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Abstract

Semi-supervised learning is a challenging problem which
aims to construct a model by learning from limited labeled
examples. Numerous methods for this task focus on utiliz-
ing the predictions of unlabeled instances consistency alone
to regularize networks. However, treating labeled and unla-
beled data separately often leads to the discarding of mass
prior knowledge learned from the labeled examples. In this
paper, we propose a novel method for semi-supervised se-
mantic segmentation named GuidedMix-Net, by leveraging
labeled information to guide the learning of unlabeled in-
stances. Specifically, GuidedMix-Net employs three oper-
ations: 1) interpolation of similar labeled-unlabeled image
pairs; 2) transfer of mutual information; 3) generalization of
pseudo masks. It enables segmentation models can learning
the higher-quality pseudo masks of unlabeled data by trans-
fer the knowledge from labeled samples to unlabeled data.
Along with supervised learning for labeled data, the predic-
tion of unlabeled data is jointly learned with the generated
pseudo masks from the mixed data. Extensive experiments on
PASCAL VOC 2012, and Cityscapes demonstrate the effec-
tiveness of our GuidedMix-Net, which achieves competitive
segmentation accuracy and significantly improves the mIoU
over 7% compared to previous approaches.

Introduction
The past several years have witnessed the success of con-
volutional neural networks (CNNs) (Long, Shelhamer, and
Darrell 2015; Ronneberger, Fischer, and Brox 2015a; Huang
et al. 2020; Chen et al. 2017; Huang et al. 2021) for visual
semantic segmentation. Although data-driven deep learn-
ing techniques have benefitted greatly from the availability
of large-scale image datasets, they require dense and pre-
cise pixel-level annotations for parameter learning. Alterna-
tive learning strategies, such as semi-supervision, have thus
emerged as promising approaches to reduce the need for an-
notations, requiring simpler or fewer labels for image clas-
sification (Tarvainen and Valpola 2017a; Takeru et al. 2018;
Sohn et al. 2020).

Recent semi-supervised methods for semantic segmenta-
tion, such as (Ouali, Hudelot, and Tami 2020; Luo et al.
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Figure 1: Upper(dotted box): The mutual information trans-
fer module selects similar features to transfer knowledge
from the labeled samples to unlabeled images. Lower: Ex-
amples of ground-truths (GTs) (b), the pseudo mask of CCT
(c) and ours (d).

2020; French et al. 2020; Olsson et al. 2021), exploit con-
sistency by perturbing the unlabeled samples to regularize
model training. Intuitively, the models are expected to mani-
fest the invariance underlying any small perturbations while
observing the natural properties of the data, especially for
unlabeled data. To address this, numerous semi-supervised
semantic segmentation methods have been proposed against
the perturbations when leveraging unlabeled samples. For
example, CCT (Ouali, Hudelot, and Tami 2020) introduces
random manual perturbations by designing separated, unre-
lated decoders for each type of perturbation. DTC (Luo et al.
2020) builds a task-level regularization rather than data-level
perturbation. CutMix (French et al. 2020) and ClassMix
(Olsson et al. 2021) follow MixUp (Zhang et al. 2017) and
achieve semi-supervised segmentation by forcing the predic-
tions for the augmented and original data to be consistent.

Although various approaches have been introduced over
the years, a key bottleneck of semi-supervised segmenta-
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tion models is that they typically treat the labeled and un-
labeled samples separately during training. Existing meth-
ods focus on how to use unlabeled data alone under various
manual perturbations. On the one hand, although low-level
perturbations do improve the robustness slightly, the rich
underlying intrinsic information of the unlabeled instances
has not yet been fully explored. For instance, consistency-
based methods rely primarily on the local information of
the samples themselves by constraining the local smooth-
ness. This strategy cannot comprehensively mine the struc-
tural information, especially for unlabeled data, which in
turn causes the model to produce a suboptimal solution. An-
other clear weakness of consistency-based methods is that
they require abundant and diverse perturbations, which are
expensive and time-consuming to obtain. For instance, CCT
(Ouali, Hudelot, and Tami 2020) incorporates almost thirty
decoders to make the learned model adequately robust. The
example results shown in Fig. 1 (c) also confirm that gen-
erating pseudo masks using simple perturbation consistency
training yields significant deviation in the contour and se-
mantic understanding of objects. In other words, the mas-
sive amount of prior information learned from the labeled
samples cannot be transferred to the unlabeled data. Current
semi-supervised semantic segmentation methods provide in-
consistent optimization objectives for labeled and unlabeled
data in different training stages, where the labeled samples
are used to improve the discriminative ability and the unla-
beled samples enhance the smoothness of models. However,
we should be able to train a uniform model by leveraging a
large amount of unlabeled data under the guidance of labeled
samples. This will enable the learned representations to be
refine, thus facilitating mutual information interaction and
transfer. We also note that humans can recognize unfamiliar
objects subconsciously, by making inferences based on sim-
ilar or recognizable objects. For example, in Fig. 1, the dot-
ted box provides a labeled image A and an unlabeled image
B with similar objects. Most people can recognize and seg-
ment the object in image B by transferring their knowledge
of image A to image B. In contrast, existing deep models are
typically trained with limited labeled samples and most di-
rectly generate the pseudo mask of image B, making it diffi-
cult to produce a high-quality prediction for unseen samples,
as shown in the bottom of Fig. 1 (c). The example shown
in Fig. 1 is a relatively simple scenario; natural images are
usually far more complex with, for example, multiple oc-
cluded objects, making them even more challenging to seg-
ment. Another observation is that similar objects (e.g. intra-
class objects) often contain common edges and textures. An
intuitive way to improve the segmentation of unlabeled data
is therefoce to refer to labeled images, as humans do.

Motivated by these problems, we propose a novel
semi-supervised method for semantic segmentation, named
GuidedMix-Net. GuidedMix-Net allows knowledge to be
transferred from the labeled images to the unlabeled sam-
ples, as occur in the human cognitive path. To learn from
the unlabeled samples, GuidedMix-Net employs three pro-
cesses, i.e., labeled-unlabeled image pair interpolation, mu-
tual information transfer, and pseudo mask generation.
Specifically, we feed pairs of labeled and unlabeled images

as input into the model and carry out a linear interpolation
of them to capture pairwise interactions. Then, we learn the
uniform feature vectors from the mixed data to inherit dif-
ferent contexts from the image pairs. To incorporate non-
local blocks (Wang et al. 2018) into the mixed feature layer,
long-range dependencies are explored both within images
and between them to mine similar object patterns and learn
semantic correlations. We further select objects with simi-
lar features to ensure that the cues will be similar for dif-
ferent image pairs. Feature selection improves the predic-
tion and mask qualities of the unlabeled images by using
the supervised information from the labeled images as ref-
erence. After that, we decouple the hybrid prediction to ob-
tain a pseudo mask for the unlabeled image. As a result, the
generated pseudo masks are more credible than the direct
predictions of unlabeled samples. Finally, the pairs can be
utilized for self-training to explore the rich underlying se-
mantic structures provided by the unlabeled examples and
further improve the performance of our model.

Related Work
Semi-Supervised Classification
Semi-supervised classification methods (Sajjadi, Javan-
mardi, and Tasdizen 2016; Tarvainen and Valpola 2017b;
Takeru et al. 2018) typically focus on achieving consistent
training by combining a standard supervised loss (e.g. cross-
entropy loss) and an unsupervised consistency loss to en-
courage consistent predictions for perturbations on the unla-
beled samples. Randomness is essential for machine learn-
ing to either guarantee the generalization and robustness of
the model or provides multiple different predictions for the
same input. Based on this, Sajjadi et al. (Sajjadi, Javan-
mardi, and Tasdizen 2016) introduced an unsupervised loss
function which leverages the stochastic property of random-
ized data augmentation, dropout and random max-pooling
to minimize the difference between the predictions of mul-
tiple passes of a training sample through the network. Al-
though these random augmentation techniques can improve
the performance, they still remain difficulty on providing ef-
fective constraints for boundaries. Miyato et al. (Takeru et al.
2018) after proposed a virtual adversarial training scheme to
achieve smooth regularization. Their method aims to perturb
the decision boundary of the model via a virtual adversarial
loss-based regularization to measure the local smoothness of
the conditional label distribution.

Semi-Supervised Semantic Segmentation
Semi-supervised semantic segmentation algorithms have
achieved great success in recent years (Papandreou et al.
2016; Wei et al. 2018; Souly, Spampinato, and Shah 2017;
Lee et al. 2019; Hung et al. 2018). For example, EM-
Fixed (Papandreou et al. 2016) provides a novel online
expectation-maximization method by training from either
weakly annotated data such as bounding boxes, image-level
labels, or a combination of a few strongly labeled and many
weakly labeled images, sourced from different datasets. EM-
Fixed benefits from the use of both a small amount of la-
beled and large amount of unlabeled data, achieving com-
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petitive results even against other fully supervised methods.
From a certain point of view, EM-Fixed involves weak la-
bels for training and hence is not a pure semi-supervised
method. Spampinato et al. (Souly, Spampinato, and Shah
2017) designed a semi-supervised semantic segmentation
method using limited labeled data and abundant unlabeled
data in a generative adversarial network (GAN). Their model
uses discriminators to estimate the quality of predictions
for unlabeled data. If the quality score is high, the pseudo-
label generated from the prediction can be regarded as the
ground-truth, and the model is optimized by calculating the
cross-entropy loss. However, models trained on a limited
amount of labeled data typically fail in the following ways:
1) they generate inaccurate low-level details; 2) they mis-
interpret high-level information. To address these problems,
s4GAN-MLMT (Mittal, Tatarchenko, and Brox 2019) fuses
a GAN-based branch and a classifier to discriminate the gen-
erated segmentation maps. However, considering the intrin-
sic training difficulty of GANs, some semi-supervised image
classification approaches instead adopt a consistent training
strategy to ensure similar outputs under small changes, since
this is flexible and easy to implement. CCT (Ouali, Hudelot,
and Tami 2020) employs such a training scheme for semi-
supervised semantic segmentation, where the invariance of
the predictions is enforced over different perturbations ap-
plied to the outputs of the decoder. Specifically, a shared en-
coder and a main decoder are trained in a supervised manner
using a few labeled examples. To leverage unlabeled data,
CCT enforces consistency between the main decoder pre-
dictions and the other set of decoders (for each type of per-
turbations), and uses different perturbations output from the
encoders as input to improve the representations.

Unlike previous methods, which primarily focus on learn-
ing unlabeled data, we use the labeled images as references
and transfer their knowledge to guide the learning of effec-
tive information from unlabeled data. As a result, the pro-
posed method generate high-quality features from the la-
beled images, and refines features of unlabeled data via pair-
wise interaction.

GuidedMix-Net
Assume that we have a limited number of labeled images
Sl={xl, yl}, where yl is the ground-truth mask of the image
xl, and a large amount of data without annotations Su={xu}.
The image x ∈ RH×W has spatial dimensions of H ×W
and the masks y ∈ RH×W×C have C categories. Fully su-
pervised methods aim to train a CNN Γ(x; θ) that takes im-
age x as input, where θ denotes the parameter of the model,
and outputs the segmented mask ŷ by minimizing the cross-
entropy loss Lce as follows:

Lce(ŷ, y) = −
∑
i

ŷilog(yi), (1)

where i represents the i-th category. Generally, collecting
large-scale labeled training data is time-consuming, costly
and sometimes infeasible. In contrast, for some computer vi-
sion tasks, large amounts of unlabeled data can be collected
relatively easily and labeled samples are hard to be obtained.

In this case, fully supervised training scheme cannot achieve
good performance when suffering in the presence of a minor
data deficiency. To address this and employ unlabeled exam-
ples during training, we propose a novel framework, called
GuidedMix-Net, to leverage the limited number of labeled
samples to guide the learning of unlabeled data. The overall
framework is shown in Fig. 2.

To leverage the labeled samples to guide the genera-
tion of credible pseudo masks for the unlabeled samples,
GuidedMix-Net employs three operations: 1) interpolation
of image pairs; 2) transfer of mutual information; 3) genera-
tion of pseudo masks, which will be introduced accordingly.

Labeled-Unlabeled Image Pair Interpolation
Labeled-unlabeled image pair interpolation (LUPI) applies
linear interpolation to formulate a data mixing objective for
current unlabeled instances with potentially similar labeled
samples to guarantee the cues to be similar, and enable in-
formation to flow between them. Given a pair of samples
(xi

l, y
i
l) and xk

u, image-level’s interpolation as shown in Eq.
2.

xmix(xl, xu) = λxl + (1− λ)xu. (2)
The output after images interpolation can be expressed as

xmix. To learn unlabeled data xu over the labeled samples
xl, we set λ ← min(λ, 1− λ), where λ ∈ (0, 1) is a hyper-
parameter sampled from the Beta(α, α) distribution with α.
And here the α is predefined as 1.

Similar Image Pair Selection Although LUPI enables
models to associate similar cues between the labeled and
unlabeled images, randomly selecting an image pair will not
allow knowledge to be transferred from labeled to unlabeled
data, since the individual pair may not contain enough sim-
ilar objects. We overcome this problem by construct similar
image pairs in a mini-batch for training. Specifically, we add
a fully connected layer as a classifier after the encoder to en-
hance the semantics of the pooled features, and select image
pairs with similar features according to the Euclidean dis-
tance (shown in Eq. 3, where Γenc is the encoder module of
GuideMix-Net), to conduct image pairs. Note that the clas-
sifier is first trained using labeled data, so it has some recog-
nition ability. This procedure allows the proposed model to
capture the most similar labeled example for each unlabeled
image. Further discussion can be see in Appendices A.

d(xi
l, x

k
u) =

√√√√ H∑ W∑
(Γenc(xi

l)− Γenc(xk
u))

2. (3)

Mutual Information Transfer
After mixing the pair of samples, we associate similar cues
to enhance the features and generate pseudo masks of the
unlabeled samples. Generally, labeled data corresponds to
the credible features, and unlabeled data are treated as poor-
quality features, since no supervision signals are present to
guide the gradient updates. This means that in a uniform
mixed vector space, for a pair of similar objects from dif-
ferent sources, the poor features can use the credible ones
as reference to improve their quality, whether the credible
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Figure 2: Overview of our proposed semi-supervised segmentation approach. GuidedMix-Net follows the basic architecture
of U-Net, consisting of an encoder-decoder architecture. The main decoder is constructed by ResNet, while the decoder is
incorporated by our MITrans modules.

information is located in the short- or long-range. Although
LUPI enables the short-range credible information to flow
to the worse features (see the Appendices A), CNNs are in-
effective in capturing information from distant spatial loca-
tions. We solve this problem by applying a non-local (NL)
block (Ouali, Hudelot, and Tami 2020) to obtain long-range
patches that are similar to a given local region of mixed
data. After mixing labeled-unlabeled images, we obtain a
mutual image which contains all the information from the
input pairs. The mixed data xmix is then fed to the encoder
for segmentation Γ until reaching layer j, providing an in-
termediate vj as follows:

vj = hj(xmix). (4)

Another intermediate, vj−1, is produced by the j − 1
layer, where the spatial size of which is double that of vj .
The non-local module collects contextual information from
long-range features to enhance local feature representation.
MITrans uses two convolutional layers of 1 × 1 and filters
vj to map and obtain two features Q and K. The spatial size
is the same as for vj , but the channel number is half that of
vj double for dimension reduction. Then, we generate a cor-
relation matrix D by calculating the correlation between Q
and K. A softmax layer is also utilized on D over the channel
dimension to get the attention map A = f(Q,K). To obtain
the adapted features of vj , another convolutional layer with
a 1× 1 filter is used to generate V without size change. The
long-range contextual information is captured by an aggre-

gation operation, as follows:

v
′

j,n =
1

C(x)

∑
∀m

f(Qn,Km)Vm + vj,n, (5)

where n and m are the indices of the position in the variable
space whose response needs to be computed and all other
potential positions, respectively. Parameters v

′

j,n denotes the
feature vector in the final output features v

′

j at position n,
and vj,n is a feature vector in vj at position n. The func-
tion f is used to represent relationships such as the affinity
between Qn and all Km. Finally, C(x) is a normalization
factor.

After that, several convolutional layers are combined with
the PixelShuffle layer (Shi et al. 2016) to fuse the low-
level features and restore the spatial information. The model
is first trained on the labeled samples before mixing. Al-
though the number of training samples is small, they pro-
vide some recognition ability. The non-local blocks use the
features of the labeled samples as the novel training signals
to correct the feature generation of the unlabeled samples
in the mixed data (i.e. inter-images). Unlike previous meth-
ods, which primarily focus on intra-image information, the
“mutual information transfer” module addresses the seman-
tic relations within for images comprehensive object pattern
mining. The proposed module captures semantic similarities
for image themselves to build a mutual information transfor-
mation mode, and thus improves the prediction of the unla-
beled samples.
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Note that the non-local blocks in MITrans are used to as-
sociate similar patches from the labeled and unlabeled fea-
tures. Therefore, they can leverage supervision signals for
unlabeled data training.

Pseudo Mask Generation
To effectively learn from the unlabeled samples, we need
to decouple high-quality pseudo masks from the mixed data
xmix. According to the translation equivariance (Goodfel-
low, Bengio, and Courville 2015) of the convolution oper-
ator, the translation operated on the input image is still de-
tectable on the output features with the corresponding trans-
lation. The translation equivariance can be reflected in the
mixed data as well, as shown in Appendices B, the visu-
alization (a), (b), (c), where the activations for the spatial
locations of the interesting object, e.g., bus and person, are
invariant. Further, the predicted layer of the segmentation
network assigns these activated features to certain category
channels, separately. We focus on this and propose a pseudo
mask generation (PMG) to generate the masks for the unla-
beled instances by conducting subtraction between the pre-
dictions to constrain foreground separation, which comes
from labeled and unlabeled data, respectively. We then train
both the labeled and unlabeled data jointly.

In general, semantic segmentation can be regarded as
seeking a mapping function Γ, such that the output M =
Γ(x) is the desired mask which is close to the ground-truth.
For a pair of labeled and unlabeled images (xl, xu), the pre-
dictions are Ml = Γ(xl) and Mu = Γ(xu), respectively. Af-
ter feeding xmix from Eq. 2 into the segmentation network
Γ, we can obtain the predicted mask Mmix = Γ(xmix),
which can be treated as the approximation of directly mixing
the masks Ml and Mu:

Mmix = Γ(xmix) ≈Ml +Mu. (6)

We decouple the pseudo masks of xu from Mmix, and then
leverage them as the target to calculate the mean squared
error loss (with the direct output of xu from the main de-
coder). This procedure ensures the model to be robust and
less sensitive to small perturbations.

Hard Decoupling The goal of mask decoupling is to elim-
inate Ml from the mixed data and then generate pseudo
masks for the unlabeled samples. Considering that the
ground-truth of labeled data are provided for the model in
the early training stage, the prediction Ml has higher proba-
bility of being close to the real mask. Once Ml is obtained,
we can directly decouple the unlabeled data mask Mu−dec

using Eq. 7, which we refer to as hard decoupling:

Mu−dec = Mmix −Ml. (7)

Hard decoupling is reasonable since the neural network
has the ability to separate the corresponding category chan-
nels (an example is shown in Appendices B). Directly sub-
tracting between final predictions can separate and obtain
more refined results for the unlabeled samples.

Soft Decoupling The proposed hard decoupling directly
performs a subtraction between the prediction of the mixed

image and the labeled image, which may counteract the pre-
diction of the overlapping region of objects in the mixed im-
age. To overcome this problem, we propose a soft decou-
pling for the pseudo mask generation as follows:

Mu−dec = Mmix − λMl, (8)

where λ is the parameter from the Beta(α, α) distribution.
Soft decoupling retains the details of the overlapping region
by weakening the intensity of Ml in Mmix. As shown in
Table 2, soft decoupling is better than hard decoupling.

GuidedMix-Net pays attention to the outline of objects in
a complex environment by first transferring knowledge from
the mixed labeled-unlabeled pairs, and then decoupling their
predictions, to understand the complete semantic informa-
tion of objects. As shown in Appendices D, GuidedMix-Net
is complements object contours and semantic understand-
ing.

Loss Function
We develop an overall loss function L for our consistency
based semi-supervised learning (SSL) as follows:

L = Lsup + ωusupLusup, (9)

where ωusup is an unsupervised loss weight, such as (Laine
and Aila 2016), that controls the balance between the two
losses. On the one hand, Lusup in Eq. 10 is an unsupervised
mean squared error (MSE) loss to calculate the difference
between the decoupling mask Mu−dec and the direct predic-
tion Mu:

Lusup =
1

H ∗W

H∑ W∑
(Mu−dec −Mu)

2. (10)

On the other hand, for supervised training, the loss Lsup

consists of three terms to optimize the model as follows:

Lsup = Lce(Ml, yl) + Ldec + Lcla, (11)

where Lce(Ml, yl) is the same as in Eq. 1, and Lcla is the
classifier loss term for image-level annotations. For Ldec,
we first select a sample x̂l for a seed xl according to the
matching rules in Sec. , where λ follows Sec. . We then de-
note ŷl and M̂l (yl and Ml) as the corresponding ground-
truth and prediction of x̂l (the seed xl), respectively. In ad-
dition, a mixup operation can be conducted on both labeled
sample xl and x̂l following Eq. 2 to obtain a mixed sample
xl
mix=λxl + (1 − λ)x̂l. A consistency loss between decou-

pled masks Mdec = Mmix −Ml and the prediction M̂l can
be defined as

Ldec =
1

H ∗W

H∑ W∑
(Mdec −Ml)

2. (12)

Another analysis of GuidedMix-Net shown in Appendices
C.

Experiments
Dataset and Evaluation Metrics
PASCAL VOC 2012. This dataset is widely used for se-
mantic segmentation and object detection. It consists of 21
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classes including background. We use 1,464 training im-
ages and 1,449 validation images from the original PASCAL
dataset, and also leverage the augmented annotation dataset
(involving 9,118 images) (Hariharan et al. 2011) like (Huang
et al. 2018; Zhao et al. 2017).
Cityscapes. We use Cityscapes to further evaluate our
model. This dataset provides different driving scenes dis-
tributed in 19 classes, with 2,975, 500, 1,525 densely an-
notated images for training, validation and testing. For se-
mantic segmentation, 59 semantic classes and 1 background
class are used in training and validation, respectively.
Evaluation Metric. Common data augmentation methods
are used during our training procedure, which including ran-
dom resizing (scale: 0.5∼2.0), cropping (321×321 for PAS-
CAL VOC 2012, 513×513 for Cityscapes, 480×480 for
PASCAL Context), horizontal flipping and slight rotation.
We evaluate different methods by measuring the averaged
pixel intersection-over-union (IoU).

Network Architecture and Training Details
Encoder. The encoder is based on ResNet (He et al. 2016)
pretrained on ImageNet (Krizhevsky, Sutskever, and Hinton
2012), and also includes the PSP module (Zhao et al. 2017)
after the last layer.
Decoder. GuidedMix-Net combines labeled and unlabeled
data by image linear interpolation, setting the new SOTA, for
semi-supervised semantic segmentation. To avoid the dis-
integrates of details for the mixed pairs, we employ a skip
connection in the decoder, as done in U-Net (Ronneberger,
Fischer, and Brox 2015b).
Training Details. Similar to (Chen et al. 2017), we use a
“poly” learning rate policy, where the base learning rate is
multiplied by ((1 − iter

maxier
)power) and power = 0.9. Our

segmentation network is optimized using the stochastic gra-
dient descent (SGD) optimizer with a base learning rate of
1e-3, momentum of 0.9 and a weight decay of 1e-4. The
model is trained over 40,000 iterations for all datasets, and
the batch-size is set to 12 for PASCAL VOC 2012, and 8
for Cityscapes and PASCAL Context. We conduct all our
experiments on a Tesla V-100s GPU.

Results on Pascal VOC 2012
Ablation Studies Our ablation studies examine the effect
of different values of λ and the impact of different compo-
nents in our framework.

Different λ Values. The results under different values of
λ are reported in Table 1. An can be see, changing λ used
in Sec. impacts the results, because λ controls the inten-
sity of pixels in the mixed input data. As shown in Table 1,
too high or too low a λ is not conducive to model optimiza-
tion. A high λ value leads to the labeled information being
discarded, while a low λ value results in the unlabeled data
being covered. When λ < 0.5, GuidedMix-Net provides the
best performance on PASCAL VOC 2012. We thus select
λ < 0.5 for the remaining experiments on PASCAL VOC
2012.Different Components. As shown in Table 2, we evalu-
ate the influence of different components of GuidedMix-Net.

λ backbone Data mIoUlabels unlabels
< 0.1

ResNet50 1464 9118

67.9
< 0.2 69.5
< 0.3 70.7
< 0.4 71.4
< 0.5 73.7

Table 1: The impact of different lambda values on the exper-
imental results of PASCAL VOC 2012.

Method used Data mIoUlabels unlabels

Similar Pair ×

1464 9118

71.9√
73.7

MITrans × 72.7√
73.7

Hard Decoupling
√

71.4
Soft Decoupling

√
73.7

Suponly w/o MITrans
√

1464 9118 70.2
Suponly w/ MITrans

√
70.5

Table 2: Ablation studies of using similar image pairs, MI-
Trans, and hard & soft decoupling modules in GuidedMix-
Net. We train the models on ResNet50 and test them on the
validation set of PASCAL VOC 2012.

For fair comparison, we evaluate one component per exper-
iment and freeze the others. Firstly, we investigate different
strategies for constructing image pairs, i.e., random selec-
tion of similar pairs. i) The first strategy randomly selects
a labeled image for each unlabeled image in a mini-batch.
ii) To seek similar pairs of labeled and unlabeled images,
we add a classifier after the encoder model. We match the
most similar unlabeled images for each labeled sample ac-
cording to the Euclidean distance between the features. As
shown in the Table 2, the similar pairs bring a 2.5% mIoU
gain over the plain random selection (71.9% vs. 73.7%).
The construction of similar pairs provides context for the
target objects in the subsequent segmentation task, and as-
sists GuidedMix-Net in transferring knowledge from the la-
beled images to the unlabeled samples, with little increasing
complexity. Secondly, we explore whether MITrans is use-
ful for knowledge transfer. The results provided in the Ta-
ble 2 clearly show that MITrans achieves a significant mIoU
gain of 1.4% (72.7% vs. 73.7%) by explicitly referencing
similar and high-confidence non-local feature patches to re-
fine the coarse features of the unlabeled samples. Thirdly, as
shown in the Table 2, the performance of soft decoupling is
3.2% better than hard decoupling (71.4% vs. 73.7%), since
soft decoupling considers the overlapping that occurs in the
mixed data and tends to preserve local details. The vari-
ous components used in our GuidedMix-Net are beneficial
alone, and therefore combining them leads to significantly
improved optimization.

The above experimental results indicated that all of our
designed components were conducive to semi-supervisedd
semantic segmentation learning. However, we still puzzle
with was the performance gain of the MITrans module at-
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tributed to the knowledge transfer of using labeled samples
as a reference paradigm when learning unlabeled data rep-
resentations? Or to the feature expression of labeled sam-
ples enhanced by nonlocal blocks? We further examined this
question by additional experiments, as shown in Table 2.
“Suponly w/o MITrans” was the experiment training on the
labeled samples only and the nonlocal blocks in MITrans
were removed to obtain 70.2 mIoU. IN contrast, “Suponly
w/ MITrans” was the experiment training on the labeled
samples only, and MITrans was fully used to obtain 70.5
mIoU. This set of experiments clearly showed that there was
little performance gain for nonlocal labeled samples. The
huge performance gains described above are mainly due to
MITrans’ ability to effectively transfer knowledge from la-
beled samples to unlabeled data.

Semi-Supervised Semantic Segmentation The experi-
mental setting of CCT (Ouali, Hudelot, and Tami 2020) is
different from other semi-supervised semantic segmentation
methods AdvSSL (Hung et al. 2018), S4L (Zhai et al. 2019),
GCT (Ke et al. 2020), CutMix (French et al. 2020), Reco
(Liu et al. 2021), ClassMix (Olsson et al. 2021) and SSCon-
trast (Alonso et al. 2021). Here, we provide the comparison
experiment in Table 3. We can see that GuidedMix-Net out-
performs CCT with a performance increase of over 5.7%.

Comparing with Other State of the Arts. We explore
the performance using the deeper backbone of ResNet101
for the semi-supervised semantic segmentation task. The re-
sults show in Table 3. GuidedMix-Net outperforms the cur-
rent methods for semi-supervised image segmentation by
3.4%, 3.7%, and 3.4% on 1/8 labels, 1/4 labels, 1/2 labels,
respectively. The significant performance gains on different
ratios of labeled data demonstrate that GuidedMix-Net is a
generally efficient and effective semi-supervised semantic
segmentation method.

SSL 1/8 1/4 1/2 -
AdvSSL 68.4 70.8 73.3 -

S4L 67.2 68.4 72.0 -
GCT 70.7 72.8 74.0 -
ReCo 71.0 - - -

CutMix 70.8 71.7 73.9 -
Ours 73.4 75.5 76.5 -

SSL 500
labels

1000
labels

1464
labels

Memory
Size

CCT 58.6 64.4 69.4 24kM
Ours 65.4 68.1 73.7 15kM

Table 3: Comparison with other state-of-the-art semi-
supervised semantic segmentation methods under different
ratios of labeled data on PASCAL VOC 2012.

Results on Cityscapes
Cityscapes has 2,975 training images. In our experiments,
we divide them into 1/8 labels and 1/4 labels, while the re-
maining data are treated as unlabeled. We use ResNet101 as
the backbone to train the models. Since the optimal value
of λ varies with the training dataset, we conduct experi-
ments on Cityscapes leveraging 1/8 labeled images as the

λ backbone Data mIoUlabels unlabels
< 0.1

ResNet101 1/8 7/8

64.3
< 0.2 64.0
< 0.3 65.8
< 0.4 65.5
< 0.5 65.7

Table 4: Influence of different lambda values on the experi-
mental results of Cityscapes.

SSL 100 1/8 1/4 1/2
Methods labels labels labels labels
AdvSSL - 57.1 60.5 -
s4GAN - 59.3 61.9 -
CutMix 51.2 60.3 63.9 -

ClassMix 54.1 61.4 63.6 66.3
ReCo 56.5 64.9 67.5 68.7
Ours 56.9 65.8 67.5 69.8

Table 5: Comparison with other semi-supervised semantic
segmentation methods under different ratios of labeled data
on Cityscapes.

training data to explore the impact of λ on this dataset,
and show the results in Table 4. For Cityscapes, when λ <
0.3, GuidedMix-Net achieves 65.8 mIoU on the validation
dataset, which is better than other selected value ranges.
We thus fix the value of λ to be less than 0.3, and ver-
ify the gap between GuidedMix-Net and other approaches.
Relevant results are presented in Table 5. GuidedMix-Net
yields considerable improvements on Cityscapes over other
semi-supervised semantic segmentation methods, i.e., mIoU
increases of 0.7%, 1.4%, and 1.6% for the 100, 1/8, and
1/2 labels, respectively. The distribution of different classes
on Cityscapes is highly imbalanced. The vast majority of
classes are present in almost every image, and the few re-
maining classes occur scarcely. As such, inserting a classi-
fier after the encoder to semantically enhance features and
assist in matching similar images is unhelpful. Thus, we use
the mixture of randomly selected image pairs in GuidedMix-
Net. We also provide the visul results on Cityscapes in Ap-
pendices E using only 1/8 labeled images.

In addition, the experiments of GuidedMix-Net, which
compares with other SOTA on PASCAL-Context dataset had
introduced in Appendices F.

Conclusion
This paper has presented a novel semi-supervised learning
method for semantic segmentation, called GuidedMix-Net,
and achieves SOTA performance. In the future, we will in-
vestigate the use of unlabeled data in other related areas,
such as medical imaging. We will continue improving the
learning mechanism of the unlabeled samples guided by la-
beled data.
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