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Abstract

Unsupervised point cloud registration algorithm usually suf-
fers from the unsatisfied registration precision in the partially
overlapping problem due to the lack of effective inlier eval-
uation. In this paper, we propose a neighborhood consensus
based reliable inlier evaluation method for robust unsuper-
vised point cloud registration. It is expected to capture the dis-
criminative geometric difference between the source neigh-
borhood and the corresponding pseudo target neighborhood
for effective inlier distinction. Specifically, our model con-
sists of a matching map refinement module and an inlier eval-
uation module. In our matching map refinement module, we
improve the point-wise matching map estimation by integrat-
ing the matching scores of neighbors into it. The aggregated
neighborhood information potentially facilitates the discrimi-
native map construction so that high-quality correspondences
can be provided for generating the pseudo target point cloud.
Based on the observation that the outlier has the significant
structure-wise difference between its source neighborhood
and corresponding pseudo target neighborhood while this dif-
ference for inlier is small, the inlier evaluation module ex-
ploits this difference to score the inlier confidence for each
estimated correspondence. In particular, we construct an ef-
fective graph representation for capturing this geometric dif-
ference between the neighborhoods. Finally, with the learned
correspondences and the corresponding inlier confidence, we
use the weighted SVD algorithm for transformation estima-
tion. Under the unsupervised setting, we exploit the Huber
function based global alignment loss, the local neighborhood
consensus loss, and spatial consistency loss for model op-
timization. The experimental results on extensive datasets
demonstrate that our unsupervised point cloud registration
method can yield comparable performance.

Introduction
Point cloud registration, as a fundamental and important
topic in the 3D vision field, has been widely applied in var-
ious vision tasks, including 3D scene reconstruction (Agar-
wal et al. 2011; Schonberger and Frahm 2016), object pose
estimation (Wong et al. 2017), and SLAM (Deschaud 2018;
Zhang and Singh 2014). The goal of the point cloud registra-
tion is to align point clouds by estimating the rigid transfor-
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mation between them. Due to large pose changes and occlu-
sions, point cloud registration is still a challenging problem
in real applications.

In recent years, owing to the discriminative representa-
tion ability of deep learning, deep point cloud registration
methods have achieved increasing research interests. Most
of these methods (Pais et al. 2020; Fu et al. 2021; Ali et al.
2021) focus on learning the rigid transformation in a super-
vised manner, where a large number of ground truth trans-
formations are required as the supervision signal for model
training. However, collecting required ground truth trans-
formations is expensive and time-consuming, which may
greatly increase the training cost and hinder their applica-
tions in the real world. To handle the concerns above, much
more effort has been dedicated to the unsupervised deep
point cloud registration field. For example, alignment er-
ror is a commonly used optimization signal for unsuper-
vised training (Wang, Li, and Fang 2020). By minimizing
the alignment error (e.g., Chamfer distance) between the
transformed source point clouds and the target point clouds,
it is expected to learn the optimal rigid transformation so that
the point cloud pair can be aligned perfectly. Nevertheless,
for the partially overlapping point cloud pair, due to the ex-
isting noise error from the outliers, its optimization is prone
to stick into the local optima. In addition, the cycle consis-
tency based methods (Yang et al. 2020) perform unsuper-
vised optimization by constructing a cycle constraint as the
self-supervised signal. However, the cycle consistency based
loss still suffers from the outlier dilemma since the outliers
may not be able to form a closed loop well.

In this paper, we propose a novel neighborhood consensus
based reliable inlier evaluation framework for unsupervised
deep point cloud registration. By constructing an effective
graph representation for the source neighborhood and the
learned pseudo target neighborhood of a point, it aims to ex-
ploit the structure-wise difference between the source and
the pseudo target neighborhoods to identify whether this
point is an inlier or not. Specifically, our model mainly
consists of two modules, including a matching map refine-
ment module and an inlier evaluation module. Given a point
cloud pair with unknown correspondence, the matching map
refinement module aims to provide a high-quality corre-
spondence estimation for constructing a pseudo target point
cloud. Since the locally similar single points may confuse
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the point-wise matching map for incorrect correspondence
estimation, we improve the matching map by aggregating
the neighborhood scores into the score of the center point.
The rich neighborhood information can effectively facili-
tate the discriminative matching map construction and thus
the high-quality correspondences can be provided. With the
constructed pseudo target point cloud using the learned cor-
respondences, the inlier evaluation module further exploits
the geometric difference between the source neighborhood
and the corresponding pseudo target neighborhood for reli-
able inlier evaluation. Particularly, we construct a learnable
and effective graph representation to capture this structure
difference between the two neighborhoods. Finally, with the
learned correspondences and the corresponding inlier con-
fidence scores, we utilize the weighted Singular Value De-
composition (weighted SVD) for the rigid transformation es-
timation. In the unsupervised setting, instead of using the
ground truth transformation, we design a Huber function
based robust alignment loss, a local neighborhood consen-
sus loss, and a spatial consistency loss for model training.
We evaluate our method on extensive benchmark datasets,
including ModelNet40 (Wu et al. 2015), 7Scenes (Shotton
et al. 2013), ICL-NUIM (Choi, Zhou, and Koltun 2015), and
KITTI (Geiger, Lenz, and Urtasun 2012) and the experimen-
tal results verify the effectiveness of our method.

To summarize, our main contributions are as follows:

• We propose a novel reliable inlier evaluation frame-
work for unsupervised point cloud registration, where the
graph-structure difference between the neighborhoods is
used to identify the inlier.

• We enhance the original point-wise matching map with
the neighborhood consensus for high-quality correspon-
dence generation.

• Extensive experimental results on the different bench-
mark datasets demonstrate that our method can achieve
superior registration precision.

Related Work
Traditional point cloud registration. ICP (Besl and
McKay 1992) iteratively modifies the transformation to min-
imize the error between the corresponding points. The main
drawback of ICP is that it requires a good initialization
to prevent the model from getting a local optimal. There-
fore, several ICP variants (Phillips, Liu, and Tomasi 2007;
Bouaziz, Tagliasacchi, and Pauly 2013; Segal, Haehnel, and
Thrun 2009) have been proposed, which are also prone to
getting stuck into the local minima. To obtain the global op-
timal solution, Go-ICP (Yang, Li, and Jia 2013) is developed
with a branch-and-bound optimization, but it is also sensi-
tive to outliers due to the least-squares objective. In addition,
the randomized methods (Chen, Hung, and Cheng 1999; Le
et al. 2019) using different sampling strategies are proposed
for point cloud registration. Among them, Super4PCS (Mel-
lado, Aiger, and Mitra 2014), a global registration method,
reduces the quadratic complexity of congruent set extraction
in 4PCS (Aiger, Mitra, and Cohen-Or 2008) to the linear.
Besides, some hand-crafted descriptors (Rusu et al. 2008;

Rusu, Blodow, and Beetz 2009; Tombari, Salti, and Di Ste-
fano 2010) based methods are proposed to estimate rigid
transformation with RANSAC (Fischler and Bolles 1981).
Learning-based point cloud registration. Recently, deep
learning has been successfully applied to the point cloud
registration. There are some supervised methods (Lu et al.
2019; Yuan et al. 2020; Sarode et al. 2020; Huang et al.
2021; Li, Pontes, and Lucey 2021). PointNetLK (Aoki et al.
2019) modifies the Lucas & Kanada (LK) algorithm and
integrates it into the PointNet (Qi et al. 2017) for point
cloud registration. Following the soft matching map based
methods (Wang and Solomon 2019a,b), RPM-Net (Yew and
Lee 2020) uses the Sinkhorn layer to enforce the doubly
stochastic constraints on the matching map for reliable cor-
respondences. Besides, there are some graph neural network
based methods (Fischer et al. 2021; Fu et al. 2021), which
achieve robust feature matching via the self-attention and
cross-attention layers. HRegNet (Lu et al. 2021) proposes
a supervised hierarchical network for large-scale outdoor
point cloud registration, which also involves the neighbor-
hood consensus. However, the point-to-local consensus in
HRegNet is constructed between the single source point and
k matching target points while our local-to-local consensus
is constructed between the neighboring source points and
matching target points (pseudo target). And we use the topo-
logical structure difference of two learnable graphs to ob-
tain the inlier confidence for each point while HRegNet uses
concatenated geometric, descriptor, and point-to-local simi-
larity features of each point to obtain the confidence. More-
over, other learning-based supervised methods (Sarode et al.
2019; Gojcic et al. 2020; Choy, Dong, and Koltun 2020; Bai
et al. 2021) also achieve impressive performance.

Additionally, there are some end-to-end unsupervised
point cloud registration methods (Kadam et al. 2020; Feng
et al. 2021; Li, Wang, and Fang 2019; El Banani, Gao, and
Johnson 2021). (Yang et al. 2020; Groueix et al. 2019) em-
ploy cycle consistency across the pairwise point clouds for
points matching, which cannot be trained directly on the par-
tial data. And the global feature based FMR (Huang, Mei,
and Zhang 2020) uses point cloud reconstruction for feature
extraction with poor registration precision on partial/noisy
data. (Li, Wang, and Fang 2020) proposes the model of
shape completion and registration, but this model needs to
be trained separately on the point cloud of each category
with a latent code. Besides, (Bauer, Patten, and Vincze 2021;
Jiang et al. 2021b,a) treat the point cloud registration as a
reinforcement learning task. Moreover, some deep unsuper-
vised learning based local descriptors of point clouds are
developed for point cloud correspondence (Li, Fu, and Ovs-
janikov 2021; Li and Lee 2019). Those methods cannot ob-
tain the rigid transformation in an end-to-end manner, they
focus on feature extractor followed by the RANSAC for ge-
ometric matching.

Method
In this section, we demonstrate our neighborhood consen-
sus based unsupervised point cloud registration framework
in detail. As shown in Figure 1, it iteratively performs the
matching map refinement and the inlier evaluation modules.
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Figure 1: An overview of our proposed method. We first extract the local features of point clouds. Then we generate the point-
wise matching map M and refine it with neighborhood consensus to predict the pseudo matching points for constructing the
pseudo target point cloud Q′. Based on the pseudo target point cloud Q′ and the source point cloud P, we adopt an inlier eval-
uation module based on neighborhood consensus, which can output the confidence wi of each pseudo matching pair {pi,q′i}.
Finally, we feed the correspondences along with the weight w into the weighted SVD to obtain the rigid transformation.

Thus, the high-quality correspondence estimation and the re-
liable inlier confidence evaluation can be learned for robust
rigid transformation estimation.

Matching Map Refinement Module

The matching map based point cloud registration methods
(Yew and Lee 2020) usually exploits the single-point feature
distance as the matching score for map construction. How-
ever, the non-corresponding points with similar point fea-
tures potentially may mislead those methods for wrong cor-
respondence estimation. To relieve it, the matching map re-
finement module targets at clarifying the ambiguous single-
point feature by merging the discriminative matching scores
of the neighboring points into it for reliable correspondence
identification.

Given the source point cloud P = {pi ∈ R3 |
i = 1, ..., N} and the target point cloud Q ={
qj ∈ R3 | j = 1, ...,M

}
, we first extract their local de-

scriptors ΦP ∈ RN×d and ΦQ ∈ RM×d with the Dy-
namic Graph CNN (DGCNN) (Wang et al. 2019). Then, for
each point cloud pair pi and qj , we calculate their point-
wise matching score with the normalized negative feature
distance as below:

Mi,j = softmax ([−Di,1, . . . ,−Di,M ])j , (1)

where Di,j =
∥∥Φpi

− Φqj

∥∥
2

denotes the Euclidean dis-
tance between the single-point features of points pi and
qj . Based on the estimated point-wise matching score, their
neighborhood-wise score can be calculated by averaging the

correspondence scores of its surrounding points:

Si,j =
1

K

∑
pi′∈Npi

∑
qj′∈Nqj

Mi′,j′ , (2)

whereNpi
denotes the k-nearest neighbor points around the

point pi. The high neighborhood score means the surround-
ing points consistently tend to have large matching proba-
bilities and vice versa. Based on the fact that the real cor-
respondence usually owns the high neighborhood similarity
while this similarity for incorrect correspondence is prone to
be low, we can effectively exploit this neighborhood score
to identify the non-corresponding point pair. Finally, the re-
fined matching map can be formulated as:

M′i,j = softmax
([
−D′i,1, . . . ,−D′i,M

])
j
,

D′i,j = exp (α− Si,j) ∗Di,j ,
(3)

where the refined feature distance D′i,j is negatively related
to the neighborhood score Si,j and we design an exponential
function to control the changing ratio. The hyper-parameter
α controls the influence of the neighborhood consensus.
Based on the refined matching map M′ ∈ RN×M , for each
point pi in the source point cloud, we utilize a point predic-
tor to generate a pseudo correspondence q′i as following:

q′i =
M∑
j=1

M′i,j · qj ∈ R3. (4)

Notably, if pi is an inlier, owing to the high-quality matching
map estimation, the predicted pseudo correspondence usu-
ally can obtain a correct location (i.e., q′i approaches to the
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Figure 2: The examples of inlier and outlier.

real correspondence of pi). However, if pi is an outlier, it
may have a low matching probability with each target point
and the resulting pseudo point tends to have an incorrect and
unstable location. We use this observation for inlier confi-
dence evaluation and more details can be seen in the follow-
ing section.

Inlier Evaluation Module

In this section, we aim to exploit the geometric difference
between the source neighborhood and the corresponding
pseudo target neighborhood for effective inlier evaluation
on the learned correspondences {(pi,q′i)}. The main mo-
tivation for our inlier distinction is presented below. If the
point pi in the source point cloud is a reliable inlier, its
surrounding points (source neighborhood Npi

) also tend
to be the inliers. Thus, benefitting from the learned high-
quality matching map, their resulting pseudo correspon-
dences (pseudo target neighborhoodNq′i

) can have a similar
geometric structure as the source neighborhood. Instead, if
pi is an outlier, its neighbors may also be the outliers. Since
the unstable location of pseudo target points for outliers as
described before, the generated pseudo target neighborhood
may be chaotic and its spatial structure is prone to be signifi-
cantly different from the source neighborhood. Based on the
discussion above, we formulate this structure difference as
the inlier confidence estimation for reliable inlier selection.
The visualization examples can be seen in Figure 2.

By constructing a learnable graph representation on the
neighborhood, the inlier evaluation module targets at adap-
tively capturing the structure-wise difference between the
neighborhoods Npi

and Nq′i
for inlier evaluation. The edge

features of the neighborhoods Npi
and Nq′i

are defined as

epi,k = pi − pk and eq
′

i,k = q′i − q′k, respectively, where pk
and q′k are the points inside the neighborhoodsNpi

andNq′i
.

In order to better capture the relevance between the adja-
cent points and promote their message propagation, for each
point, we fuse the edge features of its adjacent points into it
through an EdgeConv v with large (1×3) convolutional ker-
nel size (Wang et al. 2019). It is noted that due to the consis-
tent order of the points in the neighborhood, we can directly
employ the EdgeConv v on the adjacent points for feature
fusion. In detail, for each point pi ∈ P and q′i ∈ Q′, we
use the subtraction of the fused edge features as following

to characterize the difference between the neighborhoods:

ei,k = v
(
epi,k

)
− v

(
eq
′

i,k

)
. (5)

Next, with the edge difference between the two neighbor-
hoods, we further adaptively learn the attention τi,k of each
edge via a softmax function:

τi,k = softmax ([u (ei,1) , ..., u (ei,K)])k , (6)

where K is the number of the neighbors and u is another
EdgeConv. The attention τ can strengthen the structural dif-
ferences caused by outliers. Finally, we sum the edge differ-
ence weighted by the attention to learn the inlier confidence
wi of the pseudo correspondence {pi,q′i} as below:

wi = 1− tanh

(∣∣∣∣g(∑K

k=1
τi,k ∗ ei,k

)∣∣∣∣) , (7)

where g is a unary function.

Loss Function
In each iteration, we can obtain a set of pseudo correspon-
dences and their corresponding inlier confidence w. Then,
we employ the weighted SVD on the pseudo correspon-
dences with weights w to estimate the rigid transformation
{R, t}. Under the unsupervised setting, instead of using the
ground truth transformations, we construct the following un-
supervised loss functions for model optimization.
Global alignment loss. We first exploit the alignment er-
ror based loss function to train our model. To handle the
partially-overlapping problem well, we integrate the Huber
function, a robust loss function insensitive to the outliers, as
below into our alignment loss:

`β(u) =

{
1
2u

2, if |u| ≤ β
β
(
|u| − 1

2β
)
, otherwise

, (8)

where the hyper-parameter β controls the range of the inlier
and the alignment error from the outlier beyond this range
just can obtain the sublinear optimization. The final Huber
function based global alignment loss can be formulated as:

Lg (P′,Q) =
∑

p′∈P′
`β

(
min
q∈Q
‖p′ − q‖22

)

+
∑
q∈Q

`β

(
min
p′∈P′

‖q− p′‖22
)
,

(9)

where P′ denotes the transformed source point cloud with
the estimated transformation. However, although our robust
function based alignment loss can relieve the interference
of the outliers to some extent, these outliers may still po-
tentially mislead the model optimization to local minima
dilemma. To this end, we propose the reliable inliers based
neighborhood consensus loss and the spatial consistency
loss to further eliminate the influence from the outliers.
Neighborhood consensus loss. With the learned confidence
w, we can obtain the reliable inliers of the source and tar-
get point clouds by taking the k′ point pairs with the highest
weights. We denote the inliers of the source and target point
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clouds as X ∈ Rk′×3 and Y ∈ Rk′×3, respectively. Then,
the neighborhood consensus loss uses the neighborhood
consistency between the inliers as the self-supervised sig-
nal for model optimization. Ideally, for each inlier xi ∈ X,
after performing transformation {R, t} on its neighborhood
Nxi

(k nearest neighbor points), the transformed Nxi
can

align the neighborhood Nyi
of its correspondence yi per-

fectly. Thus, the neighborhood consensus loss is defined as:

Ln =
∑

xi∈X,yi∈Y

∑
pj∈Nxi

,qj∈Nyi

‖Rpj + t− qj‖2. (10)

Spatial consistency loss. In order to further eliminate the
spatial gap between the pseudo target correspondence and
the real target correspondence for each selected inlier xi ∈
X, we exploit the cross-entropy based spatial consistency
loss to sharpen their matching distributions as below:

Ls = − 1

|X|
∑
xi∈X

M∑
j=1

I
{
j = arg max

j′
M′i,j′

}
logM′i,j ,

(11)
where I {·} denotes the indicator function and we use the
target point qj∗ with the largest matching probability to
estimate the real target correspondence. By improving the
matching probability of the “real” target correspondence
(M′i,j∗ → 1), the resulting pseudo target correspondence
via Eq. 4 tends to further spatially approach to the “real”
target correspondence qj∗ well. Finally, we utilize a com-
prehensive loss function as below to optimize our model:

L = Lg + γ ∗ Ln + θ ∗ Ls, (12)

where γ and θ are the hyper-parameters to control the
weights of the used neighborhood consensus loss and the
spatial consistency loss.

Experiments
Experimental Settings
Datasets. We evaluate our method on ModelNet40 (Wu
et al. 2015), 7Scenes (Shotton et al. 2013), ICL-NUIM
(Choi, Zhou, and Koltun 2015) and KITTI odometry
datasets (Geiger, Lenz, and Urtasun 2012). The ModelNet40
consists of 12,311 meshed CAD models from 40 categories.
We use 9,843 models for training and 2,468 models for test-
ing. 7Scenes is a widely used benchmark registration dataset
of indoor environment with 7 scenes including Chess, Fires,
Heads, Office, Pumpkin, RedKitchen and Stairs. The dataset
is divided into 296 samples for training and 57 for testing.
For another synthetic indoor scene ICL-NUIM, we first aug-
ment the dataset, then split the dataset into 1,278 samples for
training and 200 samples for testing. And the KITTI odome-
try dataset consists of 11 sequences with ground truth pose,
we use Sequence 00-05 for training, 06-07 for validation,
and 08-10 for testing. We form the pairwise point clouds
with the current frame and the 10th frame after it.
Compared methods and evaluation metrics. We compare
with traditional methods including ICP (Besl and McKay
1992), Go-ICP (Yang, Li, and Jia 2013), FGR (Zhou, Park,
and Koltun 2016), FPFH + RANSAC (Fischler and Bolles

1981), and Super4PCS (dubbed “S4PCS”) (Mellado, Aiger,
and Mitra 2014). Besides, we compare with recent deep
learning based methods, including supervised IDAM (Li
et al. 2020) and RPM-Net (Yew and Lee 2020), and unsu-
pervised FMR (Huang, Mei, and Zhang 2020) and CEM-
Net (Jiang et al. 2021b). We evaluate the registration by the
mean absolute errors (MAE) of R and t used in DCP (Wang
and Solomon 2019a), which are anisotropic, and the mean
isotropic errors (MIE) of R and t used in RPM-Net.
Implementation details. Our model is implemented in Py-
torch. We optimize the parameters with the ADAM opti-
mizer. The initial learning rate is 0.001. For ModelNet40
and KITTI, we train the network for 50 epochs and multi-
ply the learning rate by 0.7 at epoch 25. For indoor scenes,
we multiply the learning rate by 0.7 at epochs 25, 50, 75 and
train the network for 100 epochs.

Comparison Evaluation on ModelNet40
Same categories. Each source point cloud P in the training
set is transformed into Q by a randomly generated trans-
formation matrix. The rotation along each axis is uniformly
sampled in [0, 45◦] and the translation along each axis is
[−0.5, 0.5]. To simulate partial-to-partial registration, we
follow PRNet (Wang and Solomon 2019b) to remove 25%
points from both point clouds. From the left column of Table
1, one can see that our method can obtain the lowest error
among the traditional and unsupervised methods. Besides,
our method can even outperform the supervised IDAM by
a large margin. And we can achieve comparable results to
the supervised RPM-Net. Some visualization results are pre-
sented in Figure 3.
Unseen categories. In order to demonstrate the effective-
ness of our method, we train our model and all compared
deep learning methods on 20 categories and test all meth-
ods on the other 20 categories. The test categories have not
been seen during training. From the middle part of Table 1,
one can see that our method can obtain good performance in
terms of the unseen point cloud registration.
Gaussian noise. In this experiment, we train the model on
the noise-free data of ModelNet40 and test on a new test set
with Gaussian noise. We generate Gaussian noise with µ =
0 and σ = 0.5, and then clip the noise to [−1.0, 1.0]. From
the results listed in the right part of Table 1, one can see that
due to the neighborhood consensus based inlier selection,
our unsupervised model is robust to noise. The global feature
based unsupervised FMR is sensitive to noise.

Comparison Evaluation on Indoor/Outdoor Scenes
We further conduct comparison evaluation on two indoor
scenes: synthetic ICL-NUIM and real-world 7Scenes. We
resample the source point clouds to 2,048 points and op-
erate the rigid transformation on them for the target point
clouds, then downsample the point clouds to 1,536 points to
generate the partial data. For outdoor KITTI dataset, we first
augment the datasets with random rotations based on the ini-
tial pose. Then we voxelize the point clouds with 0.3m voxel
size and randomly sample 2048 points, which are used for
deep learning based methods. For traditional methods, we
list the results of them with the original point clouds (We
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Model Same Unseen Noise

MAE(R) MAE(t) MIE(R) MIE(t) MAE(R) MAE(t) MIE(R) MIE(t) MAE(R) MAE(t) MIE(R) MIE(t)

ICP 3.4339 0.0114 6.7706 0.0227 3.6099 0.0116 7.0556 0.0228 4.6441 0.0167 9.2194 0.0333
Go-ICP 3.5108 0.0115 6.8864 0.0229 3.5488 0.0114 6.9290 0.0224 3.1737 0.0148 5.7444 0.0284
S4PCS 1.5764 0.0035 2.7585 0.0069 1.4562 0.0034 2.4281 0.0067 5.8263 0.0160 10.4796 0.0317
FGR 0.5972 0.0021 1.1563 0.0041 0.4579 0.0016 0.8442 0.0032 1.0676 0.0036 2.0038 0.0072
RANSAC 0.7031 0.0025 1.2772 0.0050 0.4427 0.0021 0.9447 0.0043 1.4316 0.0061 2.5345 0.0120
IDAM 0.4243 0.0020 0.8170 0.0040 0.4809 0.0028 0.9157 0.0055 2.3076 0.0124 4.5332 0.0246
RPM-Net 0.0051 0.0000 0.0201 0.0000 0.0064 0.0001 0.0207 0.0001 0.0075 0.0000 0.0221 0.0001
FMR 3.6497 0.0101 7.2810 0.0200 3.8594 0.0114 7.6450 0.0225 18.0355 0.0536 35.7986 0.1063
CEMNet 0.1385 0.0001 0.2489 0.0002 0.0804 0.0002 0.1405 0.0003 10.7026 0.0393 21.1836 0.0781

Ours 0.0033 0.0000 0.0210 0.0000 0.0059 0.0000 0.0228 0.0001 0.0069 0.0001 0.0230 0.0001

Table 1: The registration results of different methods on ModelNet40.

Model ICL-NUIM 7Scenes KITTI

MAE(R) MAE(t) MIE(R) MIE(t) MAE(R) MAE(t) MIE(R) MIE(t) MAE(R) MAE(t) MIE(R) MIE(t)

ICP 2.4022 0.0699 4.4832 0.1410 6.0091 0.0130 13.0484 0.0260 4.7433 0.9174 11.9982 2.5742
Go-ICP 0.7339 0.0259 1.3927 0.0522 7.0968 0.0136 14.9701 0.0274 2.3807 0.0431 5.7684 0.0963
S4PCS 1.3964 0.0547 2.7792 0.1103 1.6567 0.0081 2.9388 0.0162 2.2049 0.0384 5.2036 0.0849
FGR 2.2477 0.0808 4.1850 0.1573 0.0919 0.0004 0.1705 0.0008 1.6777 0.0352 4.0467 0.0762
RANSAC 1.2349 0.0429 2.3167 0.0839 1.2325 0.0062 2.1875 0.0124 1.9353 0.0230 4.2766 0.0470
IDAM 4.4153 0.1385 8.6178 0.2756 5.6727 0.0303 11.5949 0.0629 1.6348 0.0230 3.8151 0.0491
RPM-Net 0.3267 0.0125 0.6277 0.0246 0.3885 0.0021 0.7649 0.0042 0.9164 0.0146 2.1291 0.0303
FMR 1.1085 0.0398 2.1323 0.0786 2.5438 0.0072 4.9089 0.0150 1.6786 0.0329 4.0571 0.0703
CEMNet 0.2374 0.0005 0.3987 0.0010 0.0559 0.0001 0.0772 0.0003 - - - -

Ours 0.0492 0.0023 0.0897 0.0049 0.0121 0.0001 0.0299 0.0001 0.8251 0.0183 1.8754 0.0414

Table 2: The registration results of different methods on the indoor scenes and KITTI dataset. Besides, CEMNet does not
provide the results on the KITTI dataset.

also test them with the preprocessed data, but the perfor-
mance all deteriorates). From Table 2, one can see that our
model obtains satisfactory performance on both indoor and
outdoor scenes. The translation errors of supervised RPM-
Net on KITTI are smaller than ours, but the runtime of our
method is almost 1/2 of it. Besides, we achieve better results
compared to FPFH + RANSAC with 1/8 runtime of it.

Ablation Study
The effectiveness of key components. We conduct ablation
study on two key components of our model: Matching Map
Refinement (MMR) and Inlier Evaluation (IE) modules. In
our baseline setting (BS), we concatenate the coordinates of
predicted matching pairs as the inputs of MLPs to replace
our IE module and remove the MMR module. The baseline
model is trained with our unsupervised loss function. We
add the components one by one to obtain their results of
data in the cases of Gaussian noise and 50% missing points
on ModelNet40. The results can be seen in Table 3. One can
see that inlier evaluation module can outperform the baseline
by a large margin. In addition, the matching map refinement
module based on neighborhood consensus can contribute to
obtain more accurate registration results of noisy data.
Loss functions. In our experiments, we train our model with
the combination of the Global Alignment loss (GAL), the
Neighborhood Consensus loss (NCL), and the Spatial Con-
sistency loss (SCL). In Table 4, we train our model using the

Model MAE(R) MAE(t) MIE(R) MIE(t)
BS 2.2207 0.0319 4.3694 0.0632
BS + IE 0.1638 0.0007 0.2832 0.0014
BS + IE + MMR 0.0266 0.0003 0.0504 0.0005

Table 3: The results of different combination of key compo-
nents on ModelNet40.

Loss MAE(R) MAE(t) MIE(R) MIE(t)
GAL 0.6303 0.0095 1.1601 0.0191
GAL + SCL 0.1165 0.0020 0.2023 0.0039
GAL + SCL + NCL 0.0121 0.0001 0.0299 0.0001

Table 4: The results of different combination of loss func-
tions on 7Scenes.

different loss functions and present the results on 7Scenes.
One can see that with the neighborhood consensus loss and
spatial consistency loss based on the selected inliers, we can
obtain high registration precision.
Matching map refinement module. Directly adding the
neighborhood-wise matching map S with point-wise match-
ing map M decreases the discriminability of points in the
same neighborhoods. The MAEs are 0.0072, 0.0002, and
MIEs are 0.0338, 0.0002. Compared with the left column
of Table 1, one can see that our proposed matching map re-
finement module can yield better results.
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Figure 3: Green: source point clouds. Blue: target point clouds. Red: registration results. Visualization of registration results on
the ModelNet40, 7Scenes, and ICL-NUIM datasets.

Inlier evaluation module. From Table 3, one can see that
the results of directly concatenating the putative correspon-
dences for inlier evaluation are worse than our designed
module, which ignores matching validity from neighbor-
hood consensus. Besides, we also train our model without
enhancing the message propagation between adjacent points
via a large convolutional kernel (1 × 3), we replace it with
1×1 kernel. The MAEs are 0.0294 and 0.0001, the MIEs are
0.0590 and 0.0002 on data with Gaussian noise. Compared
with the results on the right column of Table 1, one can see
that enhancing the message propagation in the graphs can
obtain better results with noisy data.
Feature update on the transformed source point clouds.
Since the features extracted by DGCNN are not fully rota-
tion invariant, updating the features of transformed source
point clouds which are gradually aligned to target point
clouds along with the iterations will generate more accurate
correspondences. Without updating the features, for samples
from [45◦, 90◦] on ModelNet40, the MAEs are 1.4653 and
0.0046, the MIEs are 2.0210 and 0.0094. As contrast, the
MAEs of updating the features are 0.4213 and 0.0014, the
MIEs are 0.7116 and 0.0027. One can see that it is necessary
to update the features of transformed source point clouds
along with iterations.
Robustness to large rotations. In order to demonstrate the
robustness to large rotations, we utilize the samples from
[0◦, 45◦] as training and samples from [60◦, 180◦] as testing.
The rotation errors of different methods are shown in Figure
4. One can see that our model only with the xyz coordinates
as the inputs is robust to large transformations, we achieve
1.6◦ rotation error of 180◦ initial rotation. Besides, FGR and
FPFH + RANSAC rely on the rotation invariance FPFH, so
the performance does not degrade dramatically.
Inference time. We calculate the inference time with an In-
tel I5-8400 CPU and Geforce RTX 2080Ti GPU. The run-
ning time is measured in millisecond with a batch size of 1,
averaged over the entire test set of ModelNet40. We provide
the timings for 3 iterations as used in previous experiments
for our method. Note that the classical methods are executed
on CPU, but the learning based methods on a GPU. The run-

60 90 120 150 180

Initial Rotation Angle

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

M
IE

(R
)

ICP

GO-ICP

S4PCS

FGR

RANSAC

FMR

CEMNET

IDAM

RPM-NET

Ours

Figure 4: The rotation errors of different initial rotation an-
gles on the 7Scenes.

ning time are 8 (ICP), 41 (IDAM), 52 (FGR), 57 (Ours),
82 (FPFH+RANSAC), 86 (RPM-Net), 310 (CEMNet), 386
(FMR), 2740 (Go-ICP), and 6129 (S4PCS).

Conclusion
We proposed an end-to-end unsupervised point cloud regis-
tration framework based on neighborhood consensus for ef-
fective inlier evaluation. Specifically, we developed a neigh-
borhood consensus based matching map refinement mod-
ule to obtain a more accurate matching map and gener-
ated high-quality matching points to form a pseudo target
point cloud. With the source point cloud and correspond-
ing pseudo target point cloud, we designed the inlier eval-
uation module to distinguish inliers via capturing the ge-
ometric difference between the source neighborhoods and
the corresponding pseudo target neighborhoods. Finally, we
formulated our combined loss to train our network. Exten-
sive experiments on the ModelNet40, ICL-NUIM, 7Scenes
and KITTI benchmarks demonstrate that our unsupervised
framework can achieve outstanding performance.
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