

<s> \frac <s> 1

<s> 1 <s> 0

Figure 5: The attention visualization after adding the “think-
ing” labels. The red parts denote the attention probabilities
of current step. “〈s〉” denotes the “thinking” label.

ing step is “thinking”, the attention mechanism focuses on
the middle area between the parent node and the child node.
Without thinking about the label, the attention mechanism
should directly focus on the child node from the parent node.
After adding the thinking label, the model can first find an
area closer to the child node, which enables the attention
mechanism to more accurately focus on the location of the
child node next time. Take the node in the red box in Figure
5 as an example. When the parent node is “0” and the spatial
relationship is “sup”, the attention mechanism needs to find
the child node “frac”. After adding the thinking tag, the at-
tention mechanism first focuses on the area between “0” and
“frac”, and then on “frac”.

Finally, based on the system E2, we add the pixel-level
auxiliary classification loss proposed in Section 3.5 and de-
note the system as E3. As shown in Table 1, the ExpRate
of system E3 on the testsets of CROHME 2014, CROHME
2016 and CROHME 2019 increase by -0.03%, 3.29% and
2.81% respectively. Although the ExpRate on the CROHME
2014 testset shows a very small drop, the ExpRate on the
more difficult CROHME 2016 testset improves significantly.
In general, this set of ablation experiments proves that
adding thinking labels and pixel-level auxiliary classifica-
tion loss can effectively improve the performance of TDv2.

Evaluating the Generalization of the Model
In order to prove that TDv2 has better generalization than
TD (Zhang et al. 2020), we design this set of experiments
on the depth of mathematical expressions. As shown in the
Figure 6, with depth-first traversal order, we call the number
of nodes between the non-root node and its parent node ‘dis-
tance’. The maximum distance is defined as the depth of the
tree. We use printed mathematical expressions with a depth
of no more than 4 as the training set and test the generaliza-
tion of the model on test sets with different depths. As shown
in Figure 7, the depth of part of the test set exceeds the depth
of the training set, and even exceeds 11. When the depth of
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Figure 6: Illustration of math formulas with increased struc-
tural depth. Number in blue denotes the depth of current
node.

0

10

20

30

40

50

60

70

80

90

100

1 2 3~4 5~7 8~10 11+

TD TDv2

Figure 7: In-depth experiment of mathematical expressions.
Note: The abscissa indicates the depth of the test set, and the
ordinate indicates the accuracy rate (%).

the mathematical expression in the test set is greater than the
depth in the training set, TD can hardly recognize the mathe-
matical expression accurately. However, TDv2 can still iden-
tify some of the deep samples. That fully proves that TDv2
has better generalization and can learn the structural infor-
mation of mathematical expressions more effectively from
the relatively simple samples in the training set.

Comparison with State-of-the-Art
We compare this model with other state-of-the-art methods
to show the competitive results of our proposed model. For
fairness, all our experiments only use offline information in
the official CROHME training set without additional data
enhancement, beam search strategy or model fusion.

As shown in the Table 2, we select a large number of
mainstream algorithms for comparison, including methods
with string decoder and tree decoder. Except that the ex-
perimental results of our model were measured by the tool
(Mouchère et al. 2016) provided by CROHME, all other ex-
perimental results are selected from other published papers.
Among those, “WAP” (Zhang et al. 2017a), “DenseWAP”,
“DenseWAP-TD” (Zhang et al. 2020) , “PAL” (Wu et al.
2018), “PAL-2” (Wu et al. 2020) and “DLA” (Le 2020)
are very representative and most advanced systems based
on deep learning published in recent years. The ExpRate of
TDv2 is 53.62% on CROHME 2014, 55.18% on CROHME

Dataset Model Decoder ExpRate

CROHME 14

WYGIWYS SD 36.4
WAP SD 40.4

DenseWAP SD 43.0
DenseWAP-TD TD 49.1

PAL SD 39.66
PAL-2 SD 48.88
DLA SD 51.88

TDv2 TD 53.62

CROHME 16

WAP SD 37.1
DenseWAP SD 40.1

DenseWAP-TD TD 48.5
PAL-v2 SD 49.61

DLA SD 51.53

TDv2 TD 55.18

CROHME 19

WAP SD 37.1
DenseWAP SD 41.7

DenseWAP-TD TD 51.4

TDv2 TD 58.72

Table 2: Evaluation of math formula recognition systems on
CROHME 2014, 2016 and 2019 (%). ‘SD’ denotes methods
based on string decoder. ‘TD’ denotes methods based on tree
decoder. ‘ExpRate’ denotes the metric expression recogni-
tion rate.

2016, and 58.72% on CROHME 2019. Obviously, TDv2 is
significantly better than other encoder-decoder models on all
three data sets in terms of expression recognition rate. It is
particularly worth mentioning that CROHME 2016 has al-
ways been the most difficult one of the three CROHME test
sets, and the results of most systems on this CROHME 2016
are worse than those on CROHME 2014 and CROHME
2019. TDv2 achieved quite good results on the CROHME
2016 test set, even 1.56% better than that on CROHME
2014. Compared with other methods, TDv2 has achieved a
significant improvement even without using data enhance-
ment and beam search strategies. These experimental results
fully prove that TDv2 has good generalization and superior
performance for HMER.

Conclusion

In this study, we propose a novel tree based decoder which
includes a node classification module and a branch predic-
tion module for HMER. Furthermore, we added thinking
labels and pixel-level auxiliary classification loss in TDv2
to improve the performance. Through detailed experimen-
tal analysis and comparisons with state-of-the-art methods,
we clearly demonstrate that TDv2 has good generalization
and superior performance for HMER. In tht future, we will
implement TDv2 for online handwriting mathematical ex-
pression recognition and investigate its application on other
tree-structured text recognition.
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