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Abstract

Unsupervised pretraining based on contrastive learning has
made significant progress recently and showed comparable
or even superior transfer learning performance to traditional
supervised pretraining on various tasks. In this work, we
first empirically investigate when and why unsupervised pre-
training surpasses supervised counterparts for image clas-
sification tasks with a series of control experiments. Be-
sides the commonly used accuracy, we further analyze the
results qualitatively with the class activation maps and as-
sess the learned representations quantitatively with the rep-
resentation entropy and uniformity. Our core finding is that
it is the amount of information effectively perceived by the
learning model that is crucial to transfer learning, instead
of absolute size of the dataset. Based on this finding, we
propose Classification Activation Map guided contrastive
(CAMtrast) learning which better utilizes the label supervi-
sion to strengthen supervised pretraining, by making the net-
works perceive more information from the training images.
CAMtrast is evaluated with three fundamental visual learn-
ing tasks: image recognition, object detection, and semantic
segmentation, on various public datasets. Experimental re-
sults show that our CAMtrast effectively improves the per-
formance of supervised pretraining, and that its performance
is superior to both unsupervised counterparts and a recent re-
lated work which similarly attempted improving supervised
pretraining.

Introduction

Deep convolutional neural networks (DCNNs) are the cur-
rent state of the art (SOTA) of many fundamental tasks in
computer vision. However, to achieve satisfactory perfor-
mance, DCNNs often need large amounts of data for effec-
tive training, which can be difficult to collect in practice.
Transfer learning is an effective solution to the data defi-
ciency problem (Tan et al. 2018), where the model is first
pretrained on pretext tasks with sufficient data and then fine-
tuned on the target downstream task with limited data. Pre-
training on the ImageNet dataset (Deng et al. 2009) with
one million images and corresponding categorical labels has
been the de facto standard for visual transfer learning and
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Figure 1: Effects of number of pretraining classes (z-axis) of
the supervised, unsupervised (SimSiam; Chen and He 2021),
and our proposed CAMtrast pretraining on minilmageNet
on downstream 5-way few-shot classification accuracy (%;
y-axis), with the total number of images (4,800) unchanged.

achieved SOTA performance on many tasks. Recently, a se-
ries of self-supervised representation learning frameworks
(He et al. 2020; Chen et al. 2020a; Caron et al. 2020; Grill
et al. 2020; Chen and He 2021) emerged that adopted con-
trastive learning (Hadsell, Chopra, and LeCun 2006). With-
out using any label, these frameworks enforced certain in-
variance across different augmented views of an image. Sur-
prisingly, unsupervised contrastive pretraining beat super-
vised counterparts on various downstream tasks while be-
ing comparable on many others. This naturally raises some
intriguing questions, including: Why does the unsupervised
pretraining transfer better than supervised counterparts?!
Are manual labels still useful to pretraining?

In their pioneering work, Zhao et al. (2021) empirically
found that the intra-category invariance enforced by super-
vised models weakened transferability by causing informa-
tion loss and increasing task misalignment, and proposed
that supervised pretraining could be strengthened by an
exemplar-based approach (the “Exemplar”). Concretely, Ex-
emplar used the labels to filter true negatives in contrastive
learning to recover much low- and mid-level information,
without explicitly enforcing intra-category invariance. How-
ever, the authors did not explicitly answer when supervised
pretraining would fall short especially when there was only
minimal task misalignment (e.g., transfer within the same

"Without causing confusion, the terms “supervised” and “un-
supervised” pretraining in this work means traditional supervised
classification and self-supervised contrastive learning, respectively.



dataset), nor explain why it would happen. Meanwhile, their
findings were only based on qualitative analysis by visually
comparing image reconstructions from the features of su-
pervised and contrastive models, without any quantitative
validation of the information loss as evidence. In addition,
as a supervised variant of MoCo (He et al. 2020), Exem-
plar discarded much of the innate ability of traditional super-
vised pretraining to transfer high-level semantics, which was
proved useful in many transfer learning tasks (Zhao et al.
2021; Yu et al. 2018; Zhang et al. 2018).

In this work, we first empirically investigate when super-
vised pretraining will fall short of unsupervised counterparts
on image classification tasks, and analyze why the former
collapses in some circumstances. To this end, we conduct
a series of control experiments to compare the performance
of supervised and unsupervised pretraining. Notably, the 5-
way few-shot experiments on minilmageNet show that with
a fixed number of training images, the superiority of super-
vised pretraining to unsupervised counterpart gradually di-
minishes as the number of classes decreases, and eventu-
ally turns into inferiority as the supervised models collapse
with fewer than 32 training classes (Fig. 1). On the other
hand, this superiority is unaffected by the decreasing num-
ber of images given a fixed number of 64 classes. To uncover
the underlying reasons, we employ the class activation maps
(CAMs; Zhou et al. 2016), and the representation entropy
(Devijver and Kittler 2012) and uniformity (Wang and Isola
2020) for qualitative and quantitative analysis, respectively.
Our findings are threefold: 1) supervised learning focuses
on small class-discriminative regions—the fewer classes the
more so, resulting in sparse feature representations and great
information loss, while unsupervised pretraining attends to
broad areas, 2) representations learned by unsupervised pre-
training are more informative and uniform, and 3) both in-
formativeness and uniformity of the supervised pretraining
decrease with the decreasing number of classes while those
of the unsupervised are relatively consistent.

All in all, our core finding is that it is the amount of in-
formation effectively perceived by the learning model that
is crucial to the transfer performance, instead of absolute
size of the dataset. An important implication is that we
can strengthen supervised pretraining by encouraging the
model to perceive more information from the images. To
this end, we propose Classification Activation Map guided
contrastive (CAMtrast) learning, a novel supervised pre-
training framework integrating CAM-guided activation sup-
pression and self-supervised contrastive learning for more
effective information perception. Concretely, we use super-
vised CAMs to locate and suppress the most discriminative
image regions, forcing the network to identify secondary
discriminative regions in the suppressed images for correct
classification. In addition, the pair of original and suppressed
images are input to Siamese networks (Chopra, Hadsell, and
LeCun 2005) for contrastive learning, for effective trans-
fer of low- and mid-level semantics. Strengthened by the
CAM-guided suppression, CAMtrast is able to retain even
more high-level semantics than traditional supervised pre-
training, and use it to guide where to contrast. We evaluate
CAMtrast on three different types of downstream tasks in-
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volved with semantic information (image classification, ob-
ject detection, and semantic segmentation) on several public
datasets to demonstrate its efficacy in boosting supervised
pretraining and preventing collapse, and superiority to su-
pervised, unsupervised, and Exemplar pretraining. In con-
clusion, this work provides important new knowledge to the
community, and demonstrates an effective tool motivated by
the new knowledge.

Related Work

Supervised Pretraining: The well established transfer
learning paradigm of pretraining on the ImageNet (Deng
et al. 2009) classification task followed by fine-tuning on
target tasks has achieved remarkable success on a wide vari-
ety of downstream tasks such as object detection (Sermanet
et al. 2013; Girshick et al. 2014), semantic segmentation
(Long, Shelhamer, and Darrell 2015) and others. Accord-
ingly, ImageNet-pretrained models are available for many
popular DCNN structures and routinely used nowadays.
However, as the distance between the pretraining and target
tasks plays a critical role in transfer learning (Zhang, Wang,
and Zheng 2017), these models may become less effective
when transferred to vastly different tasks (e.g., medical im-
age analysis) due to large domain gaps. In addition, it may be
difficult or costly to obtain sufficient annotations for effec-
tive pretraining on a new dataset. Therefore, self-supervised
pretraining has attracted great attention recently.

Self-Supervised Pretraining: Self-supervised learning
can pretrain networks on unlabeled data with pretext tasks
defined by certain properties of the data (Jing and Tian
2020). Despite the progress made, performance of earlier
self-supervising methods (Noroozi and Favaro 2016; Zhang,
Isola, and Efros 2016) was still not comparable with that
of supervised counterparts. Recently, we have witnessed a
surge of self-supervised visual representation learning meth-
ods (Chen et al. 2020a,b; Caron et al. 2020; Grill et al. 2020,
He et al. 2020; Chen and He 2021) that instantiated the no-
tion of contrastive learning (Hadsell, Chopra, and LeCun
2006). Despite different original motivations, these methods
generally defined two augmentations of one image as the in-
put to Siamese-like networks (Chopra, Hadsell, and LeCun
2005), and maximize the similarity between the output. The
contrastive learning paradigm significantly narrowed the gap
between unsupervised and supervised pretraining: on many
downstream tasks, unsupervised pretraining achieved com-
parable or even superior performance to supervised counter-
parts. The strikingly excellent performance of unsupervised
contrastive pretraining has stirred the interest of the research
community to explore the underlying reasons for insights.

Implication from Contrastive Learning: Wang and Isola
(2020) verified that features of contrastive learning were
more uniformly distributed on the unit hypersphere than
those of supervised learning. Their work mainly conducted
research from the perspective of contrastive learning. In con-
trast, our focus is to understand the cause for the superior
performance of unsupervised to supervised pretraining, and
improve supervised pretraining based on the understanding.
Based on a visual comparison of the image reconstructions



from supervised and contrastive models, Zhao et al. (2021)
concluded that the intra-category invariance enforced by su-
pervised models weakened transferability by causing infor-
mation loss. Accordingly, they proposed Exemplar, an ap-
proach that made use of labels in the contrastive learning
framework MoCo (He et al. 2020) to filter the true negatives
for loss computation, such that no intra-category invariance
was explicitly enforced. Exemplar demonstrated encour-
aging improvements upon supervised pretraining on vari-
ous downstream tasks. However, as a supervised variant of
MoCo in essence, it primarily transferred low- and mid-level
representations, thus the high-level semantics were lost. In
contrast, our CAMtrast strives to retain even more high-level
semantics than supervised pretraining. In addition, it is not
obvious to apply Exemplar to contrastive learning frame-
works that are not based on instance discrimination, e.g.,
SimSiam (Chen and He 2021), whereas it is straightforward
to do so with CAMtrast.

Exploratory Experiments

To understand when unsupervised contrastive pretraining
outperforms supervised counterparts and the underlying rea-
sons, we conduct a series of control experiments. We also
employ two quantitative metrics to analyze the learned fea-
ture representations from the perspectives of informative-
ness and distribution uniformity, in addition to the analysis
of transfer performance.

Basic Experimental Protocol: We conduct few-shot
recognition on the minilmageNet (Vinyals et al. 2016) and
tieredlmageNet (Ren et al. 2018) datasets. MinilmageNet
contains 100 classes sampled from ImageNet, which are
split into 64 base, 16 validation and 20 novel classes. Tiered-
ImageNet is another subset of ImageNet. It contains 34 cat-
egories, each including 10-30 fine-grained classes. The 34
categories are divided into 20 base categories (351 classes),
6 validation categories (97 classes), and 8 novel categories
(160 classes). The hierarchy of categories and classes allows
convenient control of the degree of inter-class variation/sim-
ilarity (and thus classification difficulty), as we do later.

For implementation, we follow Chen et al. (2018b) for
supervised pretraining with a standard cross-entropy loss,
and MoCo_v2 (Chen et al. 2020b) and SimSiam (Chen and
He 2021) for unsupervised pretraining, respectively, using
the base classes. The ResNet-50 (He et al. 2016) is used as
backbone. After pretraining, a linear evaluation protocol is
adopted following the vast literature (Tian et al. 2020; Chen
et al. 2020b; Chen and He 2021). Specifically, the networks
are frozen as a feature extractor; a logistic regression classi-
fier is then fit on the features of the few support samples and
tested on the query samples. The few-shot evaluation tasks
are randomly sampled from the novel classes in 5-way 1-
and 5-shot settings. A total of 600 tasks are sampled and the
mean classification accuracy is reported. Note that the novel
classes are never seen during pretraining, hence the experi-
mental setting represents a typical transfer learning scenario.

Effects of Training Data Size: It is generally believed
that the success of the ImageNet pretraining is attributed to
the size of the dataset or the great number of classes (Maha-
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No. images Supervised  MoCo_v2 SimSiam
Per class Total 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
600 38,400 55.31 73.73 52.04 73.56 48.81 69.27
300 19,200 51.02 69.61 47.99 67.23 48.51 67.29

150 9,600 48.92 66.58 43.39 60.38 43.02 59.65
75 4,800 43.12 60.36 36.60 52.41 40.38 53.10

Table 1: 5-way few-shot recognition accuracies (%) on mini-
ImageNet, as the number of images decreases and the num-
ber of classes remains unchanged (C' = 64) for pretraining.

jan et al. 2018). Here, we begin by investigating the effects
of the size of the pretraining dataset on minilmageNet. We
fix the number of training classes (C' = 64) and reduce the
number of images per class from 600 (all available) to 75, re-
sulting in 38,400 to 4,800 total images. The supervised pre-
training is compared to two representative self-supervised
contrastive learning methods: MoCo_v2 (Chen et al. 2020b)
and SimSiam (Chen and He 2021). The results are shown
in Table 1. We observe that despite the expected perfor-
mance drops with fewer images for training, the supervised
pretraining consistently outperforms the two unsupervised
counterparts in all cases. This suggests that the absolute data
size does not cause inferiority of supervised pretraining to
unsupervised counterparts.

Effects of Training Class Number: We then study the ef-
fects of training class number by doing the opposite: we fix
the total number of pretraining images while decreasing the
number of classes on minilmageNet. As we are constrained
by the number of images per class (600) of minilmageNet,
we use a relatively small number of total images (4,800). Ac-
cordingly, SimSiam is used for the following experiments,
considering its superior performance to MoCo_v2 with this
number of images (last row in Table 1). As shown in Fig.
1, the transfer performance of the unsupervised pretrain-
ing is relatively insensitive to the exact number of classes
(fluctuates within the range of 6%), whereas that of the su-
pervised pretraining severely degrades about 14-20% as the
number of classes decreases from 64 to 8. When the num-
ber of classes is lower than 32, the unsupervised pretraining
overtakes the supervised counterpart. Zhao et al. (2021) sug-
gested that supervised representations mainly modeled the
discriminative object parts of each class, which were central
to classification tasks, but at the cost of information loss in
other regions. We thus hypothesize that, when trained with
few classes, the supervised representations only focus on
limited object parts exclusive to these specific classes, and
become too sparse for effective transfer to novel classes. The
loss of information in turn causes collapse of the supervised
pretraining. In contrast, the contrastive representations are
learned to discriminate instances based on broader regions
and independent of the class labels, thus insensitive to the
number of classes.

To verify the above hypothesis, we visualize the CAMs
(Zhou et al. 2016) for both the supervised and unsupervised
models pretrained with different number of classes in Fig. 2.
It can be seen that: 1) the activated regions of the supervised
models are concentrated whereas those of the unsupervised
are dispersed; and 2) for the supervised models, the acti-



Figure 2: Class activation maps of supervised, unsupervised
(SimSiam), and our CAMtrast models pretrained with dif-
ferent number of classes (64, 32, and 16).

vated regions obviously shrink when the number of classes
decreases, while for the unsupervised models the changes
are less appreciable. These observations qualitatively prove
our hypothesis.

Combining the experimental findings so far, we thus con-
clude that it is the amount of information perceived by the
learning model that is crucial to the transfer learning perfor-
mance, instead of absolute size of the dataset. It is worth not-
ing that Zhao et al. (2021) concluded similarly that the infor-
mation loss in supervised pretraining resulted in the degra-
dation of transfer performance, although without any rigor-
ous quantitative validation. Next, we quantify the amount of
information in the learned representations with two metrics.

Quantification of Learned Representations: Represen-
tation entropy (Devijver and Kittler 2012) is a measure of
informativeness of a set of features. Let X : N x D be a
feature set, where N is the number of features, and D is the
feature dimension, and \; be the the jth eigenvalue of X'’s
covariance matrix X : D x D. Then the representation en-

tropy is defined as:
_ijl)\j log

where \; = X;/ Y7 A;. The smaller Hp, is, the less in-
formation is contained in the feature set. Besides Hp, we
also quantify the amount of information from the perspective
of feature distribution. With theoretical motivations, Wang
and Isola (2020) empirically verified that uniformity, i.e., the
uniform distribution on the unit hypersphere, is a desirable
property for representations, which prefers a feature distri-
bution that preserves maximal information. The uniformity
is defined as (Wang and Isola 2020):

= A 1)

U(fit)=—log E [e*t||f<””)*f(y>”z}, @)

iid.
T,Y ~ Pdata

where x and y are two samples, pqat, is the data distribution
over R™, f(-) is a feature extractor, and ¢ is set to 2 following
Wang and Isola (2020). A higher U indicates a more uniform
distribution on the unit hypersphere.

Based on both criteria, a good representation should be
informative and uniform enough to effectively model the in-
formation from the training data.” We compute Hg and U
on the full training datasets, to measure the informativeness
and uniformity of the representations learned by supervised

1t is worth noting that due to potential noise and redundancy,
higher Hg or U does not always correspond to better performance.
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and unsupervised pretraining. The values are shown in Fig. 3
(corresponding to the results in Fig. 1). It is apparent that the
feature representations learned by the unsupervised models
are more informative (higher Hr) and more uniform (higher
U) than the supervised models. In addition, Hr and U of
unsupervised models are stable as the number of classes de-
creases, whereas for supervised models both metrics drop
dramatically. These results suggest that the information ex-
tracted by the supervised models is relatively limited and the
corresponding features are unevenly distributed, and the sit-
uation worsens with fewer number of classes. The quantita-
tive analysis validates our conclusion in the previous section.

Effects of Inter-Class Variation: So far we are only con-
cerned about the apparent factors such as numbers of images
and classes. A more insidious factor is the inter-class vari-
ation, whose impact on supervised and unsupervised pre-
training still remains unclear.> Therefore, we make use of
tieredlmageNet to conduct two more control experiments.
In the first experiment, the pretraining is done with the same
number of fine-grained classes (Cy) belonging to different
numbers of general categories (C), e.g., C'¢(Cy) = 50(20)
means the training set includes 50 fine-grained classes from
20 general categories. Intuitively, fewer general categories
indicate smaller inter-class variations and more challenging
tasks. The fine-grained labels are used for supervised pre-
training. As shown in Table 2 (top), with fewer general cate-
gories, the performance is better by 2.84-8.28% and the rep-
resentation entropy and uniformity are generally higher for
supervised pretraining, whereas unsupervised pretraining is
largely unaffected.

The second experiment is aimed to answer this question:
although the absolute amount of information contained in a
set of images should remain constant, is it possible to make
the supervised model perceive different amounts of informa-
tion from it and yield different transfer performance? Ac-
cordingly, we train supervised models using the same set
of images but supervise them with the general category la-
bels and fine-grained class labels, respectively. Intuitively,
the inter-class variation is lower for the fine-grained classifi-
cation tasks, meaning higher inter-class similarity and diffi-
culty. The results are shown in Table 2 (bottom). As we can

3In this work, we do not concern ourselves with intra-class vari-
ation which was already discussed by Zhao et al. (2021).



Supervised Unsupervised
Cs (Cy) 1-shot 5-shot Hg U 1-shot 5-shot Hr U
50 (20) 41.28 55.26 3.95 10.90 45.48 63.03 5.10 21.88

S0(5) _44.12 61.77 3.95 13.18 45.93 6331 5.5121.96
30 (20) 37.84 51.15 4.26 10.61 45.98 63.43 5.07 19.75
30(3) 45.07 59.43 4.71 12.89 45.13 63.12 4.18 20.95

200 (20) 41.38 58.79 4.38 12.95 4311

200 (20) 43.94 59.10 4.66 13.24 11 3925 448 18.33

100 (10) 38.65 50.82 4.15 11.75 5554 498 17.11

100 (10) 42.25 58.61 4.69 12.73 3927

Table 2: Effects of inter-class variation on tieredImageNet
5-way few-shot classification accuracy (%). Top: pretraining
with same number of fine-grained classes (C'y) from differ-
ent numbers of general categories (Cy) (fixed total number
of images: 35,100). Bottom: pretraining with coarse- versus
fine-grained labels (as bolded) on the same sets of images
(fixed number of images per class: 100).

see, using fine-grained class labels consistently outperforms
using category labels for supervised pretraining, with abso-
lute margins about 0.31-7.79%. Meanwhile, representations
of fine-grained pretraining are also more informative and
uniform (higher Hr and U) than those of coarse-grained.
Compared to unsupervised counterparts, the performances
of coarse-grained pretraining are apparently worse, whereas
those of fine-grained pretraining are generally better. There-
fore, more information is effectively perceived from the
same set of images by the fine-grained pretraining, leading
to superior transfer performance.

The results of both experiments suggest that reducing
inter-class variations can force the supervised models to per-
ceive more information from the images for the more chal-
lenging classification tasks, leading to more generalizable
representation learning towards better transfer.

Summary: We present the following findings in this sec-
tion: 1) The absolute data size is unlikely to be the key to the
difference in transfer performance between supervised and
unsupervised pretraining. 2) It is the amount of information
effectively perceived by the learning model that is crucial
to the transfer learning performance, which is confirmed by
our CAM-based qualitative analysis, and representation en-
tropy and uniformity based quantitative analysis. 3) For su-
pervised pretraining, the effectively perceived information
can be affected by the inter-class variation. The last finding
suggests that it is possible to strengthen supervised pretrain-
ing by making it perceive more information. In the next sec-
tion, we propose a novel framework that achieves this goal
via effective training strategy.

Better Label Supervision

Towards Informative and Uniform Representation:
From the previous section we know that, effective represen-
tation for transfer learning requires broad attention to vari-
ous characteristics of the images, yet supervised pretraining
only focuses on the small, task-relevant regions while ignor-
ing others. An intuitive countermeasure is to force the net-
work to discover characteristic regions other than the most
discriminative ones (e.g., dog head for a dog) for correct
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Processing pathways: (a) process the original image =z
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classification. To this end, we propose to suppress the most
discriminative regions in an image as perceived by the net-
work, and force the network to correctly classify the image
based on other regions.

Concretely, as illustrated in Fig. 4, given an image x, we
first warm up the classification network fy for ¢ epochs by
minimizing a standard cross-entropy loss L5 ( fo (:r)) (Path-

way (a)). Then, from the ¢ + 1th epoch onwards we obtain
the CAM of z, denoted by M. (Pathway (b)). M, local-
izes the most discriminative regions in x as perceived by the
network, where higher values indicate higher activation for
classification. Despite the existence of much potentially use-
ful information in the image, the highly activated regions in
M. is often very concentrated (Fig. 2). Next, M, is upsam-
pled to the size of the input and normalized to the range [0,
1], denoted by M., which is subsequently used to suppress
the high-response regions by:

=(01-M)®z, 3)

where ® is element-wise multiplication. Finally, the sup-
pressed image x’ is fed into fy to force discovery of new in-
formation for correct recognition with the loss L5 ( fo(a' ))
(Pathway (c)).

Integrate Supervised and Unsupervised Pretraining:
Although the suppressed image can force the network to
dig other regions, the network still relies on class-relevant
features for pretraining. As we have discovered, the rep-
resentations learned by self-supervised contrastive learn-
ing are more representative and uniform, and yield supe-
rior performance to supervised counterparts when the train-
ing data lack diversity. Hence, we propose to integrate self-
supervised contrastive learning (He et al. 2020; Chen and He
2021) with the CAM-guided supervised learning to further
improve the informativeness and uniformity of the learned
representations. We thus call our framework the CAM-
guided contrastive (CAMtrast) learning. Without losing gen-
erality, two different views of the same image are input to
the Siamese networks (Chopra, Hadsell, and LeCun 2005)
(Fig. 4). It is worth noting that we directly use the origi-
nal image x and its suppressed version x’ as the paired in-
put, and get rid of the extensive augmentations that are com-



monly adopted in self-supervised contrastive learning.  and
' are processed by the Siamese networks fg and f, respec-
tively, one of which is followed by a prediction function g,
to produce two projections z = fp(x) and 2’ = g(fe(z'))
(Pathways (a) and (d)). Then, a consistency loss Lgs is en-
forced on z and 2’ for contrastive learning.

Our CAMtrast framework is generic and can incorpo-
rate different self-supervised contrastive learning methods.
In this work, we experiment with the MoCo_v2 (Chen et al.
2020b) and SimSiam (Chen and He 2021). For MoCo_v2, g
is an identity mapping, and fy and f¢ share network struc-
ture but not parameters. The network parameters of fy are
updated by stochastic gradient descent, whereas those of f
are updated by exponential moving average: £ <— m&+ (1 —
m)0, where m € [0, 1). A form of contrastive loss (Hadsell,
Chopra, and LeCun 2006) called InfoNCE (Oord, Li, and
Vinyals 2018) is employed:

Eself(z»zl) _ —log [ezAz//‘r/(ezAz//T + Zj‘iﬁizz;/‘r)}’ (@]

where 7 is a temperature hyper-parameter and K is the num-
ber of negative samples. For SimSiam, g is implemented as
a multilayer perceptron, and fg and f¢ share parameters:
fo = fe. A cosine similarity loss is employed to minimize
the distance between z and 2’:

Lsat(2,2') = = (2 2) [(II2]l; 1]l,)-

The overall optimization objective of CAMtrast is:

L(z) = Las (fo(@)) + Lais (fo(2") + Loar (fo (), g(fg(x/)pé)

&)

Experiments

In this section, we evaluate our CAMtrast on three types
of downstream tasks: few-shot recognition, object detec-
tion, and semantic segmentation. We also conduct ab-
lation studies to evaluate effectiveness of key compo-
nents. The source code for this paper is available at:
https://github.com/jinghanSunn/C AMtrast.

Few-Shot Recognition: We evaluate our approach with
both standard (pretraining on base classes and transferring
to novel classes) as well as cross-domain (pretraining on
a dataset and transferring to another) few-shot recognition
tasks. For the former, the minilmageNet and tieredImageNet
datasets (already described in the exploratory experiments)
are used. For the latter, the tieredlmageNet and CIFAR-FS
(Bertinetto et al. 2018) are used. CIFAR-FS includes 100
classes that are divided into 64 base, 16 validation, and 20
novel classes. A total of 600 tasks are randomly sampled
from the novel classes for performance evaluation. All re-
sults are based on a ResNet-50 (He et al. 2016) backbone.
Four NVIDIA Tesla V100 GPUs are used for training. For
our proposed CAMtrast, we train 30 epochs (! = 30) for
warmup on minilmageNet and CIFAR-FS, and 50 epochs
(t = 50) on tieredImageNet. The protocol of linear classi-
fication with the logistic regression classifier on frozen fea-
tures is adopted (Tian et al. 2020).

Standard few-shot recognition: We first compare the per-
formance of our framework to those of supervised, three
SOTA unsupervised (MoCo_v2 (Chen et al. 2020b), BYOL
(Grill et al. 2020), and SimSiam (Chen and He 2021)), and
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minilmageNet tieredlmageNet
Methods 1-shot 5-shot 1-shot 5-shot
Supervised 55.3140.78 73.73£0.63 61.061+0.84 78.90+0.66
Exemplar 53.4340.73 74.64+£0.58 58.324+0.80 75.614+0.62
BYOL 45.01+0.81 61.4240.64 47.31+£0.87 63.78+0.73
MoCo_v2 52.0440.73 73.56+£0.57 56.87+0.83 74.504+-0.70
SimSiam 48.81+0.71 69.2740.58 55.42+0.86 75.39+0.75

Ours (MoCo_v2) 54.14+0.72 74.0240.59 62.90-£0.84 80.041+0.66
Ours (SimSiam) 58.42+0.78 74.68+0.63 62.88+0.84 77.841+0.67

Table 3: Standard 5-way few-shot classification accuracies
(%; mean + 95% confidence interval (CI)) and comparison
to other methods.

Exemplar (Zhao et al. 2021) pretraining. All methods are
pretrained using all base-class samples and evaluated on
novel classes of minilmageNet and tieredlmageNet, respec-
tively. As shown in Table 3, we observe that supervised pre-
training is better than unsupervised ones here, likely due to
the increased information enforced by more labels. How-
ever, by integrating supervised and unsupervised pretrain-
ing, our framework achieves the highest accuracies in both
settings on both datasets, beating all competitors using labels
or not. These results validate the efficacy of our framework.

Few-shot recognition with fewer classes: In Fig.1, the su-
pervised pretraining falls short of unsupervised counterparts
with fewer numbers of training classes. Here we repeat that
experiment with CAMtrast. As shown in Fig. 1, CAMtrast
outperforms both the supervised and unsupervised pretrain-
ing by margins approximately from 0.50% to 10.09%. Es-
pecially, the supervised pretraining collapses and becomes
inferior to unsupervised pretraining when the number of
classes is below 32. By better utilizing the labels, CAMtrast
can recover the generalization ability of supervised learn-
ing and outperforms the unsupervised pretraining even with
extremely low numbers of classes. We conjecture that the
superiority of CAMtrast to unsupervised pretraining is be-
cause the labels can help the contrastive learning to focus
on regions that are relatively more discriminative, instead of
making easy contrast based on “shortcuts” (Robinson et al.
2021). In addition, CAMtrast is more stable with respect to
the reduction of classes than supervised pretraining. To gain
insights if CAMtrast really improves the learned representa-
tions, we also quantify the representation entropy and uni-
formity for CAMtrast. As shown in Fig. 3, CAMtrast indeed
consistently increases both of the metrics upon supervised
pretraining across different numbers of classes.

For a more intuitive perception, we visualize CAMs of
CAMrtrast in Fig. 2. As expected, activations of CAMtrast
are more dispersed than those of the supervised pretrain-
ing, yet more focused than those of the unsupervised. These
observations indicate that in the proposed CAMtrast, con-
trastive learning encourages attention to broad areas while
CAM-guided supervised learning helps focus on semanti-
cally meaningful regions.

Cross-domain few-shot recognition: To further evaluate
the transfer performance in a more realistic scenario, we also
conduct few-shot experiments with domain shifts between
tieredlmageNet and CIFAR-FS. The models are pretrained
on either tieredImageNet’s or CIFAR-FS’s base classes and



Tiered — CIFAR CIFAR — Tiered

Methods 1-shot 5-shot 1-shot 5-shot

Supervised 44.56+0.78 61.1140.76 43.4340.70 58.48+0.71
MoCo_v2 34.94+0.72 48.13+0.70 42.074+0.72 58.5140.69
SimSiam 35.7540.70 50.374+0.79 43.97+0.72 59.314+0.74
Exemplar 36.6340.74 49.9940.75 44.13+0.74 59.07+0.70

Ours (MoCo_v2) 47.26+0.85 64.48+0.75 45.23+0.74 62.031+0.62
Ours (SimSiam) 45.23£0.79 62.3240.77 47.22+0.77 63.77+0.64

Table 4: Cross-domain 5-way few-shot recognition accura-
cies (%; mean+95% CI). Tiered — CIFAR means pretrained
on tieredlmageNet and tested on CIFAR-FS, and vice versa.

Model Sup CAM Contrast 1-shot 5-shot Hr U
Baseline v 33.46 45.30 3.56 7.49
Ablation-1 v v 34.39 47.85 3.67 8.09

Ablation-2 (MoCo_v2) v v’ 35.38 48.68 4.13 13.17
Ablation-2 (SimSiam) Vv v 36.24 49.99 4.33 13.60
CAMtrast (SimSiam) vV v 39.39 54.22 4.47 14.37

Table 5: Ablation study using 5-way few-shot recognition
accuracy (%) on minilmageNet; corresponding losses: Sup:
Leis (fg(x)), CAM(-guided): L. (fg(:z:’)), and Contrast:

ﬁself (f9(x)a g(fﬁ(‘r/)))

evaluated on the other’s novel classes. As shown in Table
4, our proposed CAMtrast substantially outperforms super-
vised and unsupervised pretraining, as well as Exemplar
about 3—16%. In fact, with the domain gap present, this set-
ting is more challenging than standard few-shot recognition.
Yet our framework demonstrates even larger improvements
upon the competing methods, further validating its efficacy.

Ablation Study: We conduct ablation studies to validate
the effects of the two core improvements we made to tra-
ditional supervised learning: CAM-guided activation sup-
pression and integration with contrastive learning. We base
the ablation studies on the data point of C' = 16 in Fig. 1
considering the collapse of supervised pretraining from
that point. As shown in Table 5, compared to the baseline
of supervised pretraining, either adding CAM-guided sup-
pression (Ablation-1) or incorporating contrastive learning
(Ablation-2, with either MoCo_v2 or SimSiam) improves
the transfer performance, by about 1-2% and 2-—4%, re-
spectively. For the complete CAMtrast model, SimSiam is
incorporated for its superior performance to MoCo_v2 in
Ablation-2. Then, the combination of the CAM-guided sup-
pression and SimSiam brings further performance improve-
ments of approximately 3-4%, suggesting that they mutu-
ally benefit each other. Similar trends of improvements can
be observed for representation entropy (/{r) and uniformity
(U), too. On one hand, contrastive learning helps supervised
pretraining by making the network attend to broader regions
in the images. On the other hand, the CAM-enhanced su-
pervised learning helps contrastive learning focus on more
meaningful contents in the images rather than the shortcuts
(Robinson et al. 2021). Besides, the CAM generated in an
epoch can be different from that generated in another for the
same image, serving as effective online augmentation.

Generalize for More Downstream Tasks: So far we have
focused on the downstream task of image classification. To
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Dataset ~ Metric Supervised MoCo_v2 SimSiam Exemplar Ours
VOC  AP(%) 7021 71.05 7076 7142 72.16
Cityscapes mloU (%) 68.26 7235 7032 7293 74.01

Table 6: Performance on PASCAL VOCO7 object detection
test set and Cityscapes semantic segmentation validation set,
with pretraining on base classes of tieredlmageNet.

investigate the effectiveness of the proposed CAMtrast on
other downstream applications, we also consider two other
fundamental tasks in computer vision: PASCAL VOC (Ever-
ingham et al. 2010) object detection and Cityscapes (Cordts
et al. 2016) semantic segmentation. We pretrain the models
on the base classes of tieredlmageNet. For PASCAL VOC
object detection, we use Faster-RCNN (Ren et al. 2015)
with a backbone of ResNet-50 (He et al. 2016) as the detec-
tor. For Cityscapes semantic segmentation, we follow Chen
et al. (2018a) to employ the DeepLab v3+ with a ResNet-
50 backbone. All layers are fine-tuned end-to-end. The re-
sults are presented in Table 6. We notice that for these
downstream tasks, unsupervised pretraining is better than
supervised counterparts, which is the opposite of classifica-
tion tasks (Table 3 and Table 4). This may be explained by
the larger task misalignment between pretraining and target
tasks (Zhao et al. 2021). Despite that, our framework (with
MoCo_v2) outperforms all competing methods, including
the supervised, MoCo_v2, SimSiam, and Exemplar pretrain-
ing, with apparent margins on both object detection (about
1-2% advantages) and semantic segmentation (about 1-6%
advantages) tasks. This suggests that CAMtrast is able to ex-
tract more effective information that is more transferable to
a wide variety of potential downstream tasks, than both su-
pervised and unsupervised pretraining as well as Exemplar.

Conclusion

In this work, we empirically investigated when and why su-
pervised pretraining would fall short of unsupervised con-
trastive pretraining for transfer learning of image classifi-
cation tasks. Our core finding was that it was the amount
of information effectively perceived by the learning model
that was crucial to visual transfer learning, instead of ab-
solute size of the dataset. Motivated by this finding, we
proposed CAMrtrast, a novel supervised framework which
integrated CAM-guided activation suppression and self-
supervised contrastive learning for more effective pretrain-
ing by encouraging the model to perceive more informa-
tion from the images. We evaluated CAMtrast on three dif-
ferent downstream tasks: image classification, object detec-
tion, and semantic segmentation on several public datasets.
Results showed that CAMtrast not only substantially im-
proved transfer performance of supervised pretraining, but
also outperformed unsupervised pretraining and a recent re-
lated work based on exemplars (Zhao et al. 2021). In con-
clusion, we took a step further towards understanding funda-
mental mechanisms of transfer learning in computer vision.
While we plan to generalize our findings on larger and more
datasets and more tasks soon, we also expect more efforts
from the community to be devoted to studies along the line
of fundamental understanding.
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