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Abstract

The use of priors to avoid manual labeling for training machine
learning methods has received much attention in the last few
years. One of the critical subthemes in this regard is Learning
from Label Proportions (LLP), where only the information
about class proportions is available for training the models.
While various LLP training settings verse in the literature,
most approaches focus on bag-level label proportions errors,
often leading to suboptimal solutions. This paper proposes a
new model that jointly uses prototypical contrastive learning
and bag-level cluster proportions to implement efficient LLP
classification. Our proposal explicitly relaxes the equipartition
constraint commonly used in prototypical contrastive learning
methods and incorporates the exact cluster proportions into
the optimal transport algorithm used for cluster assignments.
At inference time, we compute the clusters’ assignment, deliv-
ering instance-level classification. We experimented with our
method on two widely used image classification benchmarks
and report a new state-of-art LLP performance, achieving
results close to fully supervised methods.

Introduction
The performance of the firstly proposed deep learning meth-
ods was directly related to large amounts of annotated train-
ing samples (Russakovsky et al. 2015). However, annotating
such large datasets promptly became a bottleneck in super-
vised learning, as it is a time-consuming and labor-intensive
task. Additionally, various applied areas such as healthcare
or democratic elections struggle with labels, which are often
not available (Qi et al. 2016). In many scenarios, despite
the unavailability of instance-level annotations, approximate
group-level labels like class proportions are readily obtain-
able from other sources, like the census or even common
knowledge. In this sense, efficient learning from group-level
labels would have an important impact in many real-life
applications, such as demographic classification (Ardehaly
and Culotta 2017), presidential elections (Sun, Sheldon, and
O’Connor 2017; Qi et al. 2016), remote sensing (Ding, Li,
and Yu 2017), image analysis in medicine (Bortsova et al.
2018), activity recognition (Poyiadzi, Santos-Rodriguez, and
Twomey 2018), and others.
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Figure 1: General overview of LLP-Co. Given an input bag
of images, we generate two augmented views of each image.
Then, we forward the full batch of image views into a network
that assigns them to various clusters constrained to their a
priori proportions. The colored arrows point to the images
that were assigned to each cluster.

As a weakly supervised classification subtheme, Learning
from Label Proportions (LLPs) has received much atten-
tion in the machine learning community in the last decade
(Quadrianto et al. 2009; Yu et al. 2013, 2014; Qi et al. 2016;
Dulac-Arnold et al. 2019; Shi et al. 2020; Scott and Zhang
2020). Standard LLP approaches split training samples into
groups of bags where only label proportions are known and
target to learn individual sample class. Many different ways
for implementing that were proposed, including those based
on support vector machine (Yu et al. 2013), Bayesian models
(Hernández-González, Inza, and Lozano 2013), convolutional
neural networks (Ardehaly and Culotta 2017), generative
models (Liu et al. 2019) and clustering (Stolpe and Morik
2011). In (Yu et al. 2014), the authors presented the Empiri-
cal Proportion Risk Minimization (EPRM) algorithm to infer
when and why bag-level proportions help predict individual
labels. The study concluded that LLP performance strongly
depends on the bag size and label proportions and that a pre-
dictor with a reasonable bag proportion estimate warrants a
good instance-level prediction. EPRM and others LLP meth-
ods optimize the learning process by minimizing a bag-level
loss that typically uses the Kullback-Leibler (KL) divergence
to measure how much the predicted proportion distribution
differs from the known distribution. Despite the recent ad-
vances observed in the field (Ardehaly and Culotta 2017; Liu
et al. 2019; Dulac-Arnold et al. 2019), learning instance-label
classifiers solely from bag-level label proportions with KL
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is still a challenge, as many valid hypotheses can match the
know distribution and still lead to suboptimal solutions.

Recently, Caron et al. (Caron et al. 2020) proposed the
Swapping Assignments between multiple Views (SwAV)
method to perform unsupervised clustering. SwAV combines
contrastive learning and Optimal Transport (OT) to cluster
data while enforcing consistency between cluster assignments
produced from different views of the same input image. The
clustering implies that augmented views of a given sample
belong to the same class and that different samples belong to
different classes. An Optimal Transport solver assigns sam-
ples to cluster prototypes (or centroids) and computes pseudo
cluster labels to guide the clustering process. At convergence,
each prototype represents a group of semantically similar
samples, and the ultimate training goal is to find the network’s
parameters that best describe the overall training set distri-
bution. Li et al. (Li et al. 2020b) also explored contrastive
learning and clustering with the Prototypical Contrastive
Learning (PCL) method, which implements clustering from
unsupervised representation learning.

This paper builds on this literature and proposes a method
that embeds priors about class proportions to a contrastive
cluster assignment framework to handle LLP. A general
overview of the proposed framework is depicted in Figure 1.
Specifically, our proposal, Learning from Label Proportions
with Prototypical Contrastive Clustering (LLP-Co), relaxes
the SwAV method’s equipartition constraint by incorporat-
ing the exact cluster proportions into the Optimal Transport
module. Consequently, our method inherently performs LLP
classification from the clustering, and at inference time, we
use the clusters’ assignment to perform instance-level classi-
fication.

We experimented on two standard image classification
benchmarks (CIFAR-10 and CIFAR-100 (Krizhevsky, Nair,
and Hinton 2012)) using a ResNet18 architecture to evaluate
our method and report state-of-art results compared to current
multi-class LLP methods, achieving similar performance to
that observed in fully supervised counterparts. Our work
implements the following contributions:

• A new method combining class proportion priors and
prototypical contrastive clustering to tackle LLP.

• State-of-the-art LLP performance on widely used public
computer vision benchmark datasets.

Related Works
Our work is closely related to three research topics versing
weakly-supervised/unsupervised learning: multi-class learn-
ing from label proportions, deep unsupervised clustering, and
contrastive learning. We present a summary of related works
to contextualize our paper.

Multi-class Learning from Label Proportions Current
state-of-the-art methods to solve multi-class LLP problems
use deep learning models. Ardehaly and Culotta introduced
deep learning for LLP in (Ardehaly and Culotta 2017) with
application in demographic attribute classification. The deep
LLP (DLLP) approach incorporates a regularization layer
to a deep neural network for averaging probability outputs

towards the bag proportion using the KL divergence loss to
train the network. In (Dulac-Arnold et al. 2019), the author
investigates two loss functions to solve multi-class LLP: a
modified KL divergence and a function based on balanced
Optimal Transport with entropic regularization (ROT). The
authors concluded that such models perform close to super-
vised models for bags of up to 16 samples, but both loss
functions degrade as the bag size increases, even if the ROT
loss presents higher robustness to big bags. More recently,
Liu et al. (Liu et al. 2019) introduced adversarial learning
to classification based on label proportions. LLP-GAN sig-
nificantly improves previous work (Yu et al. 2014; Ardehaly
and Culotta 2017) achieving SOTA performance in several
computer vision benchmark datasets. Despite the success
of these methods, their performance is still far behind super-
vised counterparts. We believe that using solely bag-level pro-
portions to perform instance-level classification is a flawed
approach. Concurrent to our work, (Liu et al. 2021) proposed
the use of Optimal Transport (OT) to obtain noisy pseudo-
labels that meet the exact proportions in an LLP problem.
The methodology consists of a two-stage training process
that employs LLP models based on KL-divergence as the
first stage and supervised learning using cross-entropy loss
with the pseudo-labels generated by OT as the second stage.

Deep Unsupervised Clustering Combining clustering and
feature representation learning has emerged as a promising
approach for unsupervised learning. DeepCluster (Caron et al.
2018) and Deep k-means (Fard, Thonet, and Gaussier 2020)
are two approaches that jointly optimize representation learn-
ing and clustering in an end-to-end framework. DeepCluster
groups the features with k-mean and uses the assignment
as pseudo-labels to update the weights of a convolutional
neural network. Deep k-means replaces the cluster assign-
ments with soft-assignments and proposes a clustering loss
that is jointly minimized over the network’s parameters and
the centers of the clusters, using stochastic gradient descent
(SGD). Genevay et al. (Genevay, Dulac-Arnold, and Vert
2019) proposed a differentiable deep clustering method with
cluster size constraints. The main contribution of the study
is the rewriting of the k-mean clustering algorithm as an OT
with entropic regularization task. The authors report promis-
ing results outperforming Deep k-means and the multi-class
learning from label proportions (Dulac-Arnold et al. 2019)
approach for large bag sizes. However, this approach strongly
depends on the k-means algorithm cluster initialization.

Prototype Learning and Contrastive Learning In proto-
type learning methods (Asano, Rupprecht, and Vedaldi 2019;
Caron et al. 2020; Li et al. 2020b,a), prototypes are defined
as the centroid of a cluster formed by semantically similar
instances. In this setup, the embedding of a neural network
is the input to a clustering algorithm that performs prototype
assignments, which are subsequently used as ”pseudo-labels”
to supervise a self-representation learning process. Asano et
al. (Asano, Rupprecht, and Vedaldi 2019) impose the con-
straint that the labels must force equipartition of the samples
and proposed to use a fast version of the Sinkhorn-Knopp
algorithm (Cuturi 2013) to find an approximate solution to
the OT problem. The Swapping Assignments between mul-
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tiple Views (SwAV) method (Caron et al. 2020) proposes
combining contrastive learning and clustering, reporting im-
pressive results in self-supervised learning. Contrastive learn-
ing methods usually perform data transformations to create
instances of the same input and increase the similarity of pos-
itive sample pairs while augmenting the distance of negative
sample pairs (Wu et al. 2018). SwAV method proposes to
use prototypical cluster assignment that disregards pairwise
comparisons. More recently, (Regatti et al. 2021) proposed
the Consensus Clustering using Unsupervised Representation
Learning (ConCURL) method, which introduces consensus
consistency into the SwAV by defining random transforma-
tions to the feature vector and codes.

This paper proposes to embed cluster proportion priors
to the prototypical contrastive cluster assignment used in
SwAV to solve LLP efficiently. Different from (Liu et al.
2021), our proposal consists of a unique training stage and
does not employ KL-divergence. Our efficient and straight-
forward approach set a new boundary for LLP classification,
outperforming the existing state-of-art methods in the field.

Preliminaries
Before detailing our method, we present preliminaries re-
lated to our contribution, including formally stating the LLP
problem and the OT algorithm.

Reminders on Optimal Transport
Using the notation of Cuturi in (Cuturi 2013), let r and a be
two probability vectors in the simplex

∑
d := {r ∈ Rd

+ :

rT1d = 1}, where 1d is a d-dimensional vector with all
elements equal to one in order to to satisfy the marginal
constrains. Then, consider U(r, c) as a set of d× d matrices
namely the transportation polytope of r and a,

U(r,a) := {P ∈ Rd×d
+ |P1d = r,PT1d = a}. (1)

All d × d matrices in U(r,a) are non-negative such that
r and a are their row and column marginals, respectively.
For two multinomial random variables X and Y with dis-
tribution r and a respectively, U(r,a) contains all possi-
ble joint probabilities of (X,Y ) (Cuturi 2013). Hence, any
P ∈ U(r,a) is a joint probability matrix of (X,Y ) such that
p(X = i, Y = j) = Pi,j . With this notation, the entropy h
of the joint probabilities P and their marginals r ∈

∑
d, can

be formalized as

h(r) = −
d∑

i=1

ri log ri, h(P) = −
d∑

i,j=1

Pi,j logPi,j . (2)

Now, considering M ∈ Rd×d as the cost matrix, the cost of
transport r to a using the joint probability P is formulated as
the Frobenius dot-product ⟨P,M⟩, and the optimal transport
(OT) problem for r and a given M is defined as

dM(r,a) := min
P∈U(r,a)

⟨P,M⟩ =
∑
i,j

Pi,jMi,j (3)

where dM(r,a) is a distance between r and a (Cuturi 2013).

Entropic Constraints The OT solution in equation 3 is
solved on the vertices of the polytope U(r,a) which lead to
undesirable sparse solutions. Moreover, solving equation 3 is
computationally expensive as it requires solving a linear equa-
tion that scales quadratically with the size of the sample. To
address this issue, Cuturi (Cuturi 2013) proposed an entropic
regularization term that smooth the prediction and allows
for an efficient solver using the Sinkhorn-Knopp algorithm.
The entropic function of the joint probability matrix h(P)
is strongly concave and subject to h(P) ≤ h(r) + h(a) =
h(raT ). Hence, the authors use −h(P) as a regularization
function to obtain an approximate solution as follows

dεM(r,a) := min
P∈U(r,a)

⟨P,M⟩ − εh(P), (4)

where ε is a trade-off parameter that controls the smoothness
of the prediction. This modification pushes away the solution
from the vertex towards an ”entropic center” (Peyré, Cuturi
et al. 2019). For more details about entropic regularization of
OT we refer the reader to (Peyré, Cuturi et al. 2019).

Learning from Label Proportions
In the standard LLP formulation, training samples are split
into bags where only the label proportions inside each bag
is known, and used to obtain the instance-level label using
a solver of choice. Following previous works, we assume
that the training data is composed of N disjoint bags. Let
Bi be the ith bag with a set of randomly generated samples
Bi = {(xi,j)}ni

j=1, where xi,j is the sample j within bag i,
and ni is the total amount of samples in the bag. Then, the
training set can be expressed as D = {(Bi,wi)}Ni=1, where
Bi ∩ Bj = ∅, ∀i ̸= j. For a multi-class problem with K
classes, let wi ∈ ∆K be the vector of label proportion for the
bag Bi, where the wk

i element is the proportion of instances
that belong to class k subject to

∑K
k=1 w

k
i = 1.

Method
This section details the proposal for embedding label pro-
portion priors to prototypical cluster assignments. We first
explain the link between OT and LLP and then describe our
prototypical contrastive cluster method incorporating learn-
ing from label proportions.

LLP as an Instance of the OT Problem
In a standard deep LLP setting, the network commonly
implements a feature extractor followed by a classifica-
tion head that maps the features to a probabilities vector
p̃i,j = pθ(y|xi,j) using a softmax operator, where xi,j is the
jth sample of bag Bi, θ are the network parameters, pθ is
the probability assigned to a given class by the network and
y is a cluster assignment vector of size K (Liu et al. 2019).
Then the estimated bag-level label proportion for a given bag
can be calculated as the summation of element-wise posterior
probability for a given bag:

ŵi =
1

ni

ni∑
j=1

p̃i,j =
1

ni

ni∑
j=1

pθ(y|xi,j). (5)
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Then, given the known labels proportion wi =
(m1

ni
, m2

ni
, ..., mK

ni
) ∈ ∆K , the bag-level loss function boils

down to a standard cross-entropy loss function

L(ŵ, w) = − 1

N

N∑
i=1

wi log ŵi. (6)

To effectively link LLP with OT we build on (Asano, Rup-
precht, and Vedaldi 2019; Liu et al. 2021) and reformulate
equation 6 by encoding the labels proportions wi as posterior
distributions q(yk|xi,j):

L(p, q) = − 1

N

N∑
i=1

ni∑
j=1

K∑
k=1

q(yk|xi,j)

ni
log pθ(y

k|xi,j).

(7)
where K is the number of classes and p is the model output
probability. With the addition of the proportion constraint,
the function objective reads:

min
(p,q)

L(q, p), s.t. ∀y : q(yk|·) ∈ [0, 1] (8)

and
ni∑
j=1

q(yk|xi,j) = mk. (9)

Where the proportion constraint ensures that each label
k = {1, ...,K} contains overall mk samples.

As discussed in (Asano, Rupprecht, and Vedaldi 2019) and
(Liu et al. 2021), the objective in equation 8 is combinatorial
in q which can be difficult to optimize. However, it is also
an instance of the OT problem and can be solved efficiently
using the Sinkhorn-Knopp algorithm.

Following (Asano, Rupprecht, and Vedaldi 2019) we can
writing in terms of OT. Let Py

i,j = pθ(y|xi,j)
1
ni

be the
K × ni joint probabilities matrix estimate by the model and
Qy

i,j = q(y|xi,j)
1
ni

be the K × ni matrix of assigned joint
probabilities for bag Bi. In our case, we want that Qi split the
data non-uniformly within the bag, i.e. constrained to prior
information about the labels proportions. Hence, we add the
constraint to the transportation polytope as follows

U(w,a)i := {Qi ∈ RK×ni
+ |Qi1ni

= wi,Q
T
i 1K = a}.

(10)
where, as previously stated, wi is the vector of known labels
proportion for bag Bi and a = 1

ni
1ni

. From equation 4, the
objective function in equation 8 for the ith bag can be written
as an OT solver

L(q, p)i + log ni = ⟨Qi,− logPi⟩, (11)

and with the addition of the entropic regularization term, the
objective function for the ith bag is

min
Qi∈U(w,a)i

⟨Qi,− logPi⟩+ εh(Qi). (12)

The advantage of adding the regularization term is that the
minimization problem can now be written as a normalized
exponential matrix. The next section give more details on
how this optimization problem is solved.

Learning from Label Proportions with Prototypical
Contrastive Clustering
The above formulation assigns discrete labels to samples and,
therefore, can also be interpreted as clustering. To perform
online cluster assignment, we employ the Swapping Assign-
ments between multiple Views (SwAV) method (Caron et al.
2020). SwAV is an online clustering-based self-supervised
method that trains a convolutional neural network to learn an
embedding that delivers consistent cluster assignments be-
tween codes, i.e., the cluster assignments from different views
(i.e., augmentations) of the same input image are consistent.
The method built on contrastive learning methods (Wu et al.
2018) to learn semantic representations by comparing the
images cluster assignment instead of their features. The clus-
tering uses an augmented view of a given sample to compute
targets using an OT solver and other augmented views of the
same sample to predict these targets using the cross-entropy
loss function. As in Asano et al. (Asano, Rupprecht, and
Vedaldi 2019), the authors impose an equipartition constraint
to avoid all samples mapped to the same cluster. Conversely,
in our implementation, we substitute the equipartition con-
dition by cluster size constraints and solve the OT problem
using equation 12.

Online clustering Let the number of clusters be equal to
the number of classes K, and vk ∈ Rd the prototype vector
associated with cluster k. Given a bag Bi of images, each
image j within the bag is transformed into two augmented
views xs

i,j and xt
i,j , and fed to an encoder network fθ to

extract the two corresponding set of features zsi,j , z
t
i,j ∈ Rm.

The features are then projected to the unit sphere (Caron
et al. 2020) and mapped to a K trainable prototypes vectors
V = [v1, ...,vk] deriving the codes csi,j and cti,j . The loss
function performs a ”swapped” procedure that predicts the
assignment of one feature from the code of the other one.
Hence, the feature extractor network and prototypes weights
are jointly trained, minimizing the subsequent loss for all
samples j within bag i:

Lswap(z
s
i,j , z

t
i,j) = ℓ(zsi,j , c

t
i,j) + ℓ(zti,j , c

s
i,j), (13)

where each term represents the cross-entropy loss between
the code and the probability obtained as the softmax function
of the dot product between the features and all the prototypes
in V:

ℓ(zti,j , c
s
i,j) = −

∑
k

c
s(k)
i,j logp

t(k)
i,j , (14)

where

p
t(k)
i,j =

exp( 1τ (z
t
i,j)

Tvk)∑
k′ exp( 1τ (z

t
i,j)

Tvk′)
, (15)

and τ is the temperature parameter of the softmax function.

Computing codes with proportions constraint We solve
the cluster assignment using the entropic regularized OT,
which implies the samples in the bag are partitioned accord-
ingly to the bag-level cluster/label size proportions. For the
ith bag, let Zi = [zi,1, ..., zi,ni

] be the feature vectors that we
want to map to the prototypes V and let Qi = [ci,1, ..., ci,ni

]
be the codes that perform the transportation, restricted to the
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Algorithm 1: LLP-Co training loop using two views
Input: D = {(Bi,wi)}Ni=1, ε > 0, epochs
Initialize: fθ and prototypes V

1: for i = 1 to epochs do
2: for each Bi in D do
3: Generate two random views Xt,s

i

4: Obtain the feature vectors Zt,s
i

5: Compute the prototype scores VTZt,s
i

6: Compute the codes Qt,s
i through Sinkhorn con-

strained to wi

7: Convert prototype scores to probabilities Pt,s
i

8: Compute loss using the swap prediction problem:
loss = −0.5 ∗mean(Qt

i ∗ log(Ps
i )+Qs

i ∗ log(Pt
i)

9: Update θ and V with a gradient step
10: end for
11: end for

proportion constraints presented in equation 10. Using the
notation of (Caron et al. 2020), we optimize Qi in order to
maximize the similarity between Zi and V as follows

max
Qi

Tr(QT
i V

TZi) + εh(Qi). (16)

This formulation is equivalent to the learning objective in
equation 12. To add the cluster size proportions, we intro-
duce the marginals constraint as in equation 10. Using the
regularization term allows writing the optimization problem
as a normalized exponential matrix (Caron et al. 2020):

Q∗
i = diag(α) exp

(
VT

i Zi

ε

)
diag(β), (17)

where α and β are renormalization vectors to ensure that the
resulting matrix Q∗

i is a probability matrix. These vectors can
be easily computed throughout iterative matrix multiplication
using the Sinkhorn-Knopp algorithm (Cuturi 2013).

After computing the codes, the loss for updating the net-
work weights s is computed using the cross-entropy loss prob-
abilities between one view and assigned codes of the other
view, and vice versa as shown equation 13. We outline the
learning procedure for two random views in Algorithm 1. For
more information about the SwAV method and the Sinkhorn-
Knopp algorithm, we refer the readers to (Cuturi 2013; Caron
et al. 2020).

Experiments
We empirically assess the performance of our method using
two standard image classification benchmarks (CIFAR-10
and CIFAR-100 (Krizhevsky, Nair, and Hinton 2012)) and
a ResNet18 architecture (He et al. 2016). CIFAR-10 and
CIFAR-100 datasets are released under the MIT licenses.
We implemented our method upon the SwAV (Caron et al.
2020) algorithm that is released under the Creative Commons
Attribution-NonCommercial 4.0 International, introducing
the cluster size constraint into the Sinkhorn-Knopp. However,
since we provided the exact cluster size, we are not restricted
to minimum batch size constraints. We compare our method

with the LLP-GAN (Liu et al. 2019), and LLP-GAN-PLOT
(Liu et al. 2021) methods, which are considered the state-of-
the-art in LLP.

Experimental Details
Bag-level label proportions generation For a given bag
size ni, we create the training bag Bi by randomly selected
ni samples from the training set, such as each sample within
the bag is unique. Following previous works (Liu et al. 2019;
Dulac-Arnold et al. 2019; Liu et al. 2021), we defined four
experiments with different bag sizes ni = [16, 32, 64, 128].

Architecture and training We implemented our method
using a configuration similar to the one in (Caron et al. 2020).
We used a ResNet18 as backbone architecture followed by a
projection head that projects the output of the ResNet18 to
a 1024-D space. All the experimented models were trained
using stochastic gradient descent (SGD), with a weight decay
of 1× 10−6 and an initial learning rate of 0.1. We warmed
up the learning rate during five epochs and then used the
cosine learning rate decay (Loshchilov and Hutter 2016) with
a final value of 0.0001. As in (Caron et al. 2020), the softmax
temperature τ was set to 0.1, and the prototypes were frozen
during the first epoch. All our models were trained for 500
epochs. The input images size is 32 × 32, and we used the
same augmentations strategy that Caron et al. (Caron et al.
2020) to obtain four different image views, two standard
resolution views, and two low-resolution views. However, we
did not employ blur data augmentation.

Hyperparameters for the Cluster Assignment Using OT
The weight of the entropy term ε was set to 0.05, and we
stopped the Sinkhorn iterations when the element-wise er-
ror between the marginal r and the know proportion wi

was less than (1/K) ∗ 0.1. As in previous works, we tested
two cluster assignment strategies, hard- and soft-assignment
(Li et al. 2020a; Caron et al. 2020; Liu et al. 2021). In the
soft-assignment, we used the assignments Q obtained by the
entropic regularized OT (a continuous solution), and for the
hard-assignment, we converted the assignment to a binary out-
put using a rounding procedure. In preliminary experiments,
we found that in both datasets, hard-assignment delivers the
best results for bag sizes 16 and 32, while soft-assignment
delivers the best results for bag sizes 64 and 128. As previ-
ously observed in (Regatti et al. 2021), there is not a global
hyperparameters configuration that holds the same perfor-
mance across different datasets and experimental setups. On
CIFAR-100 experiment with bag size 16 we needed to mod-
ify the gradient clipping to 0.1 and reduce the number of OT
iterations to a maximum of 5 to avoid model collapse. With
the standard parameters, the training reaches an inflection
point at epoch 100 and then degrade slowly until the end of
the training, and we observed that all centroids collapsed into
a single region. We present more details on hyperparameter
sensitivity in the supplementary material.

Evaluation Metrics For evaluating our results, we propose
using the metric AccH that takes the cluster assignment as
the prediction and computers the optimal matching between
clusters and labels using the Hungarian algorithm (Kuhn
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Dataset LLP Methods Bag Size SwAV (kNN) ConCURL Supervised
16 32 64 128

CIFAR-10

DLLP-KL 86.0 72.0 56.0 41.0

80.0 84.6 93.6

DLLP-ROT 78.0 65.0 53.0 40.0
LLP-GAN 86.3 83.8 79.0 72.6

LLP-GAN-PLOT 89.3 88.2 84.1 79.1
LLP-Co (AccH) (ours) 90.0 89.8 90.9 86.2
LLP-Co (AccA) (ours) 90.0 89.8 90.9 72.1

CIFAR-100

DLLP-KL 58.0 38.0 24.0 14.0

45.8 47.9 78.3

DLLP-ROT 51.0 37.0 24.0 14.0
LLP-GAN 49.1 43.6 35.6 15.0

LLP-GAN-PLOT 65.4 61.7 55.7 43.4
LLP-Co (AccH) (ours) 59.5 65.9 66.5 64.7
LLP-Co (AccA) (ours) 59.4 65.7 66.5 62.0

Table 1: Test accuracy rates (%) on CIFAR-10 and CIFAR-100 datasets with different bag sizes.

1955). We also report the classification accuracy AccA, which
takes the exact cluster assignment as the predicted label,
i.e., if a test sample was assigned to the prototype v1 the
corresponding label will be 1. Since we expect the addition
of the proportions constraint to improve the quality of the
learned features, we also evaluate our models by performing
k-nearest neighbor (kNN) classification (Wu et al. 2018). For
a feature z in the test set, we take the top 25 nearest neighbors
from the training set and perform majority voting to assign
the label.

Results and Analysis
Comparison with the State-of-the-Art Models Table 1
provides the accuracy for our proposed method and for three
baseline LLP approaches: DLLP (Dulac-Arnold et al. 2019),
LLP-GAN (Liu et al. 2019) and LLP-GAN-PLOT (Liu et al.
2021). In Table 1, DLLP-KL and DLLP-ROT stand for
the KL-divergence and the ROT results reported in (Dulac-
Arnold et al. 2019). In addition, we also compared our results
with SwAV and ConCURL (Regatti et al. 2021), both meth-
ods considered SOTA in unsupervised clustering approaches.
For the SwAV experiments, we used the same network con-
figuration and augmentation strategy used for the LLP-Co
and set the Sinkhorn iterations to 5 and batch size 1024. For
the others baseline models, we used the results reported by
the authors. As an additional reference, we also provide the
fully supervised learning results for both datasets using a
ResNet50 offered by (Chen et al. 2020).

As observed, our method delivers definite improvements
compared to the baseline LLP methods, more significantly
observed for large bag sizes (64 and 128). In particular, we
observed that our approach is robust to the four analyzed bag
sizes for CIFAR-10, reporting overall very similar values for
all sizes and with similar behavior observed for CIFAR-100.
However, the experiment with bag size 16 for CIFAR-100
reports worse results than larger bags and the LLP-GAN-
PLOT baseline method. To better understand that, Figure 2
presents the convergence curve in terms of AccA for this
bag size. The curve shows the model reached a peak of 65%
accuracy at epoch 190 and then degraded until it converged
to an accuracy of around 59%. While we envisage that early

stopping could potentially circumvent that undesired behav-
ior, we did not implement it in our experiments. The AccH
of LLP-Co with bag size 128 achieved 64.7% on CIFAR-
100, which is 21% superior to the LLP-GAN-PLOT result.
Analyzing CIFAR-10, LLP-Co reached similar performance
to the fully supervised scenario for all bag sizes. Compared
with the unsupervised clustering method, LLP-Co (AccH)
method outperformed ConCURL by only 1.6% for bag size
128, and up to 6% for 16, 32, and 64 on CIFAR-10 dataset.
In contrast, more significant improvements were observed
for CIFAR-100, achieving close to 15% for bag size 32, 64,
and 128.

Concerning AccA, as expected, the models learned overall
the correct label of each prototype. Results for AccA match
almost perfectly the accuracy using the Hungarian algorithm,
with an exception for bag size 128 in CIFAR-10. That effect is
somewhat expected since CIFAR-10 had only ten classes with
an equal number of samples per class when bag size ni −→
∞ the distribution of each label inside the bag converges to
1ni

/ni, which can lead to a cluster swapping at some point
of the learning process.

Convergence Curves Figure 3 provides the convergence
curves for the training loss (Figure 3 top) and test accuracy
using a standard kNN classifier (Figure 3 bottom) for dif-
ferent bag sizes. As expected for both datasets, the models
require more epochs to achieve convergence as the bag size
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Figure 2: The AccA convergence curve for the test set for
bag size 16 on CIFAR-100 dataset.
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Figure 3: Training loss (top) and test accuracy using a kNN classifier (bottom) for different bag sizes for CIFAR-10 (left) and
CIFAR-100 (right).

increases. We also observed that the LLP-Co loss converged
faster than SwAV. Furthermore, using the kNN classifier, all
models converged to similar values for the four bag sizes in
both datasets, above 88% for CIFAR-10 and above 65% for
CIFAR-100. For the CIFAR-10 dataset, the kNN classifier
achieved 92% for bag sizes 16, 32, and 64, which is only
1.6% lower than the ResNet50 supervised counterpart (see Ta-
ble 1). Considering the more challenging problem presented
by CIFAR-100, the supervised ResNet50 (78.3% in Table 1)
is only 12% higher than LLP-Co. Notice that ResNet50 is a
much deeper network than ResNet18. Nonetheless, our pro-
posal achieved competitive performances. Finally, contrary
to other LLP methods that suffer degradation in accuracy as
the bag size increases, results in Table 1 and Figure 3 indicate
that our model converges at bag size relatively large (i.e.,
64 and 128) for both datasets. It reached similar or better
accuracy than the best values obtained with bag 16 in the
baseline methods, close to the fully supervised models.

Feature Visualization In Figure 4 we visualize the learned
representation projected to the unit sphere as well as the
cluster centroids for CIFAR-10 e CIFAR-100 using t-SNE
(Van der Maaten and Hinton 2008). As observed, the learned
representations form distant clusters, which suggest the fea-
tures have discriminative power, beneficial for various down-
stream tasks.

Conclusion
This paper proposed a method to address Learning from
Label Proportions (LLP) from a new perspective using con-

Figure 4: t-SNE plots considering the projection vector on the
unit sphere for bag size 64 for CIFAR-10 (left) and CIFAR-
100 (right). The gray points stands for the prototypes (i.e.,
the cluster centers).

trastive cluster assignment with class proportion constraints.
Bag-level LLP approaches focusing on the classification task
suffer from degradation as the bag size increases. Consider-
ing this, we propose to solve the LLP problem by combining
prototypical contrastive cluster assignment and cluster size
constraint in an end-to-end framework. To this end, we use a
prototypical learning approach with an entropic regularized
OT algorithm to solve the cluster assignment and strictly
match the proportional information within a bag. Our model
significantly improves the performance compared to previous
SOTA works on LLP, achieving results close to those ob-
served in fully supervised counterparts and presenting higher
robustness to big bag sizes. We highlight the possible soci-
etal impacts related to eventual biases inherently used in the
context of class proportions and reinforce the ethical use of
this solution in this concern.
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