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Abstract

The recently advanced unsupervised learning approaches use
the siamese-like framework to compare two “views” from
the same image for learning representations. Making the two
views distinctive is a core to guarantee that unsupervised meth-
ods can learn meaningful information. However, such frame-
works are sometimes fragile on overfitting if the augmenta-
tions used for generating two views are not strong enough,
causing the over-confident issue on the training data. This
drawback hinders the model from learning subtle variance
and fine-grained information. To address this, in this work we
aim to involve the soft distance concept on label space in the
contrastive-based unsupervised learning task and let the model
be aware of the soft degree of similarity between positive or
negative pairs through mixing the input data space, to further
work collaboratively for the input and loss spaces. Despite its
conceptual simplicity, we show empirically that with the solu-
tion – Unsupervised image mixtures (Un-Mix), we can learn
subtler, more robust and generalized representations from the
transformed input and corresponding new label space. Exten-
sive experiments are conducted on CIFAR-10, CIFAR-100,
STL-10, Tiny ImageNet and standard ImageNet-1K with pop-
ular unsupervised methods SimCLR, BYOL, MoCo V1&V2,
SwAV, etc. Our proposed image mixture and label assign-
ment strategy can obtain consistent improvement by 1∼3%
following exactly the same hyperparameters and training pro-
cedures of the base methods. Code is publicly available at
https://github.com/szq0214/Un-Mix.

1. Introduction
Unsupervised visual representation learning has attracted in-
creasing attention [Noroozi and Favaro 2016, Zhang, Isola,
and Efros 2016, Oord, Li, and Vinyals 2018, Hjelm et al.
2018, Gidaris, Singh, and Komodakis 2018, He et al. 2019,
Chen et al. 2020a, Kim et al. 2020, Grill et al. 2020, Caron
et al. 2020, Kalantidis et al. 2020] due to its enormous po-
tential of being free from human-annotated supervision, i.e.,
its extraordinary capability of leveraging the boundless unla-
beled data. Previous studies in this field address this problem
mainly in two directions: one is realized via a heuristic pretext
task design that applies a transformation to the input image,
such as colorization [Zhang, Isola, and Efros 2016], rota-
tion [Gidaris, Singh, and Komodakis 2018], jigsaw [Noroozi
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and Favaro 2016], etc., and the corresponding labels are
derived from the properties of the transformation on the un-
labeled data. Another direction is contrastive learning based
approaches [He et al. 2019, Chen et al. 2020a] in the la-
tent feature space, such as maximizing mutual information
between different views [Bachman, Hjelm, and Buchwalter
2019, Tian, Krishnan, and Isola 2019], momentum contrast
learning [He et al. 2019, Chen et al. 2020b] with instance
discrimination task [Wu et al. 2018, Ye et al. 2019], larger
batch sizes and nonlinear transformation [Chen et al. 2020a],
symmetrized distance loss without negative pairs [Grill et al.
2020], contrasting cluster assignment [Caron et al. 2020].
SimSiam [Chen and He 2020] further found stop-gradient
is critical to prevent from collapsing. These methods have
shown great promise on this task, achieving state-of-the-art
accuracy. However, these methods focus more on designing
the training frameworks and loss formulations, ignoring cru-
cial correlations between the input and loss spaces to enable
fine-grained degrees of soft similarities between positive or
negative pairs in the siamese-like unsupervised frameworks.

The motivation of our work stems from some simple obser-
vations of label smoothing in supervised learning [Szegedy
et al. 2016]. Interestingly, it can be observed from visualiza-
tions of previous literature [Müller, Kornblith, and Hinton
2019, Shen et al. 2021] that label smoothing tends to force the
output prediction of networks being less confident (i.e., lower
maximum probability of predictions), but the model repre-
sentation and overall accuracy still increase significantly. The
explanation for this seemingly contradictory phenomenon
is that with label smoothing, the learner is encouraged to
treat each incorrect instance/class as equally probable. Thus,
more patterns are enforced to be explored in latent repre-
sentations, enabling less variation across predicted instances
and/or across semantically similar samples. This further pre-
vents the network from overfitting on the training data. Oth-
erwise, the network will be biased to produce over-confident
predictions when evaluated on slightly different test samples.
Considering that contrastive learning with InfoNCE loss is
essentially classifying positive congruent and negative in-
congruent pairs with cross-entropy loss, such an observation
reveals that a typical contrastive-based method can also en-
counter the over-confidence issue as in supervised learning.
Perspective of input and label spaces on un-/self-
supervised learning. Contrastive learning methods adopt
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Figure 1: Illustration of the motivation in this work. We take
the contrastive-based unsupervised learning approaches as
an example. Contrastive learning measures the similarity of
sample pairs in the latent representation space. With flattened
prediction/label, the model is encouraged to treat semanti-
cally similar/dissimilar instances as equally probable, which
will smooth decision boundaries and prevent the learner from
becoming over-confident.

instance classification pretext, the features from different
transformations (data augmentation) of the same images are
compared directly to each other. The label of each image pair
is binary (positive or negative) or continuous distance metrics.
Augmentation is used as a transformation to make the dis-
tance of the same image to be larger. Different from data aug-
mentation that enlarges the dissimilar distance but the label
for calculating loss is still unchanged, our proposed mixtures
will manipulate the semantic distance between two images,
while adjusting the label for unsupervised loss accordingly.
In other words, data augmentation only changes the distance
of input space, i.e., heavier data augmentation makes two
images look more different, but remains unchanged in label
space in training. However, mixture will modulate both input
and label spaces simultaneously and the degree of change is
controllable, which can further help capture the fine-grained
representations from the unlabeled images and force mod-
els to learn more precise and smoother decision boundaries
on the latent features. As a result, neural networks trained
with new spaces learn flattering class-agnostic representa-
tions, that is, with fewer directions of variance on seman-
tically similar classes. The mechanism of image mixtures
in unsupervised learning is generally different from the data
augmentation. Whereas, from the perspective of enlarging the
training data space, mixtures can be considered as a broader
concept of augmentation scheme in unsupervised learning.

We verify our method on five recently proposed unsuper-
vised learning methods: SimCLR [Chen et al. 2020a], MoCo
V1&V2 [He et al. 2019, Chen et al. 2020b], BYOL [Grill
et al. 2020], SwAV [Caron et al. 2020] and Whitening [Er-
molov et al. 2020b] as our baseline approaches. We conduct
extensive experiments on CIFAR-10, CIFAR-100, STL-10,
Tiny ImageNet, ImageNet-1K classification, as well as down-
stream object detection task on PASCAL VOC and COCO to
demonstrate the effectiveness of our proposed approach. We
observe that our mixture learned representations are extraor-
dinarily effective for the downstream detection task which
empirically proves that our method can improve the model’s
generalizability. For instance, our 200-epoch trained model
outperforms the baseline MoCo V2 by 0.6% (AP50), and is
even better than the MoCo V2 800-epoch model.

Our contributions are summarized as follows:

• We provide empirical analysis to reveal that mixing input
images and smoothing labels could improve performance
favorably for a variety of unsupervised learning methods.
We applied two simple image mixture methods based on
previous literature [Zhang et al. 2018, Yun et al. 2019] to
encourage neural networks to predict less confidently.

• We show that input and label spaces matter. We provide
empirical evidence on how flattening happens under ideal
conditions of latent space, validate it empirically on prac-
tical situations of contrastive learning, connect it to previ-
ous works on analyzing the discipline inside the unsuper-
vised learning behavior. We explain the difficulties raised
with original image space when visualizing distributions
of predictions. Thus, we conclude that good input and
label spaces are crucial for unsupervised optimization.

• Our proposed method is simple, flexible and universal.
It can be utilized in nearly all mainstream unsupervised
representation learning methods and only requires a few
lines of PyTorch codes to incorporate in an existing frame-
work. We demonstrate with a variety of base approaches
and datasets, including SimCLR, BYOL, MoCo V1&V2,
SwAV, etc., on CIFAR-10, CIFAR-100, STL-10, Tiny Im-
ageNet and ImageNet-1K. Our method obtains consistent
accuracy improvement by 1∼3% across them.

2. Related Work
(i) Un/Self-supervised Visual Feature Learning. Unsuper-
vised learning aims to exploit the internal distributions of
data and learn a representation without human-annotated la-
bels. To achieve this purpose, early works mainly focused
on reconstructing images from a latent representation, such
as autoencoders [Vincent et al. 2008, 2010, Masci et al.
2011], sparse coding [Olshausen and Field 1996], adversar-
ial learning [Goodfellow et al. 2014, Donahue, Krähenbühl,
and Darrell 2016, Donahue and Simonyan 2019]. After that,
more and more studies tried to design handcrafted pretext
tasks such as image colorization [Zhang, Isola, and Efros
2016, 2017], solving jigsaw puzzles [Noroozi and Favaro
2016], counting visual primitives [Noroozi, Pirsiavash, and
Favaro 2017], rotation prediction [Gidaris, Singh, and Ko-
modakis 2018]. Recently, contrastive-based visual represen-
tation learning [Hadsell, Chopra, and LeCun 2006] has at-
tracted much attention and achieved promising results. For
example, Oord et al. [Oord, Li, and Vinyals 2018] proposed
to use autoregressive models to predict the future samples
in latent space with probabilistic contrastive loss. Hjelm et
al. [Hjelm et al. 2018] proposed to maximize mutual infor-
mation from the encoder between inputs and outputs of a
deep network. Bachman et al. [Bachman, Hjelm, and Buch-
walter 2019] further extended this idea to multiple views
of a shared context. Moreover, He et al. [He et al. 2019]
proposed to adopt momentum contrast to update the models
and Misra&Maaten [Misra and van der Maaten 2019] devel-
oped the pretext-invariant representation learning strategy
that learns invariant representations from the pre-designed
pretext tasks. The clustering-based methods [Caron et al.
2018, 2020] are also a family for the unsupervised visual
feature learning. (ii) Smoothing Label/Prediction in Super-
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vised Learning. Explicit label smoothing has been adopted
successfully to improve the performance of deep neural mod-
els across a wide range of tasks, including image classifica-
tion [Szegedy et al. 2016], object detection [Krothapalli and
Abbott 2020], machine translation [Vaswani et al. 2017], and
speech recognition [Chorowski and Jaitly 2016]. Moreover,
motivated by mixup, Verma et al. [Verma et al. 2019] pro-
posed to implicitly interpolate hidden states as a regularizer
that encourages neural networks to predict less confidently
(softer prediction) on interpolations of hidden representations.
They found that neural networks trained with this kind of
operation can learn flatter class representations that possess
better generalization, as well as better robustness to novel
deformations and even adversarial examples in testing data.
Some recent work [Müller, Kornblith, and Hinton 2019, Shen
et al. 2021] further demonstrated that label smoothing im-
plicitly calibrates the prediction of learned networks, so that
the confidence of their outputs is more aligned with the true
labels of the trained dataset. However, all of these studies
lie in supervised learning. (iii) Differences to i-Mix [Lee
et al. 2021] and MixCo [Kim et al. 2020]. These two con-
current works also employ the idea of image mixtures on
unsupervised learning but the similarity to our Un-Mix is
more in the spirit than the concrete solution. We achieve the
mixture operation by using a self-mixture strategy within a
mini-batch of samples during training, which is simpler and
more manageable for incorporating the proposed method into
the existing unsupervised frameworks for mixture purpose.

3. Our Approach
In this section, we begin by presenting different paradigms
using mixtures in the unsupervised learning framework, in-
cluding mixing both two branches and a single one. Then,
we discuss image mixture strategies and the circumstances
that contain a memory bank or not. Lastly, we elaborate the
loss functions for our approach and provide the analysis for
explaining the information gain of our proposed method.
Conventional siamese-like framework for unsupervised
learning. Given an image I , we first augment it to two trans-
formed views IA and ÎA by applying a pre-defined random
transformation. Then, we feed into a two-branch framework
with a projection head to produce latent representations. Fi-
nally, we define metric loss, such as InfoNCE, distance losses
for optimization, as shown in Fig. 2 (1).
3.1. Paradigms of Mixtures
The proposed mixtures follow the image transformations of
input samples. We define IMA and ÎMA as the mixed images
which can be {Ig m, Ir m} (global and region-level image
mixtures, respectively) according to the type of mixture oper-
ation we choose in the current training iteration. The mixed
images are forwarded through the target network fθ, then a
non-linear projection head pθ is adopted to obtain the repre-
sentations of the input sample for the unsupervised distance
loss. Image mixture with relabeling can provide additional
subtle information to force two branches unequally distant,
instead of solely learning positive or negative pairs for the rep-
resentations. In the following, we discuss two circumstances
in such a framework, as shown in Fig. 2 (2) (3).
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Ĵ#IH#

Figure 2: Comparison of different paradigms of utilizing
mixtures in unsupervised learning. (1) is the conventional
instance classification based framework. (2) and (3) are the
strategies of applying the proposed image mixtures. “self-
mixtures” denotes that the images of mixture operations only
happen in current batch samples. The dashed bounding box
represents the mixed image and its representation.

Both IA and ÎA are mixed (Fig. 2 (2)). This solution is to
mix both the two views of an input image. Thus, the simi-
larity between mixtures will remain unchanged. While this
mixture strategy on two branches will suffer from undesirable
equilibria as the mixture ratio of images is not used on loss
space, namely, the additional information of mixture degree
is not fully utilized. We found this strategy is effective on
relatively small-scale datasets like CIFAR, STL-10, etc., but
is barely helpful on the large-scale ImageNet-1K.
Only IA is mixed (Fig. 2 (3)). This is the main strategy that
we use in this work. Compared to the one above, this solution
is more efficient since it only needs one additional forward
pass. Also, reverse order outputs can be obtained by permu-
tation from normal order outputs. From our experimental
results, it is also more effective for obtaining accuracy gain.

3.2. Image Mixture Strategies
We introduce two widely-used mixture methods in supervised
learning: (i) Mixup [Zhang et al. 2018] and (ii) Cutmix [Yun
et al. 2019]. Since they are designed for supervised learning
with available ground-truth for calculating mixed labels, in
this work, we focus on exploring the way to sample training
data in a mini-batch and assign new softened distance loss
formulations in the unsupervised learning frameworks.
Mixup can be written as:

Ig m ← αI1 + (1− α)I2 (1)
where {I1, I2} denote the images that we want to mix. Ig m
is the output mixture, α ∈ [0, 1] is the mixture coefficient.
Cutmix replaces within particular locations of a region:

Ir m ←Mb � I1 + (1−Mb)� I2 (2)
where Mb ∈ {0, 1}I denotes a binary mask as defined
in [Yun et al. 2019]. 1 is a binary mask with all values equal-
ing one. � denotes element-wise multiplication.
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Both Mixup and Cutmix can be regarded as the regulariza-
tion techniques to prevent the models from overfitting and
make the predictions less confident.
Dealing with Memory Banks (MB). In this part, we de-
scribe different scenarios regarding how to design the frame-
work using the proposed mixture training strategy if the base
model contains a memory bank or not. Our goal is to enhance
visual feature representations by leveraging additional mix-
ture information and the different mixing ratios between two
images in the unsupervised scheme. To this end, we propose
a way to re-measure the distance of one pair of samples for
the MB-based or non-MB-based unsupervised frameworks.
(i) Without a memory bank. Under this circumstance, the
unsupervised frameworks will use positive pairs only for
training (e.g., BYOL [Grill et al. 2020]) or contrastive-based
pipelines (e.g., SimCLR [Chen et al. 2020a]). Therefore, we
only need to design the new distance of the positive pairs, as
shown in Fig. 4. In our proposed self-mixture strategy, the
new distance scale Ddis of a positive pair will be:

IMA = λI1 + (1− λ)I2,

Ddis

(
IMA , ÎA

)
=

{
λ if ÎA = Î1,

1− λ if ÎA = Î2.

(3)

where Î1, Î2 are another views of I1, I2 from the same images.
In traditional unsupervised scheme, they are a positive pair.
λ is the mix ratio controlled by the degree of mixture we use
in the current iteration of training, when employing global
mixture, λ = α as in Eq. 1, otherwise, λ = Mb

1 as in Eq. 2.
(ii) With a memory bank. Using a memory bank with mix-
tures will solely affect the constitution of negative pairs as
the distance/label between them is always “zero” in instance
classification based contrastive learning. We keep the dis-
tance of negative pairs as original values, whatever they are
the combination of one original and one mixed images. In
particular, negative pairs (samples) can be {original, origi-
nal}, {original, mixed}, {mixed, mixed} images. We found
in experiments that maintaining one MB with the representa-
tions from original/unmixed images is enough to obtain good
performance, we explain this through the enlarged training
data space. However, this is inapplicable in the multi-scale
training scheme, as we will discuss later in our Appendix.
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Figure 3: Illustration of self-mixture within a mini-batch. In
each iteration, we randomly choose one mixture operation for
all the current samples with a pre-defined probability P , thus
the formulation of λ depends on the chosen mixture type.

3.3. Loss Functions
Self-Mixtures within Per Mini-Batch of Training. In our
method, the mixing ratio of two images is the core gifted extra
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Figure 4: The distance matrix of proposed mixture strategy
between the mixed IA (i.e., IMA ) and ÎA for calculating the
softened distance loss. Here we take six images in the mini-
batch as an example.

information that can be utilized in the unsupervised meth-
ods. Also, properly proposing a strategy to reflect the image
mixture information in the loss space is crucial for leverag-
ing image mixture in the self-supervised domain. Here we
introduce the strategy of how to retain such information for
loss calculation. We propose to directly mix the first image
with the last one in each mini-batch of training, the second
one is mixed with the penultimate, and so on. Our strategy
is visualized in Fig. 3 and Fig. 4, the advantages of such a
strategy are: (i) Different from employing individual ratio for
each image in one mini-batch, the proposed scheme can be
realized through calculating the batch loss with a weighted
coefficient, which is well-regulated, manageable, more effi-
cient for implementing and can facilitate the design of label
assignment in unsupervised frameworks. (ii) The proposed
strategy will make the soft distances between the mixtures
and original samples to be consistent across all pairs within a
mini-batch. Hence, the calculation rule of loss function will
be simplified and independent from the different frameworks
that are employed, for instance, contrastive learning frame-
works that use both positive and negative pairs or positive
only, memory bank or without it, etc., as scaling similarity
distance is equivalent to weighting these loss values.

We now elaborate the loss functions. We compute an extra
loss from a mixed pair of images. Given two mixed images
IMA and ÎMA from two different augmentations of the same
image (the case that both branches are mixed), we compute
their loss together with the original one as the following:

Lboth = Lori(IA, ÎA) + Lm(IMA , ÎMA )︸ ︷︷ ︸
extra term of mixtures

(4)

where Lori is the original loss function corresponding to the
base method we use, like InfoNCE, `2 distance, etc., and Lm
measures the fit between samples IMA and ÎMA .
Finally, we define the following sum of three loss terms from
the original and mixed predictions as the ultimate objective:

Lfinal=Lori+ λLm(I
M
A (↓), ÎA)︸ ︷︷ ︸

normal order of mixtures

+(1−λ)Lm(I
M
A (↑), ÎA)︸ ︷︷ ︸

reverse order of mixtures

(5)

where the last two loss terms measure the fit between samples
IMA and ÎA, as detailed above. We take contrastive loss with
InfoNCE as an example (notations refer to MoCo):
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Lm(IMA (↓), ÎA)︸ ︷︷ ︸
normal order of mixtures

=− log
exp (qm · k∗/τ)∑K
i=0 exp (qm · ki/τ)

Lm(IMA (↑), ÎA)︸ ︷︷ ︸
reverse order of mixtures

= − log
exp (qrm · k∗/τ)∑K
i=0 exp (qrm · ki/τ)

(6)

where qm, qrm are normal/reverse orders of mixed queries in
a mini-batch, k∗ is the unmixed single key, τ is temperature.
Justifications from the Mutual Information (MI) Theory.
Suppose the latent representations of inputs are calculated as
zori = fθ1 (Iori) , zmix = fθ2 (Imix). According to [Oord,
Li, and Vinyals 2018], the mutual information I(zori, zmix)
of InfoNCE loss can be formulated as:

I (zori, zmix) ≥ log(N)− LN (7)

where N is the number of training samples (one positive and
N -1 negative samples). To maximize the lower bound of MI,
one way is to minimize the InfoNCE objective LN , while, I
can also increase when N becomes larger which equivalently
maximizes a lower bound on I(zori, zmix). Considering con-
trastive pairs without mixture, we build

(
n
1

)
relationships (n

is the number of images) in the dataset, only (n-1) images
are negative pairs to the original one. After adding mixtures
of two images, the MI we utilized is

(
n
2

)
relationships. In gen-

eral, using additional mixtures (equivalent to enlarge values
of N ) does increase the tightness of mutual information I .

4. Experiments
We demonstrate the effectiveness and superiority of our Un-
Mix learned models with unsupervised pretraining on a vari-
ety of datasets. We first evaluate the representation ability in
linear evaluation protocol. We then measure its transferability
using object detection task on PASCAL VOC and COCO.

4.1. Datasets
CIFAR-10/100 [Krizhevsky and Hinton 2009] consist of tiny
colored natural images with a size of 32×32. In each dataset,
the train and test sets contain 50K and 10K images.
STL-10 [Coates, Ng, and Lee 2011] is inspired by CIFAR-10
with 10 classes, while each class has fewer labeled training
examples (500 training images and 800 test images per class,
and 100K unlabeled images). The size of images is 96×96.
Tiny ImageNet is a lite version of ImageNet which contains
200 classes with images resized down to 64×64. The train
and test sets contain 100K and 10K images, respectively.
ImageNet-1K [Deng et al. 2009], aka ILSVRC 2012 classi-
fication dataset consists of 1000 classes, with a number of
1.28 million training images and 50K validation images.

4.2. Baseline Approaches
We perform our evaluation of image mixtures and label as-
signment strategy on the following five recently proposed
unsupervised methods with state-of-the-art performance:
MoCo V1&V2 [He et al. 2019, Chen et al. 2020b]. MoCo
is a contrastive learning method using momentum updating
for unsupervised visual feature learning. MoCo V2 further
improves momentum contrastive learning by adopting an
MLP projection head and more/heavier data augmentation
from the following SimCLR [Chen et al. 2020a].

SimCLR [Chen et al. 2020a]. SimCLR is a simple frame-
work for contrastive learning without requiring specialized
architectures or a memory bank. It introduces a learnable non-
linear transformation that substantially improves the quality
of the learned representations.
BYOL [Grill et al. 2020]. BYOL adopts online and target
networks that learn from each other. It trains the online net-
work to predict the target network representation of the same
image under a different augmented view. At the same time,
it updates the target network with a slow-moving average of
the online network without the negative pairs.
SwAV [Caron et al. 2020]. SwAV is a clustering-based
method for unsupervised learning. Unlike contrastive learn-
ing that compares features directly, it clusters the data while
enforcing consistency between cluster assignments produced
for different augmentations of the same image.
Whitening [Ermolov et al. 2020b]. Whitening is a loss func-
tion proposed for unsupervised representation learning which
is based on the whitening of the latent space features. The
whitening operation has a scattering effect to avoid degener-
ate solutions of collapsing to a simple status.
Our baseline approach implementations follow their official
codebases which are all publicly available [He et al. 2020b,a,
Ermolov et al. 2020a, Caron et al. 2020].

4.3. Implementation Details in Pre-training
The goal of our experiments is to demonstrate the effective-
ness of our proposed image mixture and label assignment
upon various unsupervised learning frameworks, isolating
the effects of other settings, such as the architectural choices,
data augmentations, hyper-parameters. As this, we use the
same encoder ResNet-18 for all non-ImageNet experiments
and ResNet-50 for ImageNet-1K. We use the same training
settings, hyper-parameters, etc., as our comparisons. There-
fore, all gains in this paper are “minima”, and further tuning
the hyper-parameters in the baseline approaches to fit our
mixture strategies might achieve more considerable improve-
ment, while it is not the focus of this work.
Non-ImageNet Datasets. Following [Ermolov et al. 2020b],
on CIFAR-10 and CIFAR-100, we train for 1,000 epochs
with learning rate 3×10−3; on Tiny ImageNet, 1,000 epochs
with learning rate 2×10−3; on STL-10, 2,000 epochs with
learning rate 2×10−3. We also apply warm-up for the first
500 iterations, and a 0.2 learning rate drop at 50 and 25
epochs before the end.
Standard ImageNet-1K. Unless otherwise stated, all the
hyperparameter configurations strictly follow the baseline
MoCo V2 on ImageNet-1K. For example, we use a mini-
batch size of 256 with 8 NVIDIA V100 GPUs on ImageNet-
1K, considering our primary objective is to verify the effec-
tiveness of proposed method instead of suppressing state-
of-the-art results. For image mixtures and label assignment,
we use γ = 1.0 in beta sampling for all experiments, and
P = 0.5 for non-ImageNet and 0 for ImageNet-1K based on
our ablation study.

4.4. Linear Classification
Our linear classification experiments consist of two parts:
(i) ablation studies on small datasets including CIFAR-10,

2220



CIFAR-10 CIFAR-100(3) MoCo

(2) BYOL

(1) SimCLR

Figure 5: Training loss and testing accuracy of SimCLR, BYOL and MoCo on CIFAR-10/100.
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Figure 6: Acc. with various P .

CIFAR-10 γ in Beta sampling
1.0 0.8 0.5

Acc. (%) 94.20 94.12 93.93

Table 1: Sensitivity for γ.

ImageNet-1K P of global mixture
1.0 0.5 0.0

Acc. (%) 67.6 68.3 68.6

Table 2: Sensitivity for P .

Figure 7: Linear classification accuracy of Top-1 (left) and
Top-5 (right) with MoCo V2 and ours on ImageNet-1K
dataset.

CIFAR-100, STL-10 and Tiny ImageNet with various base
approaches to explore the optimal mixture hyperparameters
and demonstrate the effectiveness of our strategy; (ii) the
final results on the standard ImageNet-1K using MoCo V2.
Ablation Study. We investigate the following aspects in our
methods: (i) the probability P between global and region
mixtures; (ii) sensibility of γ in beta distribution sampling.

(1) Probability P for choosing global or region-level
mixtures in each iteration. The results are shown in Fig. 6
(non-ImageNet) and Tab. 2 (ImageNet-1K). They show that
P=0.5 is optimal for small datasets and choosing region-level
only (i.e., P = 0) is best for the large-scale ImageNet-1K.

(2) Beta distribution hyperparameter γ. The combina-
tion ratio λ between two sample points is sampled from the
beta distribution Beta(γ, γ). Our results on different γs are
presented in Tab. 1, γ = 1.0 is the best and we use it for
all our experiments, which means that λ is sampled from a

Figure 8: Comparison under different training budgets.

uniform distribution [0, 1].
Results on CIFAR-10/100, STL-10 and Tiny ImageNet.
Our results are shown in Tab. 3 and Fig. 5. All experiments
are conducted on a single scale since the input sizes of these
datasets are small, also for fair comparisons to baselines. Our
method obtains consistency of 1∼ 3% gains. In particular,
our loss values are usually larger than the baselines (except
BYOL, which is unstable since it has no negative pairs), but
our accuracy is still superior. We also verify with different
training budgets on SwAV, are shown in Fig. 8. It can be seen
our method still significantly benefits from longer training.
Results on ImageNet-1K with MoCo V2. As in Tab. 4, our
method obtain 1.1% improvement than baseline MoCo V2.
Employing multi-scale training as in Appendix further boosts
accuracy by 2.3%. It is possible that tuning hyperparame-
ters in MoCo V2, e.g., temperature to fit our mixed training
samples has potential to further improve performance.

4.5. Downstream Tasks
In this section, we evaluate the transferability of our learned
representation on the object detection task. We use PASCAL
VOC [Everingham et al. 2010] and COCO [Lin et al. 2014]
as our benchmarks and we strictly follow the same setups
and hyperparameters of the prior works [He et al. 2019, Chen
et al. 2020b] on the transfer learning stage. We use Faster
R-CNN [Ren et al. 2015] and Mask R-CNN [He et al. 2017]
implemented in Detectron2 [Wu et al. 2019] with a ResNet-
50 [He et al. 2016] backbone.
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Method CIFAR-10 CIFAR-100 STL-10 Tiny ImageNet
linear ours 5-nn ours linear ours 5-nn ours linear ours 5-nn ours linear ours 5-nn ours

SimCLR 91.80 92.35 88.42 89.74 66.83 68.83 56.56 58.82 90.51 90.86 85.68 86.16 48.84 49.58 32.86 34.46
BYOL 91.73 94.20 89.45 93.03 66.60 71.50 56.82 63.83 91.99 93.34 88.64 90.46 51.00 53.39 36.24 39.27
Whitening (W = 2) 91.55 93.04 89.69 91.33 66.10 70.12 56.69 61.28 90.36 92.21 87.10 88.88 48.20 51.33 34.16 36.78
Whitening (W = 4) 91.99 93.18 89.87 91.70 67.64 69.70 56.45 60.74 91.75 91.96 88.59 88.71 49.22 50.67 35.44 36.13
MoCo (Sym. Loss) – – 90.49∗ 92.25∗ – – 65.49∗ 68.83∗ – – – – – – – –

Table 3: Linear and 5-nearest neighbors classification results for different loss functions and datasets with a ResNet-18 backbone.
Table is adapted from [Ermolov et al. 2020b] and multi-scale training is not used for fair comparisons. Note that MoCo is trained
with symmetric loss, 1000 epochs and evaluated with 200 in kNN monitor∗ following [He et al. 2020a].

Arch. Method #Params Budget (#ep) Top-1 (%)
R50 MoCo 24 200 60.6
R50 CMC 24 200 66.2
R50 SimCLR 24 200 66.6
R50 MoCo V2 24 200 67.5
R50 MoCo V2 + Ours 24 200 68.6↑1.1
R50 MoCo V2 + Ours† 24 200 69.8↑2.3
R50 PIRL 24 800 63.6
R50 SimCLR 24 1000 69.3
R50 MoCo V2 24 800 71.1
R50 MoCo V2 + Ours 24 800 71.8↑0.7

Table 4: Comparison of linear classification on standard
ImageNet-1K. †denotes the result using multi-scale train-
ing, more details can be referred to our Appendix. Note that
all the hyperparameters follow the baseline MoCo V2 so they
might not be optimal on our mixture training scheme, the
gains are generally “minima”.

.

PASCAL VOC. We fine-tune our models on the split of
trainval07+12 and evaluate on the VOC test2007
following [Wu et al. 2018, He et al. 2019, Misra and van der
Maaten 2019]. All models are fine-tuned for 24k iterations
on VOC. It can be observed that significant improvements
are consistently obtained by our proposed mixtures.
COCO. We fine-tune on the train2017 and evaluate
on the val2017 split. The total training budget is 180K
iterations. The whole schedule follows the Detectron2
(coco R 50 C4 2×) default setting. Our results are shown
in Tab. 5 (b), it can be observed that our results are consis-
tently better than the baseline by a significant margin.

4.6. Visualization and Analysis
Learned representations. To further explore what our
model indeed learned, we visualize the embedded features
in Fig. 9 from baseline MoCo (left) and our mixture model
(right) using t-SNE with the last conv-layer features (128-
dimension) from ResNet-18. Our model has more separate
embedding clusters, especially on classes 9, 8 and 1. We also
visualize the histogram of weights in particular convolutional
layers, as shown in our Appendix with discussions.
Limitation. The only limitation we observed in our method
is that it will take one additional forward pass for the mixed
images. Since in our strategy, calculating the normal and
reverse order of images’ representations can share the same
forwarding operation and there is no extra back-propagation,
so the total extra cost will be less than one-third. We em-
phasize that the information gain of our method is from the

Pre-train AP50 AP AP75

Random init. 60.2 33.8 33.1
Supervised IN-1M 81.3 53.5 58.8
MoCo V2 (200ep) 82.4 57.0 63.6

Ours (200ep) 83.0↑0.6 57.7↑0.7 64.3↑0.7

MoCo V2 (800ep) 82.5 57.4 64.0
Ours (800ep) 83.2↑0.7 58.1↑0.7 65.2↑1.2

Ours (200ep), MS 83.2 57.8 64.5

(a) Faster R-CNN, R50-C4 on PASCAL VOC
Pre-train AP AP50 AP75

Random init. 35.6 54.6 38.2
Supervised IN-1M 40.0 59.9 43.1
MoCo V2 (200ep) 40.9 60.7 44.4

Ours (200ep) 41.2↑0.3 60.9↑0.2 44.7↑0.3

(b) Mask R-CNN, R50-C4 2× on COCO
Table 5: Object detection results fine-tuned on PASCAL VOC
(a) and COCO (b) datasets. Models are fine-tuned with the
same number of iterations as the baseline, e.g., 24k on VOC.
On the VOC dataset, we run three trials and report the means.
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Figure 9: Visualizations of feature embeddings on CIFAR-10.

mixed representations and mixture ratios, rather than the
“longer” training. The mechanism of our method is different
from longer training and cannot be replaced by it.

5. Conclusion
We have investigated the feasibility of mixture operations
in an unsupervised scheme, and proposed the strategy of
image mixtures and corresponding label re-assignment for
flattening inputs and predictions in various architectures of
unsupervised frameworks. Through extensive experiments on
SimCLR, BYOL, MoCo V1&V2, etc., and downstream tasks
like object detection, we have shown that neural networks
trained with our newly constructed input space have better
representation capability in terms of generalization and trans-
ferability, as well as better robustness for different pretext
tasks or frameworks (contrastive or non-contrastive learning,
with or without memory banks, multi-scale training, etc.).
Considering its simplicity to implement and it only incurs
rational extra cost, we hope the proposed method can be a
useful technique for the unsupervised learning problem.
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Donahue, J.; Krähenbühl, P.; and Darrell, T. 2016. Adversar-
ial feature learning. arXiv preprint arXiv:1605.09782.
Donahue, J.; and Simonyan, K. 2019. Large scale adversarial
representation learning. In Advances in Neural Information
Processing Systems, 10541–10551.
Ermolov, A.; Siarohin, A.; Sangineto, E.; and Sebe, N. 2020a.
https://github.com/htdt/self-supervised.
Ermolov, A.; Siarohin, A.; Sangineto, E.; and Sebe, N. 2020b.
Whitening for self-supervised representation learning. arXiv
preprint arXiv:2007.06346.
Everingham, M.; Van Gool, L.; Williams, C. K.; Winn, J.;
and Zisserman, A. 2010. The pascal visual object classes
(voc) challenge. International journal of computer vision,
88(2): 303–338.
Gidaris, S.; Singh, P.; and Komodakis, N. 2018. Unsupervised
Representation Learning by Predicting Image Rotations. In
ICLR.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-
Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014.
Generative adversarial nets. In Advances in neural informa-
tion processing systems, 2672–2680.
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