Correlation Field for Boosting 3D Object Detection in Structured Scenes


  • Jianhua Sun Shanghai Jiao Tong University
  • Hao-Shu Fang Shanghai Jiao Tong University
  • Xianghui Zhu Shanghai Jiao Tong University
  • Jiefeng Li Shanghai Jiao Tong University
  • Cewu Lu Shanghai Jiao Tong University



Computer Vision (CV)


Data augmentation is an efficient way to elevate 3D object detection performance. In this paper, we propose a simple but effective online crop-and-paste data augmentation pipeline for structured 3D point cloud scenes, named CorrelaBoost. Observing that 3D objects should have reasonable relative positions in a structured scene because of the objects' functionalities and natural relationships, we express this correlation as a kind of interactive force. An energy field called Correlation Field can be calculated correspondingly across the whole 3D space. According to the Correlation Field, we propose two data augmentation strategies to explore highly congruent positions that a designated object may be pasted to: 1) Category Consistent Exchanging and 2) Energy Optimized Transformation. We conduct exhaustive experiments on various popular benchmarks with different detection frameworks and the results illustrate that our method brings huge free-lunch improvement and significantly outperforms state-of-the-art approaches in terms of data augmentation. It is worth noting that the performance of VoteNet with mAP@0.5 is improved by 7.7 on ScanNetV2 dataset and 5.0 on SUN RGB-D dataset. Our method is simple to implement and increases few computational overhead.




How to Cite

Sun, J., Fang, H.-S., Zhu, X., Li, J., & Lu, C. (2022). Correlation Field for Boosting 3D Object Detection in Structured Scenes. Proceedings of the AAAI Conference on Artificial Intelligence, 36(2), 2298-2306.



AAAI Technical Track on Computer Vision II