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Abstract

Understanding an articulated 3D object with its movable
parts is an essential skill for an intelligent agent. This pa-
per presents a novel approach to parse 3D part mobility from
point cloud sequences. The key innovation is learning ex-
plicit point correspondence from a raw unordered point cloud
sequence. We propose a novel deep network called P3-Net
to parallelize the trajectory feature extraction and the point
correspondence establishment, performing joint optimization
between them. Specifically, we design a Match-LSTM mod-
ule to reaggregate point features among different frames by a
point correspondence matrix, a.k.a. the matching matrix. To
obtain this matrix, an attention module is proposed to cal-
culate the point correspondence. Moreover, we implement a
Gumbel-Sinkhorn module to reduce the many-to-one rela-
tionship for better point correspondence. We conduct com-
prehensive evaluations on public benchmarks, including the
motion dataset and the PartNet dataset. Results demonstrate
that our approach outperforms SOTA methods on various 3D
parsing tasks of part mobility, including motion flow predic-
tion, motion part segmentation, and motion attribute (i.e., axis
& range) estimation. Moreover, we integrate our approach
into a robot perception module to validate its robustness.

Introduction
Our environment packs with plenty of articulated ob-
jects, e.g., a cabinet or a fridge. Automatically parsing an ar-
ticulated object into its 3D part mobility is indispensable for
driving an agent to complete a manipulation task (Mo et al.
2021). Fig. 1 demonstrates a typical scenario of robot-object
interaction. A human user says “please open the fridge and
carry an apple to me”. Following this instruction, the house-
hold robot should find out where the door of the fridge is
and how to open it. Therefore, the robot perception mod-
ule requires various 3D part mobility parsing techniques, in-
cluding motion flow prediction (Yi et al. 2018; Liu, Qi, and
Guibas 2019), motion part segmentation (Yi et al. 2018; Yan
et al. 2019), and motion attribute (i.e., axis & range) estima-
tion (Li et al. 2020; Hu et al. 2017; Wang et al. 2019).

Several attempts have been made to parse part mobility
from a single snapshot such as a point cloud (Wang et al.
2019; Yan et al. 2019; Mo et al. 2021) and a depth image (Li
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Figure 1: Part mobility parsing. A key aspect of the robot
manipulation application (a) is part mobility parsing. Given
a motion sequence of an articulated object (b), we obtain a
point could sequence (c-d). Then, our algorithm parses part
mobility, including motion flow prediction, motion part seg-
mentation, and motion attribute estimation (e).

et al. 2020). However, these snapshot-based approaches are
limited for a robot to accomplish interaction tasks, due to
lacking the consecutive part motion information, e.g., the
observation of a single snapshot confuses the robot whether
a closed door should be opened from the right side or the left
side. Thanks to the recent advances in real-time 3D acqui-
sition techniques such as commercial RGB-D and LiDAR
cameras, point cloud sequences are readily available for vi-
sual perception. Unlike a single static snapshot, point cloud
sequences contain meaningful semantic, spatial, and tempo-
ral information, enabling a robot to perform dynamic per-
ception of part mobility with fine granularity.

However, it is difficult to learn the spatial-temporal infor-
mation from the unordered point cloud sequences. In gen-
eral, the main challenges are threefold: (1) how to extract a
proper trajectory feature among multiple frames for each 3D
point; (2) how to establish the one-to-one, point-level, con-
secutive correspondences from the point cloud sequences;
and (3) how to optimize above 3D point trajectories. The pi-
oneer work (Shi, Cao, and Zhou 2021) obtains aligned point
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cloud sequences via a non-rigid ICP-like method (Papazov
and Burschka 2011), which takes much time for preprocess-
ing. Meanwhile, its preprocessing cannot be learned, hurting
its capacity on modeling point cloud sequences. Other ex-
isting works process point cloud sequences via correlating
frames by the nearest points (Liu, Yan, and Bohg 2019; Min
et al. 2020) or learning implicit point relationship by the at-
tention mechanism (Cao et al. 2020). However, the nearest
point usually cannot represent the actual direction of mo-
tion, particularly in part-level motions. In addition, the im-
plicit point relationship is not controllable to reveal motion
correlation between two frames.

This paper presents a novel approach to parse 3D part
mobility, including motion flow prediction, motion part seg-
mentation, and motion attribute (i.e., axis & range) estima-
tion, from point cloud sequences. Learning explicit point
correspondence is our key innovation, which can improve
the trajectory feature extraction and has better interpretabil-
ity. To this end, we design a novel deep network called
P3-Net to jointly optimize trajectory feature extraction and
point correspondence establishment, benefiting the process-
ing of unordered point cloud sequences.

Specifically, we adopt a Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber 1997) network to
process point cloud sequences because of its generalizabil-
ity in processing sequential and time-series data (Sutskever,
Vinyals, and Le 2014). However, it is problematic to uti-
lize LSTM to model point trajectories directly since the un-
ordered point cloud sequence is not organized in the form of
point trajectories. LSTM-cell has a tuple of features, which
requires the correspondence in the input data. To this end,
we propose Match-LSTM (Fig. 3), which reaggregates point
features according to a matching matrix. This way, we ob-
tain a set of motion trajectory features.

Therefore, we implement an attention-based method to
obtain the matching matrix (Fig. 4). Given two consecutive
frames, we devise a shared PointNet++ (Qi et al. 2017b) to
extract the point geometric features. We utilize two kinds of
attention mechanisms to obtain the matching matrix based
on pairs of geometric features. The first is the intra-frame at-
tention which searches for a region containing similar points
for each point in one frame, encoding non-local semantic
information. The second is inter-frame attention for find-
ing point correspondences between two consecutive frames.
These attention modules can accommodate continuously ad-
justable point-to-point relationships from two neighboring
regions in the feature level. Finally, we apply a Gumbel-
Sinkhorn algorithm (Mena et al. 2018) to transform the raw
matching matrix into an approximate doubly stochastic ma-
trix, with which we build the point correspondence.

Finally, we conduct extensive experiments with compar-
isons to many state-of-the-art (SOTA) methods (Yi et al.
2018; Liu, Qi, and Guibas 2019; Cao et al. 2020; Liu, Yan,
and Bohg 2019; Shi, Cao, and Zhou 2021) on multiple
tasks over several public benchmarks including the motion
dataset (Wang et al. 2019) and the PartNet dataset (Mo et al.
2019). Results show that our approach outperforms the ex-
isting methods on part mobility parsing, including motion
flow prediction, motion part segmentation, and motion at-

Figure 2: An overview of our P3-Net, which contains three
modules and three end tasks.

tribute estimation.
Our work makes the following contributions:

• We present a novel approach to parsing 3D part mobility
from point cloud sequences. The parsing results include
motion flow prediction, motion part segmentation, and
motion attribute (i.e., axis & range) estimation, which are
essential for robot perception.

• We design a novel deep network (P3-Net) with three
efficient modules (i.e., Match-LSTM, Attention, and
Gumbel-Sinkhorn), which can jointly optimize the tra-
jectory feature extraction and the point correspondence
establishment from point cloud sequences.

• Comprehensive evaluations of our method are conducted
on public benchmarks. Results show that our method out-
performs existing works on various tasks. Moreover, we
integrate our approach into a robot perception module to
validate its robustness.

Related Work
Deep Learning on the Point Cloud. Deep learning on
point cloud processing (Guo et al. 2021) has received signif-
icant achievements in several tasks, including classification,
segmentation, detection, etc. Moreover, researchers tend to
study new tasks that are associated with part mobility for
robot from a single point cloud (Li et al. 2020; Mo et al.
2021). Compared to deep learning on the 2D image (regular
domains), the classic convolution (Krizhevsky, Sutskever,
and Hinton 2012) is difficult to be applied to a 3D point
cloud because of the challenge of processing unordered sets.
The pioneering work, PointNet (Qi et al. 2017a), consid-
ers each point independently and aggregates point features
into the global feature using a max pooling operation to ad-
dress the problem of order-invariance. Subsequent works ex-
plored several different neighborhood aggregation mecha-
nisms to obtain hierarchical local point set features, such as
ball-query strategy (Qi et al. 2017b), CNN-like point con-
volution (Li et al. 2018), voxel-based technique (Maturana
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and Scherer 2015), graph-based approach (Simonovsky and
Komodakis 2017), etc.

Deep Learning on Point Cloud Sequence. Most recently,
researchers are not confined to study on a single point cloud.
The newly emerged applications, including motion flow pre-
diction, motion segmentation, and motion attribute estima-
tion, contribute to autonomous driving and personal assis-
tant robots. In the flow prediction, Yi et al. (Yi et al. 2018)
infer part motion flow and part segmentation by comparing
two different motion states from an articulated object. Liu et
al. (Liu, Qi, and Guibas 2019) propose FlowNet3D that es-
timates scene flow from a pair of consecutive point clouds
in an end-to-end fashion and evaluates it on the real LiDAR
scans from the KITTI scene flow dataset (Menze and Geiger
2015). In the case of segmentation, Liu et al. (Liu, Yan,
and Bohg 2019) propose MeteorNet, which is the first work
on deep learning for dynamic point cloud sequences. They
merge all frames into a single point cloud and then process
the point cloud using two different ball-query strategies: di-
rect grouping and chained-flow grouping. Yan et al. (Yan
et al. 2019) introduces RPM-Net to infer movable parts of
a single point cloud by forecasting a sequence motion with
a Recurrent Neural Network (RNN). Cao et al. (Cao et al.
2020) propose an attention-based network called ASAP-Net
used for semantic segmentation in dynamic point clouds.
In the case of motion attribute estimation, Shi et al. (Shi,
Cao, and Zhou 2021) propose a self-supervised deep learn-
ing method on regular trajectories that segments the motion
part and estimates the motion axis and motion range.

Point Correspondence. Compared to the single point
cloud, processing raw point cloud sequences has a chal-
lenge that two consecutive frames do not have explicit point
correspondences. Before deep learning became prevalent,
traditional iterative methods usually establish point corre-
spondences and then compute these correspondences’ op-
timal transformation. These methods employ either hand-
crafted (Rusu, Blodow, and Beetz 2009; Tombari, Salti, and
di Stefano 2010) or learned (Khoury, Zhou, and Koltun
2017; Deng, Birdal, and Ilic 2018; Yew and Lee 2018) 3D
local feature descriptors to estimate candidate correspon-
dences in combination with a RANSAC-like estimator (Fis-
chler and Bolles 1981). Recent works improve traditional
registration methods with deep learning (Elbaz, Avraham,
and Fischer 2017; Aoki et al. 2019; Yang et al. 2019; Choy,
Dong, and Koltun 2020; Bai et al. 2020; Poiesi and Boscaini
2021; Ao et al. 2021) in an end-to-end fashion. Moreover,
Attention mechanism (Vaswani et al. 2017; Wang et al.
2018; Wang and Solomon 2019) has been proven to ef-
ficiently model dependencies from sequences and images
without regard to their element distance and order, which
this characteristic makes it can be applied to point corre-
spondence estimation potentially.

Overview of Our Approach
We propose a novel deep network called P3-Net to parse
3D part mobility, including motion flow prediction, motion
part segmentation, and motion attribute estimation, by learn-
ing explicit point correspondence. The inputs to our net-

work are point cloud sequences {P1,P2, ...,PT } captured
from an articulated object, where T denotes the number of
frames. The network aims to first segment l motion parts
{S(i)|i = 1, 2, ..., l}. Then, for each motion part, the net-
work estimates the motion attributes, including the motion
axis and the motion range. We denote the motion axis as the
start point µ and axis orientation ω. The motion ranges have
rotation angle θ and shift distance ϕ for two different mo-
tion joints: revolute joint and prismatic joint. Moreover, the
network utilizes actual motion flow to establish point cor-
respondence. To obtain accurate point correspondence, the
network also predicts the motion flow.

P3-Net Architecture
In this section, we introduce our P3-Net architecture with
three efficient modules for 3D part mobility parsing from
point cloud sequences, which parallelizes the trajectory
feature extraction and the point correspondence establish-
ment with jointly optimizing them (Fig. 2). Specifically, The
Match-LSTM module is designed to process the unordered
point cloud sequence, which the sequence is converted to
motion trajectories by a match matrix. We utilize attention
mechanisms module to calculate the matrix using point cor-
respondence. Moreover, the Gumbel-Sinkhorn module with-
out trainable parameter convert the matrix to a approxi-
mate doubly stochastic matrix when using the matrix in the
Match-LSTM. Finally, we describe how to apply our archi-
tecture on three end tasks.

Trajectory Feature Extraction
The wide applications of LSTM in natural language process-
ing and video understanding have demonstrated its strong
ability on processing regular sequential data. The LSTM-
cell is responsible for keeping track of dependencies be-
tween elements in a sequence. Compared to the vanilla RNN
only maintaining a hidden state (ht), the LSTM-cell also
contains a cell state (ct).

Match-LSTM Module The original LSTM cannot be di-
rectly applied to unordered point cloud sequences due to
lacking the relationship between the input (xt) and a pair of
features (ht−1 and ct−1). To this end, we propose Match-
LSTM to extract trajectory feature. Formally, our Match-
LSTM accepts a point cloud sequence containing T frames
{P1,P2, ...,PT } as input (T=8 by default), where each
frame is a point cloud consisting of n points {p1, p2, .., pn}
(n=1024 by default). At each step i, our model firstly es-
timates a point correspondence matrix, a.k.a. the matching
matrix M ∈ Rn×n for two consecutive frames Pi and Pi+1

by the attention module. Then, Match-LSTM employs Mi

to transform the states, hi and ci, for future steps.
To obtain trajectory features, it is unreasonable to rear-

range Pi+1 into the same point order as Pi, to construct a
normalized point cloud for the next step, since there is no
guarantee on the one-to-one mapping between points of Pi

and Pi+1 due to the uneven point density. Therefore, we
implement the rearrangement in the feature level. Denot-
ing F1→i as trajectory features from the first frame to the
i-th frame, each of them contains a hidden state and a cell
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Figure 3: The schematic illustration of the Match-LSTM
module. ◦ is the concatenation, ⊗ is the element-wise mul-
tiplication, and ⊕ is the element-wise summation. We reag-
gregate the input ht−1 and ct−1 by a matching matrix.

state obtained by the Match-LSTM. When processing Pi+1,
Match-LSTM first reaggregates F1→i instead of F1→i+1 by
a matching matrix, and then obtains F1→i+1 followed by
a naive LSTM-cell (Fig. 3). Therefore, the direction of the
matching matrix is Pi ← Pi+1, which indicates that fea-
ture, F1→i+1, is based on the order of Pi+1. The first ad-
vantage is that it avoids fewer and fewer available points
since all points in Pi+1 are used. The second advantage is
that we only need consider the point correlation between
two consecutive frames rather than from the first frame to
the current frame. Finally, the end task results are based on
the last frame, PT . Moreover, we apply the soft correspon-
dence, which searches the top k similar points to improve
the robustness (k = 8 by default). The forward pass of the
Match-LSTM at step i+ 1 can be formulated as:

hi+1, ci+1 = LSTM(xi+1,Mi · hi,Mi · ci). (1)

Point Correspondence Establishment
To convert the raw point cloud sequence into motion trajec-
tories, we calculate the matching matrix (M). Specifically,
we first calculate point similarities by computing points’ ge-
ometric distances and then use an attention-based method
to obtain point correspondence, which is called the atten-
tion module. Moreover, we implement a Gumbel-Sinkhorn
module to reduce many-to-one relationships for better point
correspondence.

Attention Module To measure the point similarity be-
tween Pi (denoted as P for simplicity) and Pi+1 (Q), we
employ a standard attention mechanism to effectively weigh
the relevance of two points by exploiting their local geomet-
rical features. The attention function (Vaswani et al. 2017)
can be described as a mapping between a query feature vec-
tor Q and a set of key-value feature vector pairs (K,V ) as:

Att
(
Q, (K,V )

)
= SoftMax(

KT ·Q√
dQ

)V, (2)

where dQ is the dimension of Q for scaling the numbers.

Figure 4: The schematic illustration of our point correspon-
dence establishment via attention mechanisms. ⊙ represents
the dot product operation. C is 128 by default.

As for obtaining geometrical features of P and Q (i.e.,
FP ,FQ ∈ Rn×128), we employ a shared PointNet++ to
achieve it. To integrate more information inside each frame,
we adopt a self-attention mechanism to establish an intra-
frame relationship. A self-attention module computes the re-
sponse at pi by attending it toP \ pi and takes their weighted
summation. Then, we can obtain non-local point semantic
features FP,self and FQ,self ∈ Rn×128 by:

FP,self = FP +Att
(
FPWQ, (FPWK ,FPWV )

)
, (3)

where WQ, WK , and WV are trainable parameters.
To obtain the final geometric point feature, we further feed

FP,self and FQ,self into a shared Multi-Layer Perception
(MLP) network. Applying the cross-frame attention module,
we can obtain the point correspondence M (Fig. 4) by:

M = η(FP,self)× η(FQ,self), (4)

where η : Rn×128 → Rn×128 is a differentiable function,
and× is the Cartesian product which enumerates similarities
for each pair (pi, qj).

Model Training of Point Correspondence To conduct
the model training, supervision signals are needed. And here
we choose the actual motion flow as the learning super-
vision. Concretely, we translate point correspondence cues
into a motion flow for a motion sequence of an articulated
object, which can help us discover part motions. For each
point in P plus the motion flow (P → Q), we can obtain
the ground truth point correspondence M̃ by searching its
nearest point in Q. Then we utilize the cross-entropy loss to
optimize our model as:

Lmatch = H(M̃,M), (5)

where H is the cross-entropy function.

Gumbel-Sinkhorn Module Match-LSTM employs a for-
ward motion flow as supervised information (direction based
on row) and utilizes the backward direction of the match-
ing matrix (direction based on column). Meanwhile, to re-
duce many-to-one relationships, the matching matrix should
be close to a doubly stochastic matrix, which is a square
matrix whose values are non-negative, with each row and
column summing to one. Hence, the matching matrix gen-
eration can be regarded as a bipartite matching problem,
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Figure 5: Visualization of our part mobility parsing results, including motion flow prediction (a-c), motion part segmentation
(d-g), and motion attribute estimation (h-k). For motion flow prediction, (a): the first frame; (b): the first frame with predicted
motion flow; (c): the predicted second frame and the ground-truth second frame. For motion part segmentation, (d): the first
frame; (e): the last frame; (f): our segmentation results; (g): ground-truth segmentation results. For motion attribute estimation,
(h): the first frame; (i): the last frame; (j): our predicted axis; (k): ground-truth axis.

which in theory can be solved by the Hungarian algo-
rithm (Kuhn 2010). However, it is challenging to apply
the Hungarian algorithm to deep learning since it is non-
differentiable. Therefore, we adopt a differentiable approxi-
mate solution, the Gumbel-Sinkhorn algorithm proposed by
Mena et. al. (Mena et al. 2018), which is similar to an iter-
ative method of the row-based and column-based SoftMax.
To ensure M is a positive matrix, we employ a ReLU acti-
vation function (Agarap 2018) before the dot product oper-
ation. Based on the Gumbel-Sinkhorn (GS) module, we can
transform the continuous correspondence matrix M into a
discrete correspondence matrix M:

M = lim
τ→0+

GS(M/τ), (6)

where τ is a temperature parameter, and the lower tem-
perature can lead to an approximate sampling of a doubly
stochastic matrix.

End Tasks
Three end tasks including motion flow prediction, mo-
tion part segmentation, and motion attribute estimation
are considered. Formally, given a point cloud sequence
{P1,P2, ...,PT }, we first obtain the geometric feature se-
quence {F1,F2, ...,FT } resort to a Pointnet++ network due
to its simplicity and effectiveness. Meanwhile, we obtain
T − 1 matching matrix {M1,M2, ...,MT−1} computed by
the attention module. Last, we feed these features and ma-
trices into the Match-LSTM module to obtain the motion
trajectory feature F1→T . For end tasks, they accept the last
frame PT and the trajectory feature F1→T as input, since
the order of trajectory feature is based on the order of the
last frame.

Motion Flow Prediction. Motion flow prediction only ac-
cepts paired point clouds (P , Q) as the input to ensure a
fair comparison with Yi et. al. (Yi et al. 2018) and Liu et.
al. (Liu, Qi, and Guibas 2019). Moreover, we evaluate the

backward motion flow flowP←Q, because the trajectory fea-
ture is based on the order of Q. We utilize the L2 loss func-
tion Lflow, to learn the deformation flow as:

Lflow =
∥∥∥ ˜flowP←Q,flowP←Q

∥∥∥2 . (7)

Motion Part Segmentation. The input is the raw point
cloud sequence {P1,P2, ...,PT }, and our segmentation re-
sults is on the last frame PT . Then, we adopt a cross-entropy
loss function Lseg , which is designed as:

Lseg = H(ξ(PT ,F1→T ), l(PT )), (8)

where ξ : Rn×259 → Rn×c is a PointNet++, and l(PT ) is
the ground truth segmentation label.

Motion Attribute Estimation. Taking the point cloud se-
quence {P1,P2, ...,PT } as input, we estimate its motion axis
and motion range. Each point cloud sequence has one mov-
ing part. We denote the motion axis as the start point µ and
axis orientation ω. The motion range is defined by the rota-
tion angle θ and the shift distance ϕ. The part rigid transfor-
mation is noted as [R, t], where R ∈ SO(3) and t ∈ R3.

It is not suitable for using the L2 loss function because
any point along the motion axis can be the start point. By
observing that the start point is not essential for the transla-
tion and not changed around an axis, we ignore the loss Lµ

in translation, which is designed as:

Lµ = ∥Rµ̃− µ̃∥2 . (9)

Finally, we use the cosine distance for motion direction
prediction and L2 loss function for motion range estimation:

Lω,θ,ϕ = cos (ω̃, ω) + ||θ̃ − θ||2 + ||ϕ̃− ϕ||2. (10)

Experiments and Results
Dataset
The Motion Dataset (Wang et al. 2019). It is a 3D bench-
mark for part mobility analysis, which encompasses both
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Method Time EPE ACC ACC
(h) (0.05) (0.1)

Yi et al. 10.3 0.219 0.258 0.473
FlowNet3D 10 0.199 0.424 0.524

P3-Net 6.7 0.181 0.415 0.541

Table 1: Flow estimation results on the motion dataset and
the PartNet dataset. We adopt end-point-error (EPE) and
flow estimation accuracy (ACC) to measure the performance
of the predicted motion flow.

Method Time IoU ACC(h)
MeteorNet 15.7 0.82 0.88
ASAP-Net 16.5 0.81 0.89

P3-Net 15.4 0.84 0.92

Table 2: Motion semantic segmentation results on the mo-
tion dataset and the PartNet dataset.We show the IoU and
overall segmentation accuracy (ACC)

motion part segmentation and motion attribute estimation,
including 44 object categories and 2440 3D models.

The PartNet Dataset (Mo et al. 2019). It is a consistent
dataset of 3D objects annotated with fine-grained, instance-
level, and hierarchical 3D part information, and Xiang et
al. (Xiang et al. 2020) enriched the dataset with motion at-
tributes. It provides 26671 3D models in 24 categories.

Compared with the SOTA Methods
Motion Flow Prediction. We benchmark our method
against two alternatives, Yi et al. (Yi et al. 2018) and
FlowNet3D (Liu, Qi, and Guibas 2019). We use three met-
rics to test the flow prediction by all methods. We employ
3D end-point-error defined in (Yan and Xiang 2016), which
is the average L2 distance between the predicted flow and
the ground truth flow. Moreover, we adopt flow estimation
accuracy with two different thresholds defined in (Liu, Qi,
and Guibas 2019), which describes point flows within a cer-
tain precision. We report the results of P3-Net and two SOTA
methods that take a pair of point clouds as input in Tab. 1.
The results show that our method is superior to the SOTA
methods. Moreover, our network requires less training time
than theirs. Fig. 5 (left) shows that our predicted second
frame and ground-truth second frame are overlapped.

Motion Part Segmentation. We compare our network
with MeteorNet (Liu, Yan, and Bohg 2019) and ASAP-
Net (Cao et al. 2020). We choose two metrics to analyze the
performance of these methods. The mean per-part Intersec-
tion over Union (IoU) defined in (Yi et al. 2016), as well as
overall segmentation accuracy (ACC), is the popular mea-
sure for 3D segmentation. We report the IoU and ACC in to-
tal shown in Tab. 2. The results demonstrate that our P3-Net
outperforms two SOTA methods. The reason is our method
makes full use of motion-related temporal information from

Method Time MD OE θe ϕe(h)
Shi et al. 16 0.045 0.036 0.045 0.017
P3-Net 17.8 0.039 0.042 0.038 0.013

Table 3: The comparison of our method with Shi et al. in the
task of motion attribute estimation. We choose MD, OE, θe
and ϕe as the measures.

P
3 –Netstatic

P
3 –Netw/o

Match−LSTM

P
3 –Netw/o

Sink
P

3 –Net

0.7

0.8

0.9

Io
U 0.748 0.757

0.819
0.845

Figure 6: The histogram for the performance of four dif-
ferent variants P3-Netstatic, P3-Netw/oMatch−LSTM, P3-
Netw/o Sink and P3-Net.

point cloud sequences by explicit learning point correspon-
dences, which can transfer similar motion part features into
the last frame. We show the visualization in Fig. 5 (middle).

Motion Attribute Estimation. Motion attribute estima-
tion consists of motion axis prediction and motion range es-
timation. Unlike Shi et al. (Shi, Cao, and Zhou 2021), our
method can directly accept the raw point cloud sequence as
input and train in an end-to-end fashion. We utilize four met-
rics to evaluate the accuracy of the predicted motion axis
and motion range. To evaluate the motion axis, we adopt
minimum distance (MD) from the predicted start point to
the ground truth axis and orientation error (OE) between
the predicted axis and the ground truth axis, which are de-
fined in (Wang et al. 2019). We also employ the θe and ϕe to
measure the rotation range error and translation range error,
which are defined in (Shi, Cao, and Zhou 2021). We report
the results in Tab. 3, which demonstrates that our methods
achieve better performance than theirs. Visualization results
are shown in Fig. 5 (right).

Ablation Study
The Effect of Our Modules. In our approach, we adopt
the attention module to establish point correspondences.
Then, we feed the match matrix to the Match-LSTM mod-
ule to extract features. The core of Match-LSTM module
is the match matrix, otherwise it becomes a vanilla LSTM
module without the match matrix. To validate the effect
of individual modules, we compare four different variants
incrementally. P3-Netstatic inputs the last frame of each
point cloud sequence. Conversely, P3-Netw/oMatch−LSTM

inputs the point cloud sequence, which contains a vanilla
LSTM to aggregates features. P3-Netw/o Sink contains the
Match-LSTM, which the match matrix is obtain by the at-
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Figure 7: The impact of the temperature on the performance,
where mean Interaction over Union (IoU) represents the seg-
mentation accuracy.

Figure 8: The visualization of the real data. We show three
frames of the point cloud sequence (a-c). We demonstrate
the motion part segmentation and motion attribute estima-
tion on the last frame (d).

tention module without the GS module. For P3-Netstatic
and P3-Netw/oMatch−LSTM, we verified using LSTM to ob-
tain the dynamic information improves the performance. For
P3-Netw/oMatch−LSTM and P3-Netw/o Sink, the comparison
verifies the success of attention module. For P3-Netw/o Sink

and P3-Net, we found that the GS module improves the per-
formance.

The Effect of the Temperature τ . Match-LSTM requires
a matching matrix to reaggregate point features, which is
better to make the matching matrix to be a sparse matrix
because the sparse matrix can help the network to find better
point correspondence. Thus, we adopt a Gumbel-Sinkhorn
module for Match-LSTM. In the Gumbel-Sinkhorn module,
the hyperparameter, τ , controls the matching matrix’s sparse
degree, and the lower temperature can improve the sparse
degree. Nevertheless, the lower temperature usually leads to
higher variance in gradients, which makes training unstable.
Thus, we conduct an ablation study to find a better setting
of τ . We illustrate the result in Fig. 7 and find out that the
network performance improves until it peaks at around 0.3.

Qualitative Experiment on Real Scan
It often appears real data with scanning artifacts because of
the single view and noise. To process real data, we train our

Figure 9: The visualization of opening a drawer by a robot
arm (d-f), which motion attributes (i.e., axis & range) are
estimated from the motion sequence (a-c) by our method.

network with synthetic scan dataset by the simulation envi-
ronment. We choose the τ that is not too low in the Gumbel-
Sinkhorn module and adopt the soft correspondence to mit-
igate those effects. However, few large real scan datasets
contain part-level motion. To verify the effectiveness, we
scan the real data by ourselves, and Fig. 8 shows examples
of part mobility prediction on real scan data. Despite these
challenges, our network still outputs reasonable results and
demonstrates its robustness.

Robot Arm Manipulation Application

We deploy a simulation environment based on Unity and
ROS (Quigley et al. 2009) for robot arm manipulation. Fig. 9
shows an example of our system. We first demonstrate the
actual motion of the drawer, and then the robot arm repeats
the interaction by estimating the motion attribute. We adopt
GG-CNN (Morrison, Leitner, and Corke 2018) to detect the
contact point and use our network to estimate motion at-
tributes, including motion axis and range. The experiment
indicates that our method would be conducive to the house-
hold robot and personal assistant robot.

Conclusion
Part mobility parsing is essential for a robot to perceive the
surroundings and interact with the real world. In this work,
we present a novel approach to parse part mobility from
point cloud sequences via learning explicit point correspon-
dences. To this end, we design a new deep network archi-
tecture (P3-Net) with three efficient modules (i.e., Match-
LSTM, Attention, and Gumbel-Sinkhorn), which can jointly
optimize the trajectory feature extraction and the point cor-
respondence establishment. We conduct intensive experi-
ments on public benchmarks to validate the parsing perfor-
mance. Comparison results show that our approach outper-
forms other SOTA methods on various tasks. Moreover, we
integrate our approach into a robot perception module to
perform part mobility parsing. The parsing results can ef-
fectively support the robot planning and control modules to
accomplish the manipulation tasks.
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