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Abstract

Producing densely annotated data is a difficult and tedious
task for medical imaging applications. To address this prob-
lem, we propose a novel approach to generate supervision for
semi-supervised semantic segmentation. We argue that visu-
ally similar regions between labeled and unlabeled images
likely contain the same semantics and therefore should share
their label. Following this thought, we use a small number of
labeled images as reference material and match pixels in an
unlabeled image to the semantics of the best fitting pixel in
a reference set. This way, we avoid pitfalls such as confirma-
tion bias, common in purely prediction-based pseudo-labeling.
Since our method does not require any architectural changes or
accompanying networks, one can easily insert it into existing
frameworks. We achieve the same performance as a standard
fully supervised model on X-ray anatomy segmentation, albeit
95% fewer labeled images. Aside from an in-depth analy-
sis of different aspects of our proposed method, we further
demonstrate the effectiveness of our reference-guided learning
paradigm by comparing our approach against existing methods
for retinal fluid segmentation with competitive performance
as we improve upon recent work by up to 15% mean IoU.

Introduction
The acquisition of detailed annotations for semantic segmen-
tation is a complex and time-consuming process (Cordts
et al. 2016). It becomes increasingly difficult in the medical
domain due to the required expertise (Menze et al. 2014).
When considering a doctor’s obligations in the clinical rou-
tine, gathering a large amount of detailed medical annotations
can become almost insurmountable. Thus, these obstacles
make it desirable to perform accurate semantic segmentation
while minimizing the necessary annotated data.

Semi-supervised semantic segmentation solves these tasks
by combining small quantities of labeled data with a lot
of unannotated data for training. In recent years, several
directions have been investigated such as student-teacher
frameworks (Gou et al. 2021; Chen et al. 2020; Xie et al.
2020a; Pham et al. 2021), consistency regularization (Ouali,
Hudelot, and Tami 2020; Sohn et al. 2020; Rebuffi et al. 2020)
or pseudo-labels (Lee et al. 2013; Iscen et al. 2019; Rizve
et al. 2021). Most pseudo-label methods typically employ
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Figure 1: A conceptual example highlighting different cases
how unannotated samples could be integrated into a networks
feature spaces and decision boundary. Color intensity repre-
sents network prediction confidence.

network predictions for unlabeled data to either save them for
retraining or use them online as targets in the same iteration.
They are often paired with the generation of predictions from
different perturbations, e.g. data-augmentations, on an input
image (Berthelot et al. 2019b,a; Sohn et al. 2020).

However, by enforcing predictions’ pre-existing biases
of the network, incorrect conclusions can have a snow-
balling negative effect. We run into the issue of confirma-
tion bias (Rizve et al. 2021). Yet, we argue that the positive
properties of these methods can be kept, while reducing the
adverse effects by taking a different path: comparing embed-
dings between predictions of unlabeled samples and labeled
reference images to instill the supervision. For all pixels in a
given unlabeled image, we find class-wise nearest-neighbors
among the pixels of images in the small labeled reference
set. From this, we compute a class proximities, attribute im-
portance via confidence-based weighting and then infer the
pseudo-label. By taking this detour and not directly using the
class-predictions, but matching them to a known reference set,
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the bias towards large classes can be regulated and we bypass
the problems of direct class predictions as supervision.

We illustrate the characteristics in Fig. 1. First, while the
Unlabeled Pixel (UP), depicted by grey-diamond 1, would
be predicted as orange, it is more similar to the misclassified
green sample, and due to its proximity, we would instead
pass a green pseudo-label. In the second case, we would
assign a green pseudo-label to the UP2, but as its distance
to both an orange and a green sample is nearly equal, the
weighting would be minimal. In the third case, we assign a
green pseudo-label with a high weight to the UP as it is close
to a green sample and far from the second nearest class.

We view this approach as a straightforward support mech-
anism to pseudo-labeling in semi-supervised semantic seg-
mentation. It is easily extended with any semi-supervised
learning approaches. We demonstrate the effectiveness of
our methods with extensive experiments for multi-class and
binary multi-class semi-supervised semantic segmentation on
the RETOUCH (Bogunović et al. 2019) and JSRT (Shiraishi
et al. 2000) datasets. We achieve competitive results across
these datasets, excelling especially for minimal amounts of
samples. We summarize our contributions as:
1. We illustrate a different view on online pseudo-labels in

semantic segmentation. By enforcing consistency between
predictions and the feature space, we cover cases not
handled by standard pseudo-labeling approaches.

2. We show the effectiveness of our method on different
datasets and various low data settings. Thereby, we demon-
strate its use for handling the challenging segmentation
of overlapping labels from scarce data as we reach fully
supervised performance from six labeled images.

3. We provide a detailed ablation study investigating differ-
ent aspects of our pseudo-labels in various settings.

Related Work
Semi-Supervised Learning. Semi-supervised learning (SSL)
utilizes few labeled samples paired with unlabeled samples
to perform a given task. Recently, this field has seen signif-
icant progress (Berthelot et al. 2019b,a; Cascante-Bonilla
et al. 2020; Ouali, Hudelot, and Tami 2020; Chen et al.
2020; Sohn et al. 2020; Pham et al. 2021). Most methods
follow one or combinations of directions such as entropy
minimization (Grandvalet, Bengio et al. 2005), consistency
regularization (Tarvainen and Valpola 2017; Ji, Henriques,
and Vedaldi 2019; Sohn et al. 2020) or pseudo-labeling (Lee
et al. 2013; Iscen et al. 2019; Cascante-Bonilla et al. 2020).
Pseudo-labeling-based approaches typically train a classifier
with unlabeled data using pseudo targets derived from the
model’s high-confidence predictions(Lee et al. 2013). How-
ever, pseudo-labeling can lead to noisy training due to poor
calibration and as a result of incorrect high-confidence pre-
dictions (Guo et al. 2017; Rizve et al. 2021). Other methods
approach pseudo-labeling by following a transductive setting,
i.e. setting up a nearest-neighbor graph and perform label
propagation. This generation process of pseudo-labels is not
feasible in an online setting due to the high demand on run-
time and memory consumption for label-propagation and is
performed after a set amount of iterations (Shi et al. 2018;

Iscen et al. 2019; Liu et al. 2019). In this fashion, pseudo-
labeling literature can be divided into online variants, which
build pseudo-labels for unlabeled data directly during for-
ward pass (Lee et al. 2013; Sohn et al. 2020), and offline
variants, which generate new targets for the dataset in greater
intervals (Iscen et al. 2019; Chen et al. 2020; Xie et al. 2020b;
Cascante-Bonilla et al. 2020; Pham et al. 2021). Recently,
(Taherkhani et al. 2021) matches clusters of unlabeled data
to their most similar classes in an offline procedure. Taking
the advantageous aspects of label-propagation methods (Shi
et al. 2018; Iscen et al. 2019; Liu et al. 2019), we introduce
a way to make them work online and even for semantic seg-
mentation where pixel-wise labels add to the computational
load. Favorable storage requirements of our solution make a
streamlined integration with consistency regularization meth-
ods possible. In consistency regularization, predictions for
varied versions of the same input are enforced to be similar.
Usually this is achieved by setting up augmented versions
of an input image (Sohn et al. 2020), perturbations of fea-
ture maps (Ouali, Hudelot, and Tami 2020) or different net-
work states (Tarvainen and Valpola 2017). In our work, we
intertwine online-generated pseudo-labels with consistency
regularization to alleviate drawbacks in either of the two.
Semi-Supervised Segmentation. Semi-supervised seman-
tic segmentation proposed several extensions to concepts in
SSL, i.e., to consistency regularization. (French et al. 2019)
integrate CutMix (Zhang et al. 2017) to enforce consistency
between mixed outputs and the prediction from correspond-
ing mixed inputs. CCT (Ouali, Hudelot, and Tami 2020)
aligns the outputs of the main segmentation decoder module
and auxiliary decoders trained on different perturbations to
enforce consistent feature representations. PseudoSeg (Zou
et al. 2021) adapts FixMatch (Sohn et al. 2020) and thus
enforces consistency between segmentations of weakly and
strongly augmented images employing GradCAM (Selvaraju
et al. 2017). (Chen et al. 2021) use two independent networks
with the same structure and enforce consistency between
their predictions. In contrast to these approaches, our method
utilizes labeled data in pseudo-label generation without any
network alterations, rendering it flexible to integrate.
Self-Training for Medical Imaging. Network-produced su-
pervision for unlabeled data is starting to gain traction in med-
ical image analysis. (Tang et al. 2021) propose a self-training-
based framework for mass detection in mammography lever-
aging medical reports. (Chaitanya et al. 2020) depict the use
of contrastive self-supervised learning for semi-supervised
segmentation. (Seibold et al. 2020) devise entropy minimiza-
tion to localize diseases in chest radiographs while (Huo
et al. 2021) propose a student-teacher framework for semi-
supervised pancreas tumor segmentation. (Reiß et al. 2021)
propose to use deep supervision, which adapts networks to
enforce prediction consistency between different layers of
the network. However, most methods either utilize network
predictions or predefined signals (Ouyang et al. 2020) as su-
pervision. Our method is suitable for medical image analysis
due to inherent structural similarities, e.g. anatomical proper-
ties make a natural fit for our method as labeled images can
convey strong reference points for matching and transferring
information onto unlabeled images.
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Figure 2: Overview of the proposed training step for unlabeled images. For each unlabeled image, we extract its features in
addition to a pool of sampled annotated images to generate pseudo-labels. In parallel, we use the predictions of a weakly
augmented sample to act as supervision for a strongly augmented version of the image. On the right, we illustrate our reference-
based pseudo-label generation process for k = 5.

Methodology
In this section, we propose a novel strategy to generate online
pseudo-labels based on label-wise feature similarities from a
pool of references. We first define preliminary information,
then elaborate on Reference-based Pseudo-Label Generation
(RPG) and finally expand on RPG with augmentation-based
consistency regularization.

Preliminaries
In the setting of semi-supervised semantic segmentation, a
small set of labeled SL = {(xi, yi)}Nl

i=1 and a large amount
of unlabeled images SU = {xi}Nu

i=1 are provided. An image
be defined as xi ∈ Rch×h×w with ch image channels, height
h and width w. Labels be defined as yi ∈ {0, . . . , c− 1}h×w

in case of segmentation into c classes or yi ∈ {0, 1}c×h×w

if at each location more than one class can be present (multi-
label segmentation). Thus, the task resolves to using SL and
SU to find a model that correctly predicts labels on unseen
images. For later purposes, we define the segmentation model
as (1) a dense feature extractor ffeat : Rch×h×w → Rd×h×w

and (2) a subsequent pixel-wise classifier fcls : Rd×h×w →
[0, 1]c×h×w that transforms the d dimensional features at
each location into class predictions. ffeat is parameterized by
a neural network and for fcls we leverage a 1× 1 convolution
and normalization function (sigmoid or softmax depending
on the yi formulation).

Reference-based Pseudolabel Generation
We propose using image-reference pairs in the pseudo-label
generation process for semantic segmentation. Contrary to
directly deriving pseudo-labels from network predictions, we
search for a best fit in feature space among a pool of labeled
reference images and transfer their semantics. We display our
approach in Fig. 2.

Reference Pool. We utilize labeled references to generate
pseudo-labels. Therefore, we project both labeled and un-
labeled pixels into the same feature space using ffeat. Since
available memory is limited, processing h×w d-dimensional
pixel-wise representations for each image in SL is unfeasible.
Additionally, solutions like a memory-bank (Wu et al. 2018)
are difficult to integrate due to sheer amount of pixel-wise
representations. We approach these issues by randomly sam-
pling a pool P of labeled images from SL in each mini-batch
iteration:

P = {(x, y) ∼ SL}p (1)
As we later generate pseudo-labels from P , all classes have
to be present otherwise the missing class-labels can not be
recovered. We, thus, sample p images such that each class
occurs at least once in P .

We generate our reference set RP by extracting the pixel-
wise features of each image in P to get pairs of pixel-
representations and -labels:

RP = {(ffeat(x), y) : (x, y) ∈ P}. (2)

To further reduce the memory constraints we sub-sample
the pixel-wise representations and labels to a feasible size
s× s using nearest-neighbor interpolation. In the following,
we dispose of the spatial relations between pixels and only
consider RP to be a set of d dimensional feature vector-label
pairs with |RP | = p · h · w. By sampling P continuously
during training, the labeled images can experience a large
variation of data augmentation techniques, leading to more
diverse pixel-representations in the reference set RP .
Label Assignment. We build pseudo-labels by finding the
closest labeled pixels in feature space from the reference
pool RP for each unlabeled pixel. For each unlabeled image
u ∈ SU in the mini-batch we extract pixel-wise features
û = ffeat(u). We now assign the target of an unlabeled vector
ûx,y with the spatial coordinates x, y ∈ Nh×w based on the
contextually closest feature vector in RP . The clipped cosine
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distance D between of the labeled pixel-representations r ∈
RP and the unlabeled pixel-representations ûx,y ∈ û serves
as proximity measure:

D(r, ûx,y) = 1−max(

∑d
i=1 ri · ûx,y,i√∑d

i=1 r
2
i ·

√∑d
i=1 û

2
x,y,i + ϵ

, 0),

(3)
with subscript i indexing the i-th dimension of a vector and
the small constant ϵ = 1e−8. Using D, two feature vectors
have a distance of zero if they are identical and the maximum
distance of one if orthogonal or contrary to each other. For
each unlabeled pixel ux,y a pseudo-label l(ux,y) is assigned
based on the label of its closest sample in the reference pool:

l(ux,y) = y : argmin
(r,y)∈RP

D(r, ûx,y) (4)

The whole image is labeled by l(u) = {l(ux,y) : ux,y ∈ u}.
Note that this way, y can be either a one-hot vector or a
sophisticated multi-label vector. Our approach is contrary
to classical pseudo-labeling, where assigning a multi-label
vector requires the network to hit manually designed thresh-
olds for every class. Our nearest-neighbor target assignment
is related to previous methods (Iscen et al. 2019; Liu et al.
2019; Mechrez, Talmi, and Zelnik-Manor 2018), however,
we operate online and access multiple reference images at
the same time.
Density-based Class Entropy. Overall, for an adequate pool-
size p, this nearest-neighbor label assignments showed to
be beneficial for semantic segmentation. However, we no-
ticed a potential pitfall: For features with similar distances
to several classes direct assignments mislead the network
during training. To avoid this issue, we apply a weighting
mechanism based on the ambiguity of an unlabeled pixel’s
surroundings. With the feature ûx,y we compute the closest
distances δjûx,y

, j ∈ 1, . . . , c to each class among the k nearest
neighbors Rk

P in feature space.

δjûx,y
= min

(r,y)∈Rk
P∧y=j

D(r, ûx,y) (5)

If class j is not represented in the reference pool Rk
P , it’s dis-

tance δjûx,y
is set to one. We use these class distances to model

j class probabilities P j
ux,y

via class-wise normalization:

P j
ux,y

=
1− δjux,y

+ ϵ∑c
j′=1 1− δj

′
ux,y + ϵ

(6)

We then calculate the weighting factor Wux,y through the
normalized entropy of the class probabilities:

Wux,y = 1 +
c∑

j=1

P j
ux,y

logP j
ux,y

log c
(7)

With the factor Wux,y we put a lower weight on pseudo-
labeled pixels that lie in highly ambiguous regions in the
feature space. On top this weighting nudges the pseudo-labels
towards including more classes instead of opting just for the
most common one. This is due to the fact, that distances of all

classes influence the weighting of a pixel-label-assignment.
Further, this weighting handles extreme cases where e.g.
δjux,y

= 1 for all classes, as here the entropy will be max-
imal, which in turn will lead to ignoring ux,y since Wux,y = 0.
We illustrate further cases on the righthand side of Fig 2.

Ultimately, our method is formulated as the following loss
function LRPG:

LRPG =E(x,y)∈SL [CE(f
c
cls(ffeat(x)), y)]

+ Ex∈SU [CE(f
c
cls(ffeat(x)), l(x)) ·Wx], (8)

with CE denoting binary or multi-class cross-entropy depend-
ing on the type of segmentation task.

Consistency Regularization
To showcase that our approach works complementary to con-
sistency regularization methods in semantic segmentation, we
expand the formulation of FixMatch (Sohn et al. 2020). We
generate pseudo-labels from network predictions on weakly
augmented images and use them as labels for strongly aug-
mented versions of the same image, thereby enforcing con-
sistency between them. While weak augmentations are com-
monly used perturbations such as random flipping, for strong
augmentations, we follow RandAugment (Cubuk et al. 2020).
We follow a similar setting as in Sohn et al. (Sohn et al.
2020). Since we handle segmentation instead of classification
which is done in the original work, we generate pixel-level
pseudo-labels and set the designated label for the areas af-
fected by the CutOut augmentation (DeVries and Taylor
2017) to ‘background’. For one-hot targets y, we use the
standard pseudo-label formulation (Sohn et al. 2020)

l′(ux,y) =

{
argmaxc f

c
cls(ûx,y) , if f c

cls(ûx,y) > τ

ignore , else
(9)

and further extend the FixMatch formulation to enable multi-
label segmentation as follows:

l′(ux,y) =


⌊f c

cls(ûx,y)⌉ , if |f c
cls(ûx,y)− 0.5|

> |0.5− τ |
ignore, , else

(10)

where τ is a scalar threshold value separating labeled and
ignored pixels. The whole image is labeled by choosing based
on the task the respective l′(·) l′(u) = {l′(ux,y) : ux,y ∈ u}.
We denote the final consistency regularized loss term LRPG+

as:

LRPG+ =LRPG +

Ex∈SU [CE(f
c
cls(ffeat(as(x))), as(l

′(x)))]
(11)

Experiments
Experimental Setup
Datasets. We evaluate our method on two medical tasks,
namely chest radiograph anatomy segmentation and retinal
fluid segmentation. For multi-label anatomy segmentation,
we employ the public JSRT-dataset (Shiraishi et al. 2000).
It consists of five potentially pixel-wise overlapping classes
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(right/left clavicle, right/left lung, heart). The dataset offi-
cially exists with two sets of images (123/124). For each
amount of labeled images, we choose to generate five dis-
tinct random splits from the first set using Nl labeled images
(Nl ∈ 3, 6, 12, 24). For each split, we use five images of the
first set for validation while using the second set for testing.

To further display the effect of our proposed method for
overlapping labels in small data setting, we expand upon
the JSRT dataset by using more fine-grained annotations
for a total of 72 labels belonging to the supercategories of
heart, lung, ribs, spine, and others. As a result, each label
consists of fewer annotated pixels than the large labels in
JSRT, i.e., the lung consists of its five lobes compared to
two lung halves. For this task, a medical expert annotated
two chest radiographs taking up to 3 hours per image. We
evaluate the performance on this task by fusing our fine-
grained classes into the corresponding JSRT labels , e.g. right
upper, middle and lower lung lobe correspond to the right
lung. We use five JSRT labeled images of the first set as
validation and test the performance on the second set of JSRT.
We further elaborate on the annotations in the supplementary.

For multi-class retinal fluid segmentation, we utilize the
Spectralis vendor of the RETOUCH data set consisting of 14
optical coherence tomography volumes with 49 b-scans each.
We follow the setup of (Reiß et al. 2021) and thus perform
10-fold cross-validation with training sets using Nl labeled
images (Nl ∈ 3, 6, 12, 24), with validation and test sets of
roughly equal size on Spectralis, and ensure that in each split,
all diseases show at least once in the mask labels.

We use mean Intersection over Union (mIoU) as the per-
formance metric. We evaluate our method every tenth epoch,
apply the best-performing model on the validation set to the
test set, and report the mean and standard deviation.
Implementation Details. For our segmentation model we
use the common UNet architecture (Ronneberger, Fischer,
and Brox 2015) with batchnorm (Ioffe and Szegedy 2015)
and bilinear up-scaling blocks. The function ffeat which is
used for feature extraction describes the network up to the
penultimate layer. The function fcls is a 1 × 1 convolution
followed by a sigmoid function for JSRT and Softmax for
RETOUCH. We initialize the network using standard Xavier
initialization (Glorot and Bengio 2010). We optimize using
Adam (Kingma and Ba 2014) with learning rate and weight

p Nl = 3 Nl = 6 Nl = 12 Nl = 24

1 0.52± 0.02 0.66± 0.04 0.74± 0.02 0.78± 0.01
2 0.58± 0.04 0.72± 0.03 0.77± 0.03 0.82± 0.01
3 0.64± 0.05 0.76± 0.02 0.81± 0.02 0.84± 0.01
4 0.65± 0.04 0.76± 0.02 0.79± 0.03 0.84± 0.01
5 0.66± 0.03 0.77± 0.02 0.82± 0.02 0.84± 0.01

Table 2: Comparison of Nearest-Neighbor performance for
different memory bank sizes.

p k = 25% k = 50% k = 75% k = 100%

1 0.55± 0.03 0.57± 0.02 0.56± 0.01 0.52± 0.04
2 0.60± 0.04 0.62± 0.03 0.58± 0.03 0.51± 0.04
3 0.66± 0.03 0.70± 0.02 0.67± 0.02 0.52± 0.06
4 0.68± 0.03 0.68± 0.03 OOM OOM
5 0.68± 0.02 OOM OOM OOM

Table 3: Comparison of RPG for different k and image pool
sizes. ’OOM’ denotes ’Out Of Memory’.

decay of 0.0005 for 100 epochs on JSRT, 200 on extended
JSRT and 50 epochs on RETOUCH respectively. As data
augmentations, we use random cropping, rotation, additive
noise, and color jitters with additional random flipping. For
JSRT, we use batch size 5 with image size 512, while for
RETOUCH we use batch size 8 following the preprocessing
utilized in (Reiß et al. 2021). For all experiments, we build
each batch as a combination of P with p = 3 and randomly
sampled images of the whole dataset. We set the number of
considered nearest neighbors k = 7000 and the representa-
tion map size s = 64. All experiments were run on one 11GB
NVIDIA GeForce RTX 2080.
Baselines and Methods. First, we employ a standard UNet
Baseline using only the available annotated data as supervi-
sion. Due to the low amount of seen images, we run these
models for the same amount of iterations instead of the
same amount of epochs. Next, we take a look at the original
Pseudolabel method proposed by (Lee et al. 2013), which
we test for different thresholds τ . Further, we compare a
naive Nearest Neighbor label assignment without a weight-
ing function. We also compare against recent methods of

Methods Nl = 3 Nl = 6 Nl = 12 Nl = 24

Baseline 0.59± 0.04 0.73± 0.02 0.81± 0.01 0.85± 0.01
Pseudolabelτ=0.8 (Lee et al. 2013) 0.56± 0.04 0.73± 0.04 0.81± 0.03 0.87± 0.01
Pseudolabelτ=0.95 (Lee et al. 2013) 0.57± 0.03 0.74± 0.03 0.82± 0.02 0.87± 0.01
Nearest Neighbor 0.64± 0.05 0.76± 0.02 0.81± 0.02 0.84± 0.01
FixMatchτ=0.8 (Sohn et al. 2020) 0.71± 0.05 0.79± 0.02 0.80± 0.01 0.85± 0.00∗

FixMatchτ=0.95 (Sohn et al. 2020) 0.67± 0.05 0.77± 0.02 0.81± 0.02 0.85± 0.01∗

RPG (Ours) 0.71± 0.02 0.79± 0.02 0.83± 0.02 0.87± 0.01
RPG+ (Ours) 0.77± 0.05∗ 0.85± 0.01∗ 0.87± 0.00∗ 0.88± 0.01∗

Full Access (Nl = 123) 0.85

Table 1: Performance comparison of our work to related work on the datasets JSRT. ∗ denotes that due to lacking convergence
the model was trained twice the iterations. Bold and underlines denote best and second best performance.

2175



Methods Data Right Lung Left Lung Heart Right Clavicle Left Clavicle Mean

Baseline

JS
R

T
N

l
=

3

0.83± 0.02 0.81± 0.01 0.59± 0.02 0.47± 0.05 0.42± 0.07 0.59± 0.04
Pseudolabelτ=0.8 0.86± 0.02 0.87± 0.02 0.65± 0.10 0.35± 0.06 0.28± 0.06 0.56± 0.04
FixMatchτ=0.8 0.94± 0.00 0.93± 0.00 0.82± 0.03 0.50± 0.09 0.44± 0.14 0.71± 0.05
RPG (Ours) 0.91± 0.01 0.90± 0.01 0.71± 0.02 0.55± 0.04 0.55± 0.03 0.71± 0.02
RPG+∗ (Ours) 0.95± 0.00 0.95± 0.00 0.85± 0.02 0.60± 0.09 0.50± 0.15 0.77± 0.05

Baseline
C

us
to

m
N

l
=

2

0.1105 0.0994 0.2335 0.0526 0.0256 0.1043
Pseudolabelτ=0.8 0.2335 0.0847 0.0920 0.0000 0.0000 0.0820
FixMatchτ=0.8 0.0504 0.0463 0.0041 0.0000 0.0000 0.0246
RPG (Ours) 0.6065 0.4592 0.5108 0.0000 0.0000 0.3153
RPG+ (Ours) 0.6326 0.4852 0.5636 0.0671 0.0168 0.3531

Table 4: Performance comparison on JSRT and our extended annotations (Custom). ∗ denotes a training of twice the iterations.
Bold and underlined denote best and second best performance respectively.

MLDS (Reiß et al. 2021), which uses deep supervision paired
with a Mean-Teacher (Tarvainen and Valpola 2017) setup,
and FixMatch (Sohn et al. 2020) utilizing strongly and weakly
augmented prediction comparisons.

Ablation Studies
Pool Size for Pseudo-Label Assignment. To show the po-
tential of nearest-neighbor-based pseudo-label generation
for semantic segmentation, we investigate the segmentation
performance for different combinations of pool size and the
amount of annotated images. Table 2 shows that if only a
single image is considered the segmentation ability of the
network is rather poor but as we increase the number of im-
ages in the pool, we see a steady performance increase across
all amounts of annotated images. We note that while increas-
ing the pool size overall also positively affects performance,
the improvement past p = 3 is substantially less while the
needed memory rises at a constant rate. Thus, we see p = 3
as a good trade-off between performance and memory con-
sumption and maintain it for all further experiments.
Amount of Observed Neighbors. We expand upon the near-
est neighbor assignment in RPG with our weighting scheme.
Therefore, we investigate the impact of the effective radius in

feature space on our density-based class entropy weighting
for different pool sizes p and relative amounts of considered
neighbors k for Nl = 3. For Table 3, we display the results
for the relative amount of all considered features in the refer-
ence pool RP as k instead of the usual absolute number used
in the remaining paper. Independently of the pool size, we
see that increasing k improves over just the nearest-neighbor
assignments shown in the first column of Table 2. The perfor-
mance increases up until 50% of all existing features where
it peaks and falls off drastically for larger k’s. This indicates
that an increased search radius is helpful but finding the opti-
mal k is difficult. Due to memory constraints we did not test
larger k’s for bigger pool sizes.

Quantitative Results
Results on JSRT. In Table 1, we display the mIoU of vari-
ous methods for multi-label anatomy segmentation. Standard
pseudo-labeling shows varying performance depending on
the chosen threshold, and while it performs well for more an-
notated images, the performance even falls below the baseline
in the low data case for any chosen threshold. Nearest Neigh-
bor pseudo-labels improve over the baseline for few samples
by 3-5% but show slightly worse results for 24 annotated ex-

Figure 3: Qualitative Segmentation Results on the JSRT (Shiraishi et al. 2000) dataset for Nl = 6.
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Methods Nl = 3 Nl = 6 Nl = 12 Nl = 24

Baseline 0.15± 0.07 0.27± 0.08 0.35± 0.06 0.49± 0.05

IIC (Ji, Henriques, and Vedaldi 2019) 0.22± 0.09 0.32± 0.07 0.41± 0.07 0.53± 0.06
Perone and Cohen-Adad (2018) 0.21± 0.09 0.31± 0.10 0.39± 0.07 0.50± 0.08
MLDS (Reiß et al. 2021) 0.16± 0.15 0.35± 0.11 0.54± 0.09 0.59± 0.07
RPG (Ours) 0.21± 0.10 0.30± 0.08 0.45± 0.08 0.54± 0.08
RPG+ (Ours) 0.31± 0.11 0.45± 0.10 0.55± 0.08 0.59± 0.08

Full Access (Nl = 415) 0.62± 0.05

Table 5: Performance comparison on Retouch. Bold and underlined denote best and second best performance respectively.

Figure 4: Qualitative Segmentation Results on extended
anatomical x-ray annotations.

amples. FixMatch gains 12% above the baseline for Nl = 3,
but it struggles for more annotations despite taking longer to
converge. Both FixMatch and standard Pseudolabeling show
varying performance for different τ . Our proposed RPG per-
forms equally to FixMatch for smaller Nl and outperforms
it for larger Nls while not using strong augmentations. We
further see that the integration of strongly augmented images
in RPG+ improves the performance of RPG for all settings
gaining 18% over the baseline for Nl = 3 and matches fully
supervised performance with six labeled samples.

We further demonstrate the class-wise performance for
three annotated samples on the top of Table 4. We see that
the baseline as well as pseudo labeling struggle with less
common classes like the clavicles. FixMatch shows consid-
erable improvements for the classes with more annotated
pixels, while the performance for the clavicles only slightly
improves. RPG also improves over the baseline for heart
and lungs, but shows significant improvements for the dif-
ficult clavicles. Furthermore, RPG+ combines the aspects
of RPG and augmentation-based consistency regularization,

Figure 5: Qualitative Results on RETOUCH.

which noticeably improves all categories apart from the right
clavicle with gains up to absolute 26% over the baseline. We
display segmentation predictions in Fig. 3, where class-wise
shortcomings of the different methods become visible.
Results on Extended JSRT. In the bottom half of Table 4,
we display the results when using our fine-grained annota-
tions of JSRT. The baseline of training simply on the anno-
tated images achieves 10.43% mIoU. Both prediction-based
pseudolabeling methods struggle in this complex low data
environment and perform worse than the baseline. In con-
trast, RPG manages to correctly predict classes of the super-
categories Left Lung, Right Lung and Heart leading to a
mIoU of 31.53% thus improving upon the baseline by abso-
lute 21.10%. RPG+ slightly boosts this further to a mIoU
of 35.31%. We display the extended anatomy segmentations
in Fig. 4. We see RPG+ managing to reconstruct the lung-
subcategories, ventricles of the heart and the sub-diaphragm,
but struggling with explicit predictions of bone structures.
Results on Spectralis. We display our results for the Spec-
tralis dataset in Table 5. Here, we also see RPG outper-
forming the baseline for all considered Nl, thus showing its
usability for the multi-class segmentation setting. RPG+ no-
ticeably outperforms other methods especially for the low
data schemes of Nl = 3 and Nl = 6 by up to 15% while
having the same performance as MLDS for Nl = 24. We
display qualitative comparisons in Fig. 5.

Conclusion
In this work, we proposed a novel way of generating supervi-
sion for segmentation. We use labeled images as reference
material, match pixels in an unlabeled image to their seman-
tic counterparts, and allocate the corresponding label seen in
the reference. This way, we do not fall into pitfalls common
with prediction-based pseudo-labeling such as confirmation
bias. Since no additional networks or alterations to a given
architecture are necessary, our proposed method can easily be
plugged into any existing framework. We argue that this way
of pseudo-label generation is especially fitting for medical
image analysis due structural similarity provided by underly-
ing anatomical structures. We demonstrate the effectiveness
of our approach through extensive experiments on chest X-
ray anatomy segmentation and retinal fluid segmentation. We
achieve fully supervised performance with only a handful of
samples, thus, cutting the annotation cost by 95%.
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