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Abstract

Voxel and point representations are widely applied in recent
3D object detection tasks from LiDAR point clouds. Voxel
representations contribute to efficiently and rapidly locat-
ing objects, whereas point representations are capable of de-
scribing intra-object spatial relationship for detection refine-
ment. In this work, we aim to exploit the strengths of both
two representations, and present a novel two-stage detector,
named Joint Point-Voxel Network (JPV-Net). Specifically,
our framework is equipped with a Dual Encoders-Fusion De-
coder, which consists of the dual encoders to extract voxel
features of sketchy 3D scenes and point features rich in geo-
metric context, respectively, and the Feature Propagation Fu-
sion (FP-Fusion) decoder to attentively fuse them from coarse
to fine. By making use of the advantages of these features,
the refinement network can effectively eliminate false detec-
tion and achieve better accuracy. Besides, to further develop
the perception characteristics of voxel CNN and point back-
bone, we design two novel intersection-over-union (IoU) esti-
mation modules for proposal generation and refinement, both
of which can alleviate the misalignment between the local-
ization and the classification confidence. Extensive experi-
ments on the KITTI dataset and the ONCE dataset demon-
strate that our proposed JPV-Net outperforms other state-of-
the-art methods with remarkable margins.

Introduction
Object detection is a challenging and meaningful problem
in computer vision, since beneficial to many downstream vi-
sion tasks. With the rapid development of CNNs, tremen-
dous success has been made in 2D object detection tasks.
Recently, increasing attention is shifted to 3D object detec-
tion from point clouds, which is essential to many practical
applications, such as autonomous driving vehicles, robotics
and AR/VR. Compared with 2D images, raw point clouds
are unordered, sparse and irregular, making it difficult to di-
rectly apply 2D detection methods to 3D scenes. Hence, it’s
crucial to explore an effective way to parse point clouds.

Existing LiDAR-based 3D object detection methods can
be generally divided into two categories, i.e., voxel-based
methods and point-based ones. By converting sparse point
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Figure 1: Illustration of detection results predicted by the
detector without original point representations (bottom left)
and our proposed JPV-Net (bottom right). Our JPV-Net with
geometric context can eliminate the false detection marked
in red, such as pillars and walls (detected as pedestrians and
cars).

clouds into compact forms, like birds-eye-view (BEV) im-
ages (Yang, Liang, and Urtasun 2018; Engelcke et al. 2017)
and voxel grids (Yan, Mao, and Li 2018; Lang et al. 2019),
the voxel-based methods apply CNNs to regular 2D images
or 3D voxels and efficiently extract features for detection.
By contrast, the point-based methods (Qi et al. 2018; Yang
et al. 2018) directly take raw point clouds as input and uti-
lize PointNet and its variants (Qi et al. 2017a,b) to abstract
point features. The former methods specialise in regressing
high recall proposals, while the latter ones can avoid the in-
formation losses caused by voxelization and learn geometric
features for better object parsing.

Instead of using just one specific representation, there
are recent methods (He et al. 2020; Shi et al. 2020; Bhat-
tacharyya and Czarnecki 2020) exploring to combine both
of them. Despite significant breakthroughs, these methods
still remain several problems restrictive to the representa-
tion capacity. Firstly, the point features derive from sketchy
voxel features, which merely sketch 3D scenes and hardly
compensate the lack of geometric information, leading to
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false detection shown in Figure 1. Besides, the simple con-
catenation of multi-scale point features is unfitted to reason
about hierarchical spatial relationships and semantic context
of point clouds.

Aiming at these problems above, we propose a novel two-
stage 3D object detector, which takes advantages of both
sketchy voxel features and geometric point features. Our
critical design is the Dual Encoders-Fusion Decoder frame-
work, composed of dual encoders and a feature fusion de-
coder. More specifically, voxel CNNs (Graham, Engelcke,
and van der Maaten 2018; Yan, Mao, and Li 2018) and
PointNet-based encoder (Qi et al. 2017b) are adopted to ab-
stract voxel and point context, respectively, and meanwhile,
the former efficiently generates accurate 3D proposals. Sub-
sequently, the FP-Fusion modules adaptively integrate the
point-wise features and corresponding voxel-to-point fea-
tures in each level, and then, these fusion features can be
propagated to original resolution through the decoder. Thus,
as shown in Figure 1, our method effectively eliminates false
detection and improves proposal refinement by incorporat-
ing the global location information and detailed intra-object
context (such as tyres to vehicles and human pose to per-
sons).

Moreover, to further develop the potentials of point and
voxel representations, we propose two novel IoU modules
analogous to IoUNet (Jiang et al. 2018), which alleviate the
misalignment problem between localization and classifica-
tion confidence. Different from images, special properties
of 3D scenes like sparsity and more degrees-of-freedom in-
crease the difficulty in providing accurate 3D IoU predic-
tion. Considering that our framework processes objects with
a different perspective on each stage, we present two in-
direct estimation approaches, i.e., the BEV-IoU-aware pro-
posal generation and the point-IoU-aware refinement. On the
proposal stage, BEV IoU is simpler and looser to estimate
than 3D counterpart owing to the object regression in BEV
view, and therefore, more proposals with precise localiza-
tion can be retained. For refinement, we replace 3d IoU with
grid point IoU, which not only involves the sparsity of point
clouds, but improves the part comprehension of objects (Shi
et al. 2019) due to our substituted grid point segmentation
task.

Our key contributions are three-fold: (i) We propose a
JPV-Net framework with Dual Encoders-Fusion Decoder
to abstract point and voxel features, respectively, and effi-
ciently integrate them from coarse to fine, bringing about
improvements of 3D object detection; (ii) In terms of rep-
resentations, we propose two novel IoU estimation modules
for each stage, which effectively alleviate the misalignment
and achieve high recall detection performance; (iii) We eval-
uate our method on KITTI (Geiger, Lenz, and Urtasun 2012)
and ONCE (Mao et al. 2021) object detection benchmarks,
and our proposed JPV-Net outperforms previous state-of-
the-art methods with large margins.

Related Work
3D Object Detection with Voxel Grids. Relying on
regular grids, voxel-based methods straightforwardly apply
CNNs for efficient 3d detection. At first, VoxelNet (Zhou

and Tuzel 2018) and SECOND (Yan, Mao, and Li 2018)
employ voxelization and 3D CNNs to perform object detec-
tion. Some other works (Yang, Luo, and Urtasun 2018; Lang
et al. 2019) adopt BEV maps or pillars instead and utilize
2D CNNs for real-time detection. Besides, Shi et al. (Shi
et al. 2019; Deng et al. 2020) introduce two-stage detection
frameworks, further improving the performance of voxel-
based methods. Although constrained by the losses of ge-
ometric information, these voxel-based methods are suitable
to generate accurate 3D proposals with a high recall.
3D Object Detection with Raw Point Clouds. Point-
based methods take raw point clouds as input and generally
abstract point features with PointNet-like frameworks (Qi
et al. 2017b). PointRCNN (Shi, Wang, and Li 2019) pro-
poses a complete PointNet-based two stage detection frame-
work, and sets a precedent for follow-up methods (Yang
et al. 2019, 2020). There are some methods (Shi and Ra-
jkumar 2020; Zhang, Huang, and Wang 2020) better mod-
eling point relations with GNN. Powered by PointNet and
its variants, these methods enrich features with geometric
information and are superior to voxel-based ones.
3D Object Detection with Point-Voxel Representations.
Recently, some methods strive to incorporate the advan-
tages of point and voxel representations. SASSD (He et al.
2020) introduces an auxiliary network without extra cost,
which supervises voxel context to focus on the intra-object
structure. Similarly, the novel two-stage framework PV-
RCNN (Shi et al. 2020) abstracts a set of keypoint features
by the Voxel Set Abstraction (VSA) module and explicitly
makes use of them for refinement. Our proposed JPV-Net
preserves original point features rich in geometric context,
and fuses them with voxel features from coarse to fine, more
effective than existing methods.
Study on the Misalignment between Classification Con-
fidence and Localization. In the detection pipeline, clas-
sification and localization are solved differently, which re-
sults in the misalignment between classification confidence
and localization. IoUNet (Jiang et al. 2018) first analyzes
and mitigates the aforementioned issue by means of a pro-
posed IoU prediction branch and an IoU-aware NMS. In 3D
scenes, Zhou et al. (Zhou et al. 2019) introduce into this
methodology and improve 3D IoU and related IoU loss. In
this work, our proposed BEV IoU-aware proposal genera-
tion and point-IoU-aware refinement explore the character-
istics and exploit the advantages of voxel- and point-based
3D perceptions.

Joint Point-Voxel Network
In this section, we present a novel two-stage detection
framework, JPV-Net, to integrate the sketchy voxel repre-
sentations and geometric point representations for 3D object
detection. The whole framework of JPV-Net, illustrated in
Figure 2, consists of a voxel branch for efficient proposal
generation and the Dual Encoders-Fusion Decoder for fea-
ture extraction and fusion. Moreover, our proposed two IoU
modules exploit the potentials of BEV and point percep-
tions, rectifying the misalignment and promoting better lo-
calization performance.
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Figure 2: Illustration of the proposed JPV-Net detector. Our network is composed of two parts: the voxel network to encode
multi-scale sketchy features and efficiently generate 3D proposals, and the Dual Encoders-Fusion Decoder to learn different
representations, conduct feature fusion and perform proposal refinement with these representative features. Besides, two novel
IoU-aware modules are applied for proposal generation and refinement, respectively.

Voxel CNNs for Proposal Generation
Following the previous works (Deng et al. 2020; Shi et al.
2020), we introduce commonly used SECOND-like voxel
CNNs as the voxel backbone. Bearing in mind that the
precise coordinate information is not necessary for rough
localization, we take the voxel center coordinates {vi =
(xi, yi, zi)}Ni=1 as original input features for simplicity. The
network stacks four 3D sparse convolutional blocks to en-
code feature volumes, each of which consists of a series of
3×3×3 sub-manifold convolutions and a sparse convolution
with downsampled size of 2 (excluding the last block). Sub-
sequently, the 3D tensor are reshaped into BEV representa-
tions in accord with autonomous driving tasks and further
encoded by a 2D Region Proposal Network (RPN). Besides,
anchor-based detection is adopted to achieve a high recall.

Dual Encoders-Fusion Decoder
To make up the information losses caused by voxelization,
we present the Dual Encoders-Fusion Decoder, which is
composed of voxel encoder shared with proposal branch,
PointNet-like encoder and FP-Fusion Decoder for feature
fusion. Given the fusion features of an overall 3D scene, 3D
proposals are precisely refined following the grid-based ap-
proaches.
PointNet++ Backbone. To preserve significant geomet-
ric context, the point features are extracted from raw point
clouds by our point backbone instead of sketchy voxel
features. Specifically, we adopts four SA modules with
1×, 4×, 8×, and 16× downsampled scales, consistent with
the hierarchical structure of the voxel CNN. Then, multi-
scale point and voxel features are aggregated via the FP-
Fusion Decoder.
Trilinear SA and FP-Fusion Decoder. The sketchy voxel
features and geometric point features are learned from dual
encoders relying on different perceptive modes and encod-
ing schemes. To adaptively evaluate the importance of these

perceptions and conduct fusion, we propose the Trilinear SA
module to project voxel features onto neighboring points and
the FP-Fusion module to attentively fuse point and voxel
features.

Generally, the nearest neighbor interpolation and the SA
module adopted in PointNet++ (Qi et al. 2017b) are com-
monly used for feature projection between point sets. Exist-
ing point-voxel methods adopt and modify these modules,
which serve as the efficient connection from voxel grids to
points. These schemes regard the voxels as a set of points,
however, ignoring the inherent spatial relationship and reg-
ular representation of convolutions. Motivated by the bilin-
ear interpolation method, we propose the Trilinear SA mod-
ule to aggregate point-wise voxel features for each point
from its sparse eight neighboring voxels, briefly illustrated
in Figure 3. Specifically, we denote {(v(l)

i , f
(l)
i )}Ni=1 as the

voxel-wise coordinates and features in the l-th level of voxel
CNNs. Given each point p(l) in the same level, we firstly
sample the corresponding neighboring set S containing no
more than eight voxels as:

S(p(l)) =
{

[v
(l)
k − v(l)

p ;w
(l)
k f

(l)
k ] | v(l)

k ∈ N (p(l))
}
,

(1)
where w(l)

k denotes the interpolation weight of v(l)
k , and v

(l)
p

and N (p(l)) denote the voxel coordinate and a set of sparse
neighboring voxels for the point p(l). We take the relative
voxel coordinates and voxel feature vectors as the represen-
tations of neighboring sets. In consideration of the sparse
distribution of the voxel space, we utilize the max pool-
ing operation to aggregate features instead of weighted sum,
which can be formularized as follows:

F(l)
v = max(F(S(p(l)))), (2)

where F
(l)
v denotes the projected voxel feature for the point

p(l), and F denotes a Multi-Layer Perceptron (MLP) net-
work to encode the set features. Our proposed Trilinear SA
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Figure 3: Illustration of our Trilinear SA module (left) and
FP-Fusion module (right). The Trilinear SA module briefly
aggregates non-empty voxel features of sparse eight neigh-
bors for each point. The FP-Fusion module attentively fuses
point and voxel features and passes it through the Feature
Propagation decoder.

module is lightweight to economize computing resource and
preserves more local voxel context, beneficial to the interac-
tion between point and voxel encoders.

Notably, the voxel and point branches summarize the 3D
scene with a different emphasis. The voxel CNN roughly
sketches the entire scene and objects regardless of detailed
structure, while the PointNet backbone represents more dis-
criminative details. Therefore, adaptively fusing multiple
features is vital for fine-grained refinement. Given the multi-
scale point features and point-wise voxel features, we in-
troduce an extra fusion module to attentively fuse them. As
shown in Figure 3, we directly add the point features F

(l)
p

and voxel features F
(l)
v in the same l-th level, and feed it

into several MLP layers to generate the normalized weight
maps wp and wv with the same channel as input. Then, for
simplicity, we use a max pooling operator to fuse them, each
of which is weighted by channel-wise production with its
weight map as:

wp = σ(Wp tanh(W(F(l)
p + F(l)

v ))), (3)

wv = σ(Wv tanh(W(F(l)
p + F(l)

v ))), (4)

F(l)
pv = max(wp � F(l)

p , wv � F(l)
v ), (5)

where W is the shared MLP, Wp and Wv are the inde-
pendent MLPs for point and voxel features, and the tanh
and sigmoid activation functions are used to normalize the
weight maps. Then we pass the fusion features through sev-
eral Feature Propagation modules to reconstruct the original
scene. Hence, the entire scene can be thoroughly encoded
by the semantic fusion features, that merge global spatial
perception and local geometric information. Profiting from
these modules, our framework not only reduces the com-
putation cost and maintains more representative points than
PV-RCNN (Shi et al. 2020), but encodes more comprehen-
sive point-voxel features than SA-SSD (He et al. 2020).

To handle the ambiguous boxes, we adopt the grid-based
approaches for part-aware refinement following previous
works (Shi et al. 2019, 2020). Besides, we boost the local
sensitivity by our proposed point-IoU-aware refinement and
achieve more precise localization.

Proposal

Ground-truth

Point IoU = 0.71

Oriented IoU = 0.67

Figure 4: Illustration of an example of our point-IoU-aware
refinement on the BEV map. The proposal is uniformly di-
vided into 24 grid points, and the real IoU score and the point
IoU score are 0.67 and 0.71, respectively.

IoU-awareProposalGeneration&Refinement
The misalignment between classification confidence and
localization is a universal phenomenon in object detec-
tion tasks. Motivated by the methodology proposed by
IoUNet (Jiang et al. 2018), we explore the characteristic for
each stage in our 3D detector, i.e., proposal generation from
BEV maps on the first stage and grid-based refinement on
the second stage, and propose two novel approaches to han-
dle these issues.
BEV-IoU-aware Proposal Generation. On the proposal
stage, 3D bounding boxes are generated from BEV feature
maps, where the details of height dimension lose partly.
Thus, we utilize BEV IoU for proposal generation, which is
more appropriate than its 3D counterpart. Similar to IoUNet,
we introduce an additional IoU branch to estimate BEV IoU
between the predictions and ground-truth bounding boxes.
During the NMS procedure, the mixed scores are used for
ranking, which can be written as:

S = Scls × SBEV
IoU + SBEV

IoU , (6)

where Scls and SBEV
IoU denotes the classification confidence

and the estimated BEV IoU score for predicted boxes. Com-
pared to the production of two values, our designed score
is non-parametric and more effective to cope with the situ-
ation where boxes with high IoU scores possess low even
zero classification confidence due to the unbalanced number
of positive/negative anchors, and hence, our proposal net-
work can preserve more valid boxes and achieve a high re-
call performance. Although simple, experimental results in
Section 4.3 demonstrate the effectiveness of our BEV-IoU-
aware proposal generation strategy.
point-IoU-aware Refinement. To tackle the misalignment
on the refinement stage, an intuitive solution is to predict
the 3D IoU score between refined boxes and ground-truth
boxes. However, dynamic changes of IoU supervision labels
and sparsity of point clouds increase the difficulty directly
estimating 3D IoU scores. Noting that grid-based methods
are adopted for part-sensitive refinement, grid points are uni-
formly sampled in each proposal and contain object features.
That is to say, the overlap of boxes could be approximated by
the number of grid points positioned in the overlap if there
were massive points according to the Monte Carlo simula-
tion. Based on this finding, we strive to convert the task of
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IoU estimation to semantic segmentation for grid points. As
illustrated in Figure 4, our proposed point IoU score is ap-
proximate to the real IoU score in the example. Given the
grid points of each proposal, semantic labels are generated
by checking whether each point in refined boxes is inside
or outside of a ground-truth box. Subsequently, we approx-
imately regard the number of positive semantic points as
the intersection of boxes. Besides, the rectification for most
proposals is normally slight, and therefore we regard that
the number of grid points in ground-truth boxes is generally
identical to corresponding proposals. Above all, an approxi-
mate point IoU score can be formularized as:

Sp
IoU =

Npos

2×N −Npos
, (7)

where N and Npos denote the numbers of grid points and
positive points, respectively. To smooth the gap between the
3D IoU and our approximate point IoU, we replace the num-
ber of positive points with the sum of segmentation scores
and introduce an extra bias prediction branch. Hence, the
aforementioned formula is addressed as:

SP
IoU =

∑N
i=1 ci

2×N −
∑N
i=1 ci

+ Sbias, (8)

where ci is the segmentation score for each grid point and
Sbias is the predicted tiny difference of our point IoU from
real 3D IoU. Our point IoU branch is then trained to mini-
mize the cross-entropy loss for segmentation and smooth-L1
loss for bias as:

Lp
IoU = Lce + αLs(Ŝbias, Sbias), (9)

where the loss weight α = 0.5 in experiments. Our grid
point segmentation strengthens the part perception for ob-
jects, and the proposed point-IoU-aware refinement outper-
forms the 3D IoU prediction, all which contribute to accurate
refinement significantly.

Loss Functions
Our JPV-Net framework is trainable end-to-end and overall
loss function consists of the region proposal loss and the re-
finement loss. For the proposal generation, we follow SEC-
OND to design the region proposal loss Lrpn, composed of
focal loss (Lin et al. 2017) with default hyper-parameters for
classification, smooth-L1 loss for both box regression and
our BEV IoU estimation, and cross-entropy loss for bins of
direction as:

Lrpn = Lp
cls + βLp

reg + γLBEV
IoU , (10)

Lp
reg =

∑
r∈x,y,z,l,h,w,θ

Ls(∆r̂, ∆r) + µLce(b̂θ, bθ), (11)

where ∆r̂ and b̂θ denote the predicted box residual and bins
of direction, and Lp

cls, L
p
reg and LBEV

IoU denote losses of clas-
sification, regression and IoU estimation for proposal, re-
spectively. The refinement loss Lrcnn includes the point seg-
mentation loss Lseg, the IoU-related confidence loss Lr

cls,
the regression loss Lr

reg similar to proposal and our point-
IoU-aware refinement loss Lp

IoU,

Lrcnn = Lr
cls + β′Lr

reg + γ′Lp
IoU + Lseg. (12)

Hence, the overall loss is calculated as the sum of these
losses for two stages. Further training loss details are pro-
vided in the supplementary file.

Experiments
In this section, we evaluate our proposed JPV-Net detector
on the challenging 3D object detection benchmark of KITTI
dataset. In the following, we briefly introduce the dataset
and the implementation details of our framework in Section
4.1. Then we illustrate the experimental results by compar-
ing with state-of-the-art 3D detection methods on the KITTI
dataset in Section 4.2. Finally, we present extensive ablation
studies to analyze and validate our design in Section 4.3.
Furthermore, we also evaluate our method on the larger and
more diverse ONCE dataset, and experimental results are il-
lustrated in the supplementary file.

Implementation Details
Dataset. KITTI Dataset (Geiger, Lenz, and Urtasun 2012)
is a widely used benchmark dataset for autonomous driving.
There are 7,481 training samples and 7,518 test samples with
three categories of Car, Pedestrian and Cyclist. The train-
ing samples are generally divided into the train split (3,712
samples) and the val split (3,769 samples). We use average
precision (AP) as the metric to evaluate for all the three dif-
ficulty levels (Easy, Moderate and Hard). Remarkably, our
models are trained on the train split and evaluated on the
val split for validation, while trained with all training sam-
ples and evaluated with test samples for test.
Network Architecture. For the 3D scenes in the KITTI
dataset, the detection range is within [0, 70.4]m for the X-
axis, [−40, 40]m for the Y -axis and [−3, 1]m for the Z-
axis, containing about 20K LiDAR points. We voxelize each
scene with the voxel size (0.05m, 0.05m, 0.1m) as the voxel
input, and subsample 16,384 points from raw point clouds
as the point input. As shown in Figure 2, our voxel CNN is
composed of four 3D encoding levels and 2D convolutions
for BEV maps, same as the SECOND (Yan, Mao, and Li
2018). For consistency, we also employ four levels of Set
Abstraction modules to encode point features with the point
sizes of 16384, 4096, 2048, 1024, respectively. Then, voxel
and point features in the same level are passed to the corre-
sponding FP-Fusion module through skip links. We adopt
four FP-Fusion layers to gradually summarize the whole
point scene and finally recover the original size. To achieve
better refinement performance, we introduce the point-grid-
based refinement proposed by PV-RCNN with its official
hyper-parameters.
Training and Inference Schemes. Our JPV-Net frame-
work is end-to-end trainable by the ADAM optimizer with
an initial learning rate and a weight decay of 0.01, and the
batchsize 16 on 8 GTX 1080 Ti GPUs. We train our net-
work for 80 epochs with the cosine annealing strategy for
the learning rate decay. In training, the IoU thresholds for
positive and negative anchors are set to 0.6 and 0.45, re-
spectively. The matching IoU for proposal is calculated by
the horizontal rectangles in BEV maps. On the refinement
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Types Methods Modalities Car - 3D Cyclist - 3D
Easy Mod. Hard Easy Mod. Hard

1-stage

SECOND (Yan, Mao, and Li 2018)

LiDAR

83.34 72.55 65.82 71.33 52.08 45.83
PointPillars (Lang et al. 2019) 82.58 74.31 68.99 77.10 58.65 51.92

SA-SSD (He et al. 2020) 88.75 79.79 74.16 - - -
Point-GNN (Shi and Rajkumar 2020) 88.33 79.47 72.29 78.60 63.48 57.08

CIA-SSD (Wu et al. 2021) 89.59 80.28 72.87 - - -

2-stage

MV3D (Chen et al. 2017)

RGB + LiDAR

74.97 63.63 54.00 - - -
AVOD-FPN (Ku et al. 2018) 83.07 71.76 65.73 63.76 50.55 44.93
F-PointNet (Qi et al. 2018) 82.19 69.79 60.59 72.27 56.12 49.01

PointPainting (Vora et al. 2020) 82.11 71.70 67.08 77.63 63.78 55.89
3D-CVF (Yoo et al. 2020) 89.20 80.05 73.11 - - -
EPNet (Huang et al. 2020) 89.81 79.28 74.59 - - -

PointRCNN (Shi, Wang, and Li 2019)

LiDAR

86.96 75.64 70.70 74.96 58.82 52.53
Fast Point R-CNN (Chen et al. 2019) 85.29 77.40 70.24 - - -

STD (Yang et al. 2019) 87.95 79.71 75.09 78.69 61.59 55.30
Part-A2 Net (Shi et al. 2019) 87.81 78.49 73.51 79.17 63.52 56.93
PV-RCNN (Shi et al. 2020) 90.25 81.43 76.82 78.60 63.71 57.65

JPV-Net (Ours) 88.66 81.73 76.94 80.66 65.41 59.26

Table 1: Comparisons with state-of-the-art methods on the KITTI test set. All results are evaluated by the mAP with 40 recall
positions.

Methods Easy Mod. Hard
SECOND (Yan, Mao, and Li 2018) 88.12 78.30 76.91

SA-SSD (He et al. 2020) 90.15 79.91 78.78
3DSSD (Yang et al. 2020) 89.71 79.45 78.67
3D-CVF (Yoo et al. 2020) 89.67 79.88 78.47

Part-A2 Net (Shi et al. 2019) 89.47 79.47 78.54
PV-RCNN (Shi et al. 2020) 88.93 83.36 78.70

JPV-Net (Ours) 89.71 84.61 79.09

Table 2: Comparisons with state-of-the-art methods on the
KITTI val set for the Car class. All results are evaluated by
the mAP with 11 recall positions.

stage, we randomly sample 128 proposals with an equal ra-
tio of the positive and negative objects. For inference, we
only keep the top-100 proposals for further refinement. Af-
ter the refinement, redundant boxes are removed with a NMS
threshold of 0.1.
Data Augmentation. Widely adopted data augmentation
strategies are conducted in our framework following (Yan,
Mao, and Li 2018; Lang et al. 2019; Shi et al. 2020). Specif-
ically, we utilize the random flipping along the X-axis, the
global scaling with a random scaling factor sampled from
[0.95, 1.05], and the global rotation around the Z-axis with
a random angle sampled from [−π4 ,

π
4 ]. Besides, the ground-

truth sampling strategy proposed by (Yan, Mao, and Li
2018) is also introduced to substantially increase the quan-
tity of 3D objects.

Experiments on the KITTI Dataset
In this section, our JPV-Net is trained on the train+val
set and evaluated by submitting the detection results to the
KITTI 3D object detection benchmark. The performance on
the test set is calculated with 40 recall positions by the
test server. Moreover, we validate our model on the val set,
which is calculated with 11 recall positions to fairly compare
with the previous works.

As shown in Table 1, the proposed JPV-Net surpasses

Methods DE-FD BEV IoU Point IoU Easy Mod. Hard
SECOND 90.37 81.78 78.60
PV-RCNN 91.74 84.07 82.06

(a) X 92.05 84.91 82.61
(b) X X 92.11 85.21 82.88
(c) X X 92.37 85.29 83.04

JPV-Net X X X 92.45 85.60 83.12

Table 3: Ablation experiments on the val split of the KITTI
dataset. DE-FD stands for Dual Encoders-Fusion Decoder,
and (a), (b), (c) are variants of our JPV-Net.

other state-of-the-art object detectors in the 3D detection
tasks with a remarkable margin. In particular, our method
achieves 2.06%, 1.70%, 1.61% gains on three difficulty lev-
els of the Cyclist class over PV-RCNN (Shi et al. 2020). For
the Car class, our method provides better performance on the
Moderate and Hard difficulty levels, while dropping a little
on the Easy difficulty level.

As shown in Table 2, we also compare the performance
of our JPV-Net on the val split of the Car class with some
novel methods. Our method achieves better AP by 0.78%,
1.25%, 0.39% compared to PV-RCNN on three difficulty
levels. Besides, we present several qualitative results on the
KITTI dataset in Figure 5.

Ablation Studies
Here, we conduct extensive experiments to analyze the ef-
fectiveness of individual modules in our detector. All mod-
els are trained on the train split and evaluated on the val
split for the Car class with 40 recall positions.
Effects of Joint Point-Voxel Features and Dual Encoders-
Fusion Decoder. Profiting from the joint point-voxel fea-
tures, our proposed FP-Fusion module brings significant
improvement of 3.13% over SECOND (Yan, Mao, and Li
2018) and 0.84% over PV-RCNN (Shi et al. 2020) shown in
the first two rows of Table 3. To validate the effectiveness of
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Figure 5: Illustration of qualitative results on the KITTI test set. The two rows show the camera images and corresponding front
view of point clouds. The predicted bounding boxes are shown in red and green colors, respectively.

Methods Voxel
Features

Point
Features Easy Mod. Hard

Voxel Network X 91.82 84.48 82.23
Point Network X 91.84 84.61 82.45
DE-FD (con.) X X 91.98 84.82 82.55
DE-FD (att.) X X 92.05 84.91 82.61

Table 4: Effects of different representations for detection
performance.

V2P Projection Easy Mod. Hard
3NN 91.88 84.83 82.49
VSA 92.01 84.94 82.63

Trilinear SA 92.05 84.91 82.61

Table 5: Comparison between our Trilinear SA and other
projection methods.

aggregating both two representations, we introduce two sim-
plified networks with different refinement features. Specifi-
cally, the voxel network removes the point encoder, approx-
imately regarded as the PV-RCNN equipped with a Feature
Propagation decoder, whereas the point network abandons
the projection from voxel grids to points, which adopts two
separate branches for proposal generation and refinement.
As shown in Table 4, our network of joint point-voxel fea-
tures outperforms both of the simplified networks. It is worth
noting that the point network performs better than the voxel
network, because point features abstracted by PointNet++
can provide more fine-grained geometric information than
those from sketchy voxel features. Besides, we compare our
attentive fusion module with the concatenation operation,
and experimental results show that our method is more ef-
fective. It is therefore that the fusion of voxel and point rep-
resentations contributes remarkably to the detection perfor-
mance of our framework.
Effects of the Trilinear SA Module. We investigate the
effects of the Trilinear SA module by comparing with the
Three Nearest Neighbor (3NN) interpolation and the Voxel
Set Abstraction (VSA) module. As shown in Table 5, our
Trilinear SA module achieves similar performance to the
VSA module due to the fine-grained geometric context of
raw point clouds, and is much superior to the 3NN interpola-
tion. Free of the multi-scale grouping operation and limiting

IoU Methods Easy Mod. Hard Recall

Proposal
without IoU 90.37 81.78 78.60 66.17

3D IoU 90.59 81.87 78.74 66.77
BEV IoU 90.44 81.92 78.87 67.04

Refinement
without IoU 92.05 84.91 82.61 75.15

3D IoU 92.42 85.15 83.08 75.41
Point IoU 92.37 85.29 83.04 75.96

Table 6: Effects of the BEV IoU-aware proposal generation
and the point-IoU-aware refinement.

the number of neighbors, our method saves more memory
than the VSA module.

Effects of the BEV IoU-aware Proposal Generation and
point-IoU-aware Refinement. As shown in the forth and
fifth rows in Table 3, each of our proposed IoU methods can
further improve the detection performance, and the com-
bination of them leads to the substantial enhancement by
0.69%. We compare the mAP and recall among different
IoU prediction methods in Table 6. Specifically, we evalu-
ate the BEV and point IoU methods based on proposal stage
and final results, respectively. All our proposed methods can
partly alleviate the misalignment and improve the detection
performance and recall. In details, the BEV IoU method out-
performs others on most metrics, and the point IoU method
is mainly effective on the Moderate difficulty and recall.

Conclusion

In this work, we have presented a novel two-stage 3D object
detection framework named as JPV-Net, which incorporates
the advantages of voel and point representations. Voxel fea-
tures extracted by 3D CNNs sketch the entire 3D scenes, and
geometric point features capture spatial information to fill in
the details. Accurate proposal refinement can be performed
benefiting from representative fusion features. Our two IoU-
aware approaches are valid to alleviate the misalignment,
leading to further promotion. Experimental results on the
KITTI and ONCE datasets demonstrate that our proposed
modules compensate the weaknesses of existing works and
bring significant improvement of detection performance.
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