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Abstract

Makeup transfer is not only to extract the makeup style of the
reference image, but also to render the makeup style to the
semantic corresponding position of the target image. How-
ever, most existing methods focus on the former and ignore
the latter, resulting in a failure to achieve desired results. To
solve the above problems, we propose a unified Symmetric
Semantic-Aware Transformer (SSAT) network, which incor-
porates semantic correspondence learning to realize makeup
transfer and removal simultaneously. In SSAT, a novel Sym-
metric Semantic Corresponding Feature Transfer (SSCFT)
module and a weakly supervised semantic loss are proposed
to model and facilitate the establishment of accurate seman-
tic correspondence. In the generation process, the extracted
makeup features are spatially distorted by SSCFT to achieve
semantic alignment with the target image, then the distorted
makeup features are combined with unmodified makeup irrel-
evant features to produce the final result. Experiments show
that our method obtains more visually accurate makeup trans-
fer results, and user study in comparison with other state-of-
the-art makeup transfer methods reflects the superiority of our
method. Besides, we verify the robustness of the proposed
method in the difference of expression and pose, object oc-
clusion scenes, and extend it to video makeup transfer.

Introduction
Makeup transfer aims to transfer the makeup style of any
reference image to the target image while preserving the i-
dentity of the target person. With the booming development
of the cosmetics market, makeup transfer is widely demand-
ed in many popular beautifying applications and has been re-
ceived extensive attention in the computer vision and graph-
ics. In the early years, traditional approaches (Guo and Sim
2009; Tong et al. 2007; Li, Zhou, and Lin 2015) mostly used
image gradient editing or physical-based modification to re-
alize makeup transfer. Recently, combining generative ad-
versarial network (Goodfellow et al. 2014) and disentangled
representation (Lee et al. 2018; Huang et al. 2018), many
makeup transfer approaches (Li et al. 2018; Chang et al.
2018; Chen et al. 2019; Gu et al. 2019; Huang et al. 2020;
Deng et al. 2021; Nguyen, Tran, and Hoai 2021) have made
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Figure 1: The diagram of our motivation and PSGAN com-
parison. The spatial mapping of the same color points be-
tween the target image and the reference image is the seman-
tic correspondence expected to be established in this paper.

significant progress in extracting makeup style and generat-
ing realistic makeup results.

However, little attention has been paid to semantic corre-
spondence, which plays an important role in makeup trans-
fer. Consider the actual makeup process following the tuto-
rial: 1) choose cosmetics of the same color (extract makeup
style); 2) apply this cosmetics to the semantic correspond-
ing position of the face (semantic correspondence), see Fig-
ure 1. Ignoring the semantic correspondence would result
in the makeup style being transferred to the wrong position,
such as lipstick leaking lips. At the same time, inaccurate se-
mantic correspondence will lead to the averaging of makeup
colors (Jiang et al. 2020), so that the resulting makeup style
is visually different from the reference makeup. In addition,
the robustness of expression and pose and the robustness of
object occlusion are greatly reduced.

The motivation of this paper is to establish accurate se-
mantic correspondence between the target and the reference
facial images to improve the quality of makeup transfer.
Note that the dense semantic correspondence of the make-
up regions is established, not the sparse semantic correspon-
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Figure 2: Our SSAT makeup transfer results. The diversi-
ty of makeup style, the difference of facial expression and
pose, object occlusion (glasses or hair) are considered in the
selected images. The semantic correspondence is in the low-
er right corner of the generated result, and the value of each
spatial position of it is obtained by the different weighted
sum of the reference image.

dence shown in the Figure1. For this purpose, a Symmet-
ric Semantic Corresponding Feature Transfer (SSCFT) mod-
ule is proposed to models the spatial position mapping be-
tween different images. Next there is no effective supervi-
sion for semantic correspondence, so the face parsing is in-
troduced and a weakly supervised semantic loss is proposed.
The experiments show that the semantic correspondence es-
tablished by our method is adaptive, which ignores the se-
mantic correspondence of makeup irrelevant regions (hair,
background, glasses, inside eyes, inside mouth) and focuses
on the makeup regions, see Figure 2.

To sum up, we propose a Symmetric Semantic-Aware
Transformer network (SSAT) whose framework and pro-
cess are shown in Figure 3. Compared with PSGAN (Jiang
et al. 2020), there are several obvious differences: 1) The
proposed method introduces the face parsing, instead of the
feature points which sometimes has large error in side face.
2) Learnable network features instead of hand-designed fea-
tures to establish semantic correspondence. 3) Using the
symmetry of semantic correspondence, our method gener-
ates makeup transfer and removal results simultaneously,
while PSGAN can only realize makeup transfer. The main
contributions of this paper are summarized as follows:

• We propose a novel Symmetric Semantic-Aware Trans-
former (SSAT) network for makeup transfer and removal.
Experiments verify the effectiveness of the transferring
strategy in the real-world environment and generated re-
sults are of higher quality than state-of-the-art methods

both qualitatively and quantitatively.
• A novel SSCFT module and a semantic loss are proposed

to establishing accurate semantic correspondence, which
significantly improves the quality of makeup transfer.
• Combined with face parsing, our method is more flexible

and could realize partial makeup transfer. Meanwhile, we
verify the robustness of the proposed method in the dif-
ference of expression and pose, object occlusion (glasses
or hair) scenes and extend it to video makeup transfer.

Related Work
Makeup Transfer
In recent years, makeup transfer has been extensively s-
tudied. BeautyGAN (Li et al. 2018) addressed the make-
up transfer and removal task by incorporating both glob-
al domain adaptation loss and local instance-level makeup
loss in an dual input/output GAN. PairedCycleGAN (Chang
et al. 2018) extended the CycleGAN (Zhu et al. 2017) to
asymmetric networks to enable transferring specific makeup
style. LADN (Gu et al. 2019) and CPM (Nguyen, Tran, and
Hoai 2021) focused on the complex/dramatic makeup styles
transfer. Introducing facial feature points, PSGAN (Jiang
et al. 2020; Liu et al. 2021) proposed a pose and expres-
sion robust spatial-aware GAN for makeup transfer. Recent-
ly, SOGAN (Lyu et al. 2021) explored the shadow and oc-
clusion robust and (Wan et al. 2021) realized makeup trans-
fer from the perspective of face attribute editing. Inspired by
StyleGAN (Karras, Laine, and Aila 2018), SCGAN (Deng
et al. 2021) proposed a style-based controllable GAN mod-
el. Unlike the above methods, the core idea of this paper
is to establish accurate semantic correspondence to improve
the quality of makeup transfer.

Semantic Correspondence
In recent years, CNN-based features (Simonyan and Zisser-
man 2015; Krizhevsky, Sutskever, and Hinton 2017) have
been proved to be a powerful tool to express high-level se-
mantics. Recently, (Liao et al. 2017; Zhang et al. 2020) pro-
posed a technique for visual attribute transfer across im-
ages using semantic correspondence. The exemplar-based
colorization methods (He et al. 2018; Lee et al. 2020) cal-
culated the semantic correspondence between the target im-
age and the exemplar image, then transferred the color with
the closest semantic similarity to the target image. Inspired
by the recent exemplar-based image colorization (He et al.
2018; Lee et al. 2020), our work is expected to transfer the
makeup style with the closest semantic similarity to the tar-
get image.

Our Approach: SSAT
Formulation
Our goal is to transfer the makeup style from an arbitrary
makeup reference image to a non-makeup target image.
Here, X ⊂ RH×W×3 refers to non-makeup image domain,
Y ⊂ RH×W×3 refers to makeup image domain. Given
a target image xt ∈ X and a reference image yr ∈ Y ,
the goal of makeup transfer is learning a mapping function:
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Figure 3: The proposed Symmetric Semantic-Aware Transformer (SSAT) network. The process goes through the following
steps: 1) Content encoder Ec and makeup encoder Em decompose target image xt and reference image yr respectively, xct =
Ec(xt), x

m
t = Em(xt), y

c
r = Ec(yr), ymr = Em(yr). Meanwhile, face parsing st, sr is introduced and semantic features

are extracted by using semantic encoders Es: xst = Es(st), y
s
r = Es(sr). 2) The Feature Fusion (FF) module fuses content

features and semantic features to obtain richer features for semantic correspondence, xft = FF (xct , x
s
t ), y

f
r = FF (ycr, y

s
r). 3)

The Symmetric Semantic Corresponding Feature Transfer (SSCFT) module distorts makeup features spatially according to the
semantic correspondence established by xft and yfr , and outputs ŷmr , x̂

m
t = SSCFT (xft , y

f
r , x

m
t , y

m
r ). 4) Distorted makeup

features ŷmr of the reference image are embedded in the content features xct of the target image to generate makeup transfer
result ŷt = Dec(xct , ŷ

m
r ). Similarly, the makeup removal result x̂r = Dec(ycr, x̂

m
t ).

Φ : xt, yr → ŷt, where ŷt ∈ Y has the makeup style with
yr while preserving the identity of xt. For makeup removal,
it is assumed that the non-makeup image is a special case of
the makeup image (Sun et al. 2020), which unifies makeup
transfer and makeup removal. Therefore, the goal of make-
up removal is learning a mapping function: Φ : yr, xt → x̂r,
where x̂r ∈ X has the makeup style with xt while preserv-
ing the identity of yr. In this paper, the only difference be-
tween makeup transfer and removal is whether the reference
image is a non-makeup image or a makeup image.

SSAT
The overall framework of Symmetric Semantic-Aware
Transformer network (SSAT) is shown in Figure 3, which
consists of three encoders, a FF module, a SSCFT module
and a decoder Dec. Next, the function of each module will
be introduced in detail.

Encoders The one main problem of makeup transfer stem-
s from the difficulty of extracting the makeup latent features,
which are required to be disentangled from other make-

up irrelevant features. Here, this problem is referred to as
content-style separation (Huang et al. 2018; Lee et al. 2018).
So a content encoder Ec and a makeup encoder Em are de-
signed to extract content features and makeup features re-
spectively:

xct = Ec(xt), x
m
t = Em(xt) (1)

ycr = Ec(yr), ymr = Em(yr) (2)

Experiments have found that it is difficult to establish ac-
curate semantic correspondences only with content features.
Therefore, face parsing (Yu et al. 2018) is introduced and
semantic features are extracted by using semantic encoders
Es:

xst = Es(st), y
s
r = Es(sr) (3)

where st ∈ RH×W×L and sr ∈ RH×W×L refer to binary
face parsing of the target image and the reference image,
respectively. L is the number of different semantic regions,
which is set 18 in our experiments. Next, content features
and semantic features will cooperate to establish semantic
correspondence.
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Figure 4: The illustration of feature fusion (FF) module.
FF fuses content features and semantic features to obtain
richer features for semantic correspondence. � refers to the
channel-wise concatenation operator.

FF In the FF module, content features and semantic fea-
tures are fused to obtain richer features for feature match-
ing, see Figure 4. Take the target image as an example, af-
ter obtaining content features and semantic features, they
are connected along the channel dimensions and fed in-
to the FF module. FF consists of N convolutional layer-
s and outputs N high-level features (f1, f2, · · · , fN ). Be-
sides, the low-level features extracted by Ec and Es are al-
so combined. Ec and Es consist of M convolutional layer-
s, producing M low-level features (C1, C2, · · · , CM ) and
(S1, S2, · · · , SM ), where CM = xct , S

M = xst . Each layer
of content features is selected, but the last layer of semantic
features is selected. Now, we downsample each of Cm and
upsample each of fn to match the spatial size SM , forming
the final fusion features xft :

xft = [φ(C1);φ(C2); · · · ;CM ;SM ;

ϕ(f1);ϕ(f2); · · · ;ϕ(fN )]
(4)

where φ denotes a spatially downsampling function of an
input Cm of different size to the size of CM or SM . Simi-
larly, ϕ denotes a spatially upsampling function. ”;” denotes
the channel-wise concatenation operator. In this manner, the
output fusion feature xft combines the low-level and high-
level features, while ensuring the accuracy of semantic cor-
respondence. With the same operation, we obtain the fusion
features yfr of the reference image.

SSCFT The SSCFT module is inspired by colorization
(He et al. 2018) and combines the symmetry of semantic
correspondence. In makeup transfer task, the semantic cor-
respondence is a one-to-one mapping relationship. That is,
point A corresponds to point B. In turn, point B also corre-
sponds to point A. And the symmetry of this semantic rela-
tionship can be applied cleverly to the anti-task of makeup
transfer, makeup removal. See Figure 5 for the framework
of the proposed SSCFT module.

Firstly, we reshape xft into x̂ft = [x1, x2, · · · , xhw] ∈
Rd×hw, where xi ∈ Rd indicates feature variables of the
ith location of x̂ft . Then we obtain channel-wise centralized
features x̂i and ŷj to make the learning more stable (He et al.

Figure 5: The illustration of symmetric semantic corre-
sponding feature transfer (SSCFT) module. Wa,Wb refer to
the linear transformation matrix into xft and yfr , respective-
ly. ⊗ refers to the matrix multiplication operator. T refers to
the matrix transpose operator. After this module, the output
distorted makeup features x̂mt , ŷ

m
r are semantic aligned with

ycr, x
c
t in semantic.

2018), where x̂i = xi −mean(xi), ŷj = xy −mean(yj).
Given x̂i and ŷj , SSCFT computes a semantic correlation
matrix A ∈ Rhw×hw, whose element ai,j is computed by
the scaled dot product:

ai,j =
x̂Ti · ŷj
‖x̂i‖‖ŷj‖

(5)

After that, we distort the reference makeup features ymr to-
wards xct according to the correlation matrixA. The weight-
ed sum of ŷmr is calculated to approximate the makeup sam-
pling from ymr :

ŷmr (i) =
∑
j

softmaxj(a(i, j) · σ) · ymr (j) (6)

where σ controls the sharpness of the softmax and we set its
default value as 100. Now the distorted makeup features ŷmr
of reference image are aligned with the content features xct
of target image in semantic. In the same way, we obtain the
distorted makeup features x̂mt , which aligns with the content
features ycr. Note that this step makes our method robust to
expression, pose, object occlusion and produce more accu-
rate makeup transfer results.

Dec Finally, we employ the spatially-adaptive denormal-
ization (SPADE) block (Park et al. 2019) to project the dis-
torted makeup styles ŷmr , x̂

m
t to content features xct , y

c
r for

makeup transfer and removal.

ŷt = Dec(xct , ŷ
m
r ) (7)

x̂r = Dec(ycr, x̂
m
t ) (8)

where ŷt is the makeup transfer result and x̂r is the makeup
removal result.
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Figure 6: The process of generating pseudo-paired data.

Objective
In total, there are four loss functions used for network SSAT
end-to-end training. The overall loss is as follows:

Loverall =λsemLsem + λmakeupLmakeup+

λrecLrec + λadvLadv
(9)

Semantic Loss A weakly supervise semantic loss is pro-
posed to establish semantic correspondence. The idea is that
semantic correspondence should only exist between seman-
tic regions of the same class:

Lsem = ‖st − ŝr‖1 + ‖sr − ŝt‖1 (10)

where st ∈ RH×W×L and sr ∈ RH×W×L refer to binary
face parsing, which only have the values 0 and 1. L is the
number of semantic classes, ŝr(i) =

∑
j softmaxj(a(i, j)·

σ) · sr(j), ŝt(i) =
∑

j softmaxj(a(i, j) · σ) · st(j), and
‖ · ‖1 refers to L1 loss. For dense semantic correspondence,
the Lsem is only a crude region constraint, but experiments
show that it plays an important role.

Makeup Loss Inspired by (Chang et al. 2018), we gener-
ate pseudo pairs of data x̄r and ȳt according to face feature
points to train the network, see Figure 12. The process is
described in detail in the supplementary materials. Here, we
introduce the SPL loss (Sarfraz et al. 2019) instead of the L1

loss to guide the makeup transfer and removal:

Lmakeup = SPL(ŷt, xt, ȳt) + SPL(x̂r, yr, x̄r) (11)

Take the makeup transfer as an example, SPL constrains the
gradient consistency between ŷt and xt to ensure the identi-
ty of the target image, and restricts the color consistency be-
tween ŷt and ȳt to guide the makeup transfer. Note thatLsem

constrains the corresponding region and does not penalize
one-to-many mappings of the same class. While Lmakeup

guides makeup transfer, it implicitly constrains the one-to-
one mapping in the makeup regions.

Reconstruction Loss We feed the xct and xmt into Dec to
generate xselft , and ycr and ymr into Dec to generate yselfr ,
which should be identical to xt and yr. Here, we introduce
Cycle loss (Zhu et al. 2017) to ensure that the image does not
lose information during the decoupling process of makeup
features and content features. So we feed the makeup re-
moval result x̂r and makeup transfer ŷt result into SSAT a-
gain to obtain the xcyclet and ycycler , which should also be

Figure 7: Ablation study of SSCFT module.

identical to xt and yr. We use L1 loss to encourage such
reconstruction consistency:

Lrec =‖xt − xselft ‖1 + ‖yr − yselfr ‖1+

‖xt − xcyclet ‖1 + ‖yr − ycycler ‖1
(12)

Adversarial Loss Two discriminators DX and DY are in-
troduced for the non-makeup domain and makeup domain,
which try to discriminate between real samples and generat-
ed images and help the generator synthesize realistic output-
s. The least square loss (Mao et al. 2017) is used for steady
training:

Ladv =Ext
[(DX(xt))

2] + Ex̂r
[(1−DX(x̂r))2]+

Eyr
[(DY (yr))2] + Eŷt

[(1−DY (ŷt))
2]

(13)

Experiment
Dataset and Implementation Details
For the dataset, we randomly selected 300 non-makeup im-
ages as target images and 300 makeup images as reference
images from the Makeup Transfer dataset (Li et al. 2018).
Using the proposed generation method, a total of 180,000
pairs of pseudo-paired data are generated for makeup trans-
fer and removal. During the training, all trainable parame-
ters are initialized normally, and the Adam optimizer with
β1 = 0.5, β2 = 0.999 is employed for training. We set
λsem = 1, λmakeup = 1, λrec = 1, λadv = 1 for balan-
ceing the different loss functions. The SSAT is implemented
by MindSpore 1. And the model is trained for 300,000 itera-
tions on one single Nvidia 2080Ti GPU. The learning rate is
fixed as 0.0002 during the first 150,000 iterations and linear-
ly decays to 0 over the next 150,000 iterations. The batch-
size is set 1. See the supplementary materials for the spe-
cific network structure parameters. Code will be available at
https://gitee.com/sunzhaoyang0304/ssat-msp.

Ablation Studies
Effects of SSCFT The motivation of this paper is to es-
tablish semantic correspondence to improve the quality of
makeup transfer. In order to verify our idea, we remove the
SSCFT module to analyze the effects of the role of semantic

1Mindspore. https://www.mindspore.cn/
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Figure 8: Ablation study of Lsem.

correspondence in makeup transfer. In this case, we direct-
ly skip the SSCFT module and input the features into the
decoder. The comparison results are shown in the Figure 7.
Without SSCFT, the resulting makeup style is significant-
ly lighter than the reference makeup. With the addition of
SSCFT, the result is more similar visually to the reference
makeup , especially eye shadow and blush.

Effects of Lsem The lack of effective supervision hinders
the establishment of semantic correspondence. To solve this
problem, we introduce face parsing and propose a weakly
supervised semantic loss Lsem. In order to verify their ef-
fect, we remove Lsem and the face parsing, use the remain-
ing loss to train the network. The comparison of semantic
and makeup transfer results is shown in the Figure 8. Com-
pared without Lsem, the semantic result using Lsem is more
accurate and the boundary between makeup area and non-
makeup area is also clearer. For the makeup transfer result,
the blush is mapped to the wrong semantic position, spread-
ing over the entire face in the result without using Lsem.

Comparisons to Baselines
To verify the superiority of our makeup transfer strategy,
we choose three state-of-the-art makeup transfer approach-
es, BeautyGAN (Li et al. 2018), PSGAN (Jiang et al. 2020),
SCGAN (Deng et al. 2021), as our comparison benchmark.
We skip some baselines such as LADN (Gu et al. 2019) and
CPM (Nguyen, Tran, and Hoai 2021), because they focus on
the complex/dramatic makeup styles transfer.

Qualitative Comparison Here, three scenes that often ap-
pear in real life are selected for comparison, frontal face,
different expressions and poses, and object occlusion. The
qualitative comparison has been shown in Figure 9. Beau-
tyGAN produces a realistic result, but fails to transfer
eye shadow and blush. Although PSGAN designs semantic
correspondence modules, its accuracy is limited by hand-
designed features. The imprecise semantic correspondence
results in a lighter eye and blush makeup style, which is vi-
sually different from the reference makeup. Similar to Beau-
tyGAN, the transfer of eye makeup and blush fails in SC-
GAN. Meanwhile, the results of SCGAN are too smooth,
and slightly change makeup irrelevant information, such as
the glasses in the sixth row. On the contrary, the makeup

Methods Rank 1 Rank 2 Rank 3 Rank 4
BeautyGAN 3.0% 3.9% 34.5% 58.6%

PSGAN 11.3% 73.2% 11.3% 4.1%
SCGAN 3.6% 15.3% 48.0% 33.2%

SSAT 82.1% 7.6% 6.2% 4.1%

Table 1: User Study.

Figure 10: The partial makeup transfer results. The last col-
umn is the partial makeup transfer results, which receive per-
sonal identity from the first column, the lips style from the
second column, the eyes style from the third column and the
face style from the fourth column.

style of our results is highly similar to the reference make-
up, whether it is lipstick, eye shadow, blush. The semantic
results explain why our method has a better makeup transfer
effect and why our method is robust to expression, pose and
object occlusion.

Quantitative Comparison How quantitative evaluation
makeup transfer is still a field that needs to explore. Here,
we conduct user study to compare different methods quanti-
tatively. We randomly generate 30 results of makeup transfer
using four methods respectively. 45 volunteers are asked to
rank the results based on the realism and the similarity of
makeup styles. To be fair, the results in each selection are
also randomly arranged. As shown in the Table 3, our SSAT
outperforms other methods by a large margin. Our method
achieves the highest selection rate of 82.1% in Rank 1.

Partial Makeup Transfer

Partial makeup transfer refers to transfer partial makeup of
the reference image. The distorted makeup features extract-
ed by our method is accurately distributed according to the
spatial semantic position of the target image, making it pos-
sible to integrate the partial makeup from different reference
images, as shown in the Figure 10.

ŷpartt = Dec(xct ,
∑
i

(ŷmi
r ·Maski)) (14)

where i ∈ {Lip,Eye, Face} in our experiment, ŷmi
r means

the distorted makeup features extracted are from different
reference images, Maski represents a binary mask related
to the makeup area.
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Figure 9: Comparison with state-of-the-art methods. The first two rows: frontal face, the middle two rows: different expressions
and poses, the last two rows: object occlusion (glasses or hair).

Figure 11: The video makeup transfer results.

Video Makeup Transfer
Video makeup transfer is a very challenging task, which has
high requirements for the quality of generated images and
the accuracy of semantic correspondence. We download a
video from the Internet and decompose it frame by frame,
then apply the SSAT method, and finally integrate the re-
sulting images into a video. We chose PSGAN as the com-
parison baseline, because other methods don’t consider se-

mantic correspondence. See Figure 11, the results produced
by PSGAN are visually different from the reference make-
up and cause flickering and discontinuity. In contrast, Our
SSAT achieves smooth and accurate video makeup transfer
results.

Conclusion
Different from other methods, we focus on semantic cor-
respondence learning, propose the SSCFT module and a
semantic loss, then integrate them into one Symmetric
Semantic-Aware Transformer network (SSAT) for makeup
transfer and removal. The experiment verified that semantic
correspondence significantly improved the quality of make-
up transfer visually as expected. The comparison with oth-
er methods demonstrates that our method achieves state-of-
the-art makeup transfer results. In addition, benefits from
precise semantic correspondence, our method is robust to
the difference of expression and pose, object occlusion and
can achieve partial makeup transfer. Moreover, we extend S-
SAT to the field of video makeup transfer, generating smooth
and stable results. However, the computational complexity
of proposed SSCFT is quadratic to image size, the focus of
our later work is to solve this problem.
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Supplementary Materials
Generation of Pseudo-paired Data

Figure 12: The process of generating pseudo-paired data.

Pseudo-paired data is used in the Lmakeup, and the gen-
eration process is shown in Figure 12. Firstly, Face ++ API
interface 2 is used to obtain the feature points of the input
face image. Then, piecewise-affine transformation distorts
the reference image into the target image according to the
position of feature points. In this step, the inside of the eyes
and the mouth remain unchanged, because these two areas
need to be preserved during makeup transfer. Finally, his-
togram matching are applied to change the appearance of
the ears and neck according to face parsing. Note that the
warping results ȳr sometimes possess artifacts, which can
be fixed by SSAT in the generated results. For the dataset,
we randomly selected 300 non-makeup images as target
images and 300 makeup images as reference images from
the Makeup Transfer dataset. Using the proposed genera-
tion method, a total of 180,000 pairs of pseudo-paired data
are generated for makeup transfer and removal. During the
training, images are resized to 286×286, randomly cropped
to 256 × 256, horizontally flipped with probability of 0.5,
and randomly rotated from -30 degrees to +30 degrees for
data augmentation.

Network Structure
For the network structure, the encoders consist of stacked
convolution blocks, which contain convolution, Instance
normalization, and ReLU activation layers. In the decoder,
the SPADE is applyed to embed the makeup features into
the content features, with each SPADE followed by a residu-
al block. For the discriminator, the network structure follows

2https://www.faceplusplus.com.cn/dense-facial-landmarks/

Layer Ec and Em

L1
Conv(I:3,O:64,K:7,P:3,S:1),

Instance Normalization,
Leaky ReLU:0.2

L2
Conv(I:64,O:128,K:3,P:1,S:2),

Instance Normalization,
Leaky ReLU:0.2

L3
Conv(I:128,O:256,K:3,P:1,S:2),

Instance Normalization,
Leaky ReLU:0.2

Table 2: The network architecture of Encoder Ec and Em.

Layer Es

L1
Conv(I:18,O:32,K:7,P:3,S:1),

Instance Normalization,
Leaky ReLU:0.2

L2
Conv(I:32,O:64,K:3,P:1,S:2),

Instance Normalization,
Leaky ReLU:0.2

L3
Conv(I:64,O:128,K:3,P:1,S:2),

Instance Normalization,
Leaky ReLU:0.2

Table 3: The network architecture of Encoder Es.

the multi-scale discriminator architecture. The specific net-
work structure parameters will be given in detail in the table
below. I, O, K, P, and S denote the number of input channels,
the number of output channels, a kernel size, a padding size,
and a stride size, respectively. The network architecture of
EncoderEc andEm has been shown in table 2. The network
architecture of Encoder Es has been shown in table 3 The
network architecture of FF module has been shown in table
4 The network architecture of Encoder Dec has been shown
in table 5

Makeup Removal
The makeup image as the target images and the non-makeup
images as the reference images, then feed them into SSAT,
the makeup removal results can be obtained, see Figure 13.
In addition, more of our makeup transfer results are shown
in Figure 15.

Makeup Style Interpolation
Adjusting the shade of makeup style is an essential func-
tion of existing makeup applications. Due to the separation
of makeup features, our method could generate continuous
makeup transfer results by interpolating makeup features,
see Figure 14 . The formula is described as follows:

ŷadjustt = Dec(xct , (ŷ
m1
r · α1 + ŷm2

r · α2)) (15)
where α1 + α2 = 1. The closer α1 is to 1, the closer the
resulting makeup style is to ŷm1

r . The closer α2 is to 1, the
closer the resulting makeup style is to ŷm2

r .
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Layer FF

L1
Conv(I:384,O:512,K:3,P:1,S:2),

Instance Normalization,
Leaky ReLU:0.2

L2
Conv(I:512,O:512,K:3,P:1,S:1),

Instance Normalization,
Leaky ReLU:0.2

L3
Connect [L1, L2, L3 of Ec,

L3 of Es,
L1, L2 of FF ]

Table 4: The network architecture of FF module.

Layer Dec

L1
Upsample:2,

SPADE,
Resnet

L2
Upsample:2,

SPADE,
Resnet

L3 SPADE,
Resnet

L4 Conv(I:64,O:3,K:7,P:3,S:1),
tanh

Table 5: The network architecture of Encoder Dec.

Figure 13: Our makeup removal results. The first column
is three makeup target images, the first row is three non-
makeup reference images, the makeup removal results are
displayed in the lower right corner.

Figure 14: Results of makeup style interpolation. The first
four rows have one reference image, and the last four rows
have two. The makeup styles of the interpolated images con-
tinuously transfer from reference 1 to reference 2.

Figure 15: More of our makeup transfer results. The first
column is three target images, the first row is five reference
images, the semantic correspondence results and the makeup
transfer results are displayed in the lower right corner..
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