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Abstract
Exiting simple samples in adaptive multi-exit networks
through early modules is an effective way to achieve high
computational efficiency. One can observe that deployments
of multi-exit architectures on resource-constrained devices
are easily limited by high memory footprint of early modules.
In this paper, we propose a novel approach named recurrent
aggregation operator (ReX), which uses recurrent neural net-
works (RNNs) to effectively aggregate intra-patch features
within a large receptive field to get delicate local representa-
tions, while bypassing large early activations. The resulting
model, named ReXNet, can be easily extended to dynamic
inference by introducing a novel consistency-based early exit
criteria, which is based on the consistency of classification
decisions over several modules, rather than the entropy of the
prediction distribution. Extensive experiments on two bench-
mark datasets, i.e., Visual Wake Words, ImageNet-1k, demon-
strate that our method consistently reduces the peak RAM
and average latency of a wide variety of adaptive models on
low-power devices.

Introduction
The inference-time computational demands of deep neu-
ral networks (DNNs) are increasing, owing to the “going
deeper” (Szegedy et al. 2015) strategy for improving accu-
racy. This strategy has enabled breakthroughs in many tasks,
such as image classification (Krizhevsky, Sutskever, and Hin-
ton 2012) or speech recognition (Hinton et al. 2012), at the
price of costly inferences. The increased computational com-
plexity makes various very deep models inappropriate for
resource-constrained processors, which are common in de-
vices such as smartphones, wearables, and drones.

To address this issue, several recent works have shown
that some samples, which are already correctly classified by
shallow networks, do not necessitate the extra complexity
(Bolukbasi et al. 2017; Li et al. 2019; Hu et al. 2019; Graves
2016). This observation has stimulated the study of input-
adaptive mechanisms, in particular, multi-exit architectures
(Teerapittayanon, McDanel, and Kung 2016; Huang et al.
2018; Kaya, Hong, and Dumitras 2019; Hu et al. 2020; Yang
et al. 2020). Exiting easy samples in adaptive multi-exit net-
works through early modules is an effective way to achieve
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high computational efficiency. However, the early modules
tend to have large intermediate activations and thus require
large working memory for inference (as shown in Figure 1
(left)). Since memory takes up a large portion of the device
chip and has high continuous power requirements, it tends
to be the most constrained resource on low-power devices
(Jouppi et al. 2017). Most low-power ARM Cortex-M* mi-
crocontrollers have less than 256KB of RAM.

To reduce working memory, a straightforward solution is
to use pooling or stride convolution with large stride length to
reduce the size of early activations, but this can result in poor
performance of subsequent classifiers as features important
to the task are washed out in early modules. Therefore, their
use is limited to small receptive fields, usually no larger than
3 × 3, and activation maps cannot be actively reduced by
aggregating larger receptive fields.

In this paper, we are interested in whether this peak RAM
can be effectively reduced without sacrificing accuracy. We
develop a memory-efficient recurrent aggregation operator
(ReX), aiming at bypassing large early activations while us-
ing RNNs to effectively aggregate intra-patch features within
a large receptive field to obtain delicate local representations.
Specifically, our method first takes a quick traverse along
each row and column with the first RNN to get a cheap sum-
mary of the row or column. Then we fuse them through a
linear projection to produce coarse global information. Fi-
nally, the second RNN summarizes the outputs of the first
RNN bi-directionally. A ReX layer consists of a single re-
current aggregation operator with stride s and allows rapid
down-sampling of images and activation maps. Additionally,
a single layer of ReX is most efficient when used to replace
multiple memory-intensive blocks in the early modules of
the network where the activation map sizes are large and thus
require the most memory and computation. The resulting
model, named ReXNet, can be trained efficiently on GPUs
and has high inference speed on mobile devices. An illustra-
tion of ReXNet is shown in Figure 1 (right).

Next, we further extend ReXNet so that it can stop infer-
ence dynamically based on the input sample. To implement
this idea, a natural solution is to calculate softmax predic-
tion scores as confidence for the internal classifiers and then
set a threshold to make the classifier exit early. However,
we should note that prediction probabilities as confidence
metrics, may be unreliable and usually lead to significant
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Figure 1: Standard adaptive multi-exit network (left) and our proposed ReXNet (right). Visual inference on low-power devices is
easily limited by the high peak memory usage of early modules, while ReX aims to bypass intermediate large spatial resolution
activations. The dashed lines and shaded modules are not executed, conditioned on the decisions made by the CBEE.

performance degradation. Therefore, we propose a novel
Consistency-Based Early Exit (CBEE) algorithm. Its stop-
ping criteria are based on the consistency of classification
decisions over several modules, rather than the entropy of the
prediction distribution. Specifically, we make the model stop
inference when the intermediate predictions of the internal
classifier remain unchanged for k times consecutively, where
k is a predefined count. We employ this algorithm (CBEE)
to reason about ReXNet and show a better accuracy-speed
trade-off than existing methods.

We evaluate the performance of our method on Visual
Wake Words (Chowdhery et al. 2019) and ImageNet with
various adaptive networks. We also benchmark the average
latency of ReXNet on an ARM processor and an iPhone.
Experimental results show that ReXNet by itself consistently
outperforms all the baselines by large margins, while CBEE
further improves the efficiency. For example, when the Mo-
bileNetV2 (6 exits) is used as the base network, ReXNet has
up to 11.5× and 2× less peak RAM and average latency
than the original models when achieving the same level of
accuracy, respectively.

Related Work
Input-Adaptive Network. Adjusting the network architec-
ture to the corresponding input has been recently studied in
the computer vision domain. There are two types of input
adaptive DNNs: layer-skipping networks (Wang et al. 2018;
Figurnov et al. 2016) and multi-exit structures. During the
inference, the former dynamically skip a certain part of the
model to reduce the number of computations. This mecha-
nism can be used only for ResNet-based architectures as they
facilitate skipping within a network. On the other hand, an
early-exiting strategy is adopted in multi-exit architectures
(Huang et al. 2018; Kaya, Hong, and Dumitras 2019) for
resource-efficient object recognition, which classifies eas-
ier inputs and gives output in earlier modules. However, we
should note that this inference process may be limited by
the peak RAM of early modules. In other words, optimizing
computation/memory efficiency is a key to the deployment
of adaptive networks on devices powered by tiny microcon-
trollers, and it is the primary focus of this paper.
Memory Optimization. Previous works on memory opti-
mized inference manipulate existing convolution operators
by reordering computations (Cho and d 2017; Lai, Suda,
and Chandra 2018) or performing them in place (Gural and

Murmann 2019). However, most of these methods provide
relatively small memory savings and are validated on low-
resolution images like CIFAR-10 (Krizhevsky and Hinton
2009). Max pooling, average pooling, or stride convolution
(LeCun, Bengio, and Hinton 2015) is the most direct method,
but large-stride operations often result in severe performance
losses. Channel pruning (He, Zhang, and Sun 2017) is an
approach that tries to reduce memory footprint by pruning
out multiple convolution kernels in every layer. The proposed
ReX method differentiates itself from these approaches in
that we focus on replacing the expensive early modules in
adaptive architectures. Hence, our method is compatible with
them.
Early Exiting Mechanism. Ideally, a multi-exit network
stops when it reaches a correct prediction at an exit point.
However, for unseen samples, this is impractical as the
ground-truth labels are unknown. Previous works suggested
that the module exits inference when the confidence of the
intermediate prediction is greater than a given threshold.
BranchyNet (Teerapittayanon, McDanel, and Kung 2016) cal-
culated the entropy of the prediction probability distribution
to enable early exit. Shallow-Deep Nets (Kaya, Hong, and
Dumitras 2019) and MSDNet (Huang et al. 2018) leveraged
the softmax scores of classifiers as a proxy for the confidence.
Recently, Zhou et al. (Zhou et al. 2020) adapted this approach
in adversarial training to improve the adversarial robustness
of DNNs. Unlike confidence-based methods, our approach
stops inference when the intermediate predictions of the in-
ternal classifier remain unchanged over a predefined count k.

RNN-based Approaches. Many existing works integrate the
RNN into image processing systems, especially in sequence-
related tasks. For example, ReNet (Visin et al. 2015) uses a
RNN based layer as a replacement for a convolution layer.
ReSeg (Visin et al. 2016) extends the ReNet architecture
to deal with the task of semantic segmentation. ION (Bell
et al. 2016) uses a ReNet based layer for extracting context
information outside the region of interest. The PiCANet (Liu,
Han, and Yang 2018) uses it as a global attention network
for salient detection. Some other works also use RNNs in
their architectures but only to model certain sequences in
the respective tasks rather than performing input-adaptive
inference (Acuna et al. 2018; Saha et al. 2020; Wang et al.
2016). Details of the differences between ReNet and our ReX
will be discussed in the next section.
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Figure 2: Left and right panels show our ReX and CBEE method, respectively. Left shows the overview of ReX, which applied to
patches of size h× w with stride s. It summarizes the patch into a vector of size 8h2 through two RNNs and a linear projection.
Right shows the comparison between a prediction score-based early exit (threshold is set to 0.9), and our consistency-based early
exit (count k = 1). Adaptive network incorrectly exits based on the prediction score. CBEE considers multiple classifiers and
exits with a correct prediction.

Efficient Inference with ReX
Existing adaptive networks rely on exiting simple samples
through early modules to achieve high efficiency while ne-
glecting the fact that visual inference on low-power devices
is usually limited by the high peak memory of early modules.
To this end, we propose a novel recurrent aggregation opera-
tor (ReX) to bypass early large spatial resolution activations
without sacrificing accuracy.

In this section, we first describe the details of the proposed
ReX, and then implement it to build our memory-efficient
networks.

Recurrent Aggregation Operator
We first give an overview of ReX (Figure 2 (left)). The whole
structure consists of three components: a unidirectional RNN
R1 of hidden dimension h1, a bidirectional RNN R2 with
hidden dimension h2, and a linear projection fL.

Formally, given an activation patch Xin of size h× w × c,
where c is the number of channels, ReX directly takes it as
input and produces a summary Xout of size 1× 1× 8h2, i.e.,

Xin ← [x1,1,x1,2, . . . ,xh,w], xi,j ∈ Rc, (1)

[V R,V G,V C] = ReX(Xin), (2)

Xout ← [V R,V G,V C] (3)

where i and j refer to the location of the feature. In the
following, we describe the generation process of features
{V R,V G,V C} in detail. R1 first takes a quick traversal
along each row and column, and summarizes patches hori-
zontally and vertically to obtain cheap row and column in-
formation (eh and ew). A linear projection fL directly takes
their concatenation as inputs and produces a coarse global

feature vector V G:

ehi ← R1(x
i,1≤j≤w), for i = 1, 2, · · · , h, (4)

ewj ← R1(x
1≤i≤h,j), for j = 1, 2, · · · , w, (5)

V G = fL([e
h
1≤i≤h, e

w
1≤j≤w]), (6)

where [·] denotes the vector concatenation. The second RNN
R2 is leveraged to take full advantage of the cheap summary
of each row or column for learning more accurate bidirec-
tional context representations, and hence we traverse the
outputs (eh and ew) of R1 bi-directionally through R2:

V R ← R2(e
h
1≤i≤h), (7)

V C ← R2(e
w
1≤j≤w), (8)

where V R and V C refer to the fine row and column feature
vectors, respectively. In our implementation, a ReX layer
consists of a single ReX sliding over an input activation map
and takes as input another parameter: the stride length. It
is noteworthy that there are only two different RNNs (R1

& R2) in a ReX layer, thus it can be trained efficiently on
modern GPU devices, and the bulk of computation can be
done in parallel.

Formally, we simply use GRU (Cho et al. 2014) for these
two RNNs in our method, as done in (Visin et al. 2015).
Note that the proposed ReX is independent of the chosen
recurrent unit. More complex unit designs have the potential
to improve performance but are not the focus of this work.
Learning Delicate Local Representations. ReX is a fine-
grained feature learning mechanism using RNNs. Prior pro-
posed ReNet (Visin et al. 2015) captures global context by
aggregating inter-patch features. Different from it, our ReX
uses overlapping patches and captures fine-grained local rep-
resentations by aggregating intra-patch features within a large
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Figure 3: Inter-patch feature learning (a) in ReNet and Intra-
patch feature learning (b) in our ReX. The colored arrows
represent the sweeping path of RNNs, and arrows of the same
color share weights.

receptive field. In other words, ReX and ReNet can be used
in combination. Each layer can simultaneously learn local
(Intra-patch) and global (Inter-patch) representations.

Figure 3 illustrates the differences and connections be-
tween ReNet (top) and our ReX (bottom). Notably, the global
and local contexts do not depend on overlapping or non-
overlapping patches but are captured by the constituent oper-
ations in a layer. ReNet applies each horizontal and vertical
RNN to process the entire image in one pass and the resulting
hidden states provide the output. In contrast, ReX is applied
patch-wise and only the final states from each RNN run are
used for output. Moreover, in ReNet, each patch is flattened
and passed as a single input to an RNN which leads to a huge
matrix multiplication operation.

Architecture Design
Based on the proposed ReX layer, we experiment on two
recent techniques: Shallow-Deep Networks (SDNs) (Kaya,
Hong, and Dumitras 2019) and MSDNets (Huang et al.
2018). Considering the generic SDN architecture in Figure 1
(left), we can change the early modules with ReX to bypass
large early activations. Specifically, here we replace multiple
memory-intensive blocks in the early module with a single
ReX layer to quickly reduce the activation size. It can achieve
a better trade-off between memory cost and accuracy. For ex-
ample, in MobileNetV2 (6 exits), we can replace 6 bottleneck
blocks-spanning 18 layers with a single ReX to reduce the
activation size from 112× 112× 32 to 28× 28× 64 (shown
in Table 1). The replacement ReX can be performed patch-
by-patch without re-computation, thus reducing the need to
store the entire activation map over the image. Due to its
general formulation, ReX can replace the feature reduction
layer in all classifiers. The resulting model, called ReXNet,
has an extremely low memory footprint and latency, and is
simple to train.

Input Operator t c n s e

2242 × 3 conv2d 3× 3 1 32 1 2 -
1122 × 32 ReX Layer 1 64 1 4 -
282 × 64 bottleneck 6 64 4 2 2
142 × 64 bottleneck 6 96 3 1 1
142 × 96 bottleneck 6 160 3 2 1
72 × 160 bottleneck 6 320 1 1 1
72 × 320 conv2d 1× 1 1 1280 1 1 1

Table 1: ReX-MobileNetV2 (6 exits) : ReX Layer with patch-
size 6×6 and hidden sizes h1=16, h2=8 is used. Each line
describes a sequence of 1 or more identical layers, repeated
n times.The first layer of each sequence has stride s and the
rest use stride 1. The number of internal exits in this sequence
and the expansion factor are denoted by e and t, respectively.

Learning to Stop Dynamically
In this section, we describe our CBEE to enable ReXNet to
stop inference dynamically. CBEE captures the inner agree-
ment between earlier and later internal classifiers and exploits
multiple classifiers for inference. In addition, our method sup-
ports regression tasks, which were overlooked in prior work.

Inference
The inference process of CBEE is illustrated in Figure 2
(right bottom). We set up the common inference model as a
network that is composed of m predictors. These intermedi-
ate classifiers/regressors C1 . . . Cm are attached at varying
depths of the model to predict a class label distribution p
for classification or a value g for regression (we assume the
output dimension is 1 for brevity). Given an input image x,
the model generates a set of m hidden states as the input of
the classifiers/regressors, i.e.,

[h1, . . . , hm] = f(x; θ) = [f1(x; θ1), . . . , fm(x; θm)], (9)

where fi and θi (i = 1, . . . ,m) represent the transformation
learned by the i-th hidden state hi and its corresponding pa-
rameters, respectively. Note that θi’s have shared parameters
here.

Then, we use its internal classifier/regressor to output a dis-
tribution or value as an intermediate prediction pi = Ci(hi)
or gi = Ci(hi). We use a counter N to store the number of
times that the predictions remain “unchanged”. For classifi-
cation, this can be represented by:

Ni =

{
Ni−1 + 1 argmax(pi) = argmax(pi−1),

0 argmax(pi) 6= argmax(pi−1).
(10)

While for regression, we have:

Ni =

{
Ni−1 + 1 |gi − gi−1| < η,

0 |gi − gi−1| ≥ η.
(11)

where η is a pre-defined threshold. If Ni = k, the sequen-
tial process stops, and pi or gi will be outputted as the final
prediction. Otherwise, we use the final classifier Cm for pre-
diction.

2102



Model Method Standard (Chowdhery et al. 2019) Memory Optimised

Top-1 Accuracy Parameters Peak RAM FLOPs Peak RAM FLOPs

ResNet34 (7 exits) Original 75.0 ± 0.20% 22M 3.1MB 3.8G 0.7MB 28.7G
ReX Layer 75.8 ± 0.12% 20M 0.4MB (↓7.75x) 3.0G 0.3MB 3.4G

MobileNetV2 (6 exits) Original 71.7 ± 0.24% 3.4M 2.3MB 0.3G 0.4MB 1.1G
ReX Layer 72.8 ± 0.11% 3.1M 245KB (↓11.5x) 0.24G 0.2MB 0.28G

DenseNet121 (21 exits) Original 75.0 ± 0.05% 8M 3.1MB 2.8G 1.7MB 25.2G
ReX Layer 76.3 ± 0.07% 7M 0.8MB (↓3.88x) 1.0G 0.6MB 1.7G

MSDNet (6 exits) Original 69.6 ± 0.16% 18M 2.2MB 0.64G 0.9MB 17.5G
ReX Layer 71.1 ± 0.03% 12.7M 0.5MB (↓4.40x) 0.28G 0.4MB 0.39G

Table 2: Performance of different networks with and without a single ReX Layer on ImageNet. For clear comparisons, the
accuracy in this table is achieved on the optimal threshold or count k.

In Figure 2 (right top), prediction confidence-based early
exit relies on the softmax score, and the second classifier
outputs a high confidence score and incorrectly terminates
inference. Prior work has shown that predicted probability
distribution—softmax scores—makes an unreliable metric,
as it is over-confident towards a single class (Szegedy et al.
2014; Jiang et al. 2018). In this regard, CBEE comprehen-
sively considers results from multiple classifiers, so it can
prevent the effect of errors from one single classifier.

Training
A straightforward way to train an adaptive network is to train
the submodules sequentially. However, this method is far
from optimal due to the conflict between two optimization
goals: to learn discriminative features for the current predic-
tor, and to maintain necessary information for generating
high-quality features for later predictors (Huang et al. 2018).
A more effective training strategy is to jointly optimize all the
submodules. So, we train the model to minimize a weighted
cumulative loss function L:

L =

∑m
j=1 j · `j∑m

j=1 j
(12)

Here, the weighted average can correspond to the relative in-
ference cost of each internal predictor, and `j denotes the loss
function for the j-th classifier/regressor. For classification,
the loss function `i for classifier Ci is computed by:

`i =
1

|Dtrain|
∑

(x,y)∈Dtrain

LCE(pi, y) (13)

whereDtrain is the training set, y denotes the label correspond-
ing to x. We use the standard cross-entropy loss function
LCE(·) during training. For regression, given a ground truth
ĝi, the loss is instead calculated by a mean squared error:

`i =
1

|Dtrain|
∑

(x,ĝi)∈Dtrain

(gi − ĝi)2 (14)

Experiments
In this section, we empirically evaluate the effectiveness of
the proposed ReX and CBEE on various devices, and give
ablation studies.

Dataset. Our experiments are based on two widely-used vi-
sual datasets: (1) Visual Wake Words is a binary classification
dataset proposed by (Chowdhery et al. 2019). The dataset
contains a total of 115K training images and 8K validation
images. We study this dataset because it presents a relevant
use case for computer vision on realistic tiny devices; (2)
ImageNet (Deng et al. 2009) is a 1000-class dataset from
ILSVRC2012, with 1.2 million images for training and 50000
images for validation.
Architectures and Hyper-parameters. To demonstrate the
effectiveness of our approach, we experiment on two recent
techniques: Shallow-Deep Networks (SDNs) (Kaya, Hong,
and Dumitras 2019) and MSDNets (Huang et al. 2018). These
architectures were designed for different purposes: SDNs are
generic and can convert any DNN into a multi-exit model, and
MSDNets are custom-designed for efficiency. After every two
blocks, an internal classifier is added. We evaluate an MSD-
Net architecture (6 exits) and three SDN architectures, based
on ResNet-34 (He et al. 2016) (7 exits), MobileNetV2 (San-
dler et al. 2018) (6 exits), and DenseNet121 (Huang et al.
2017) (21 exits). To make a fair comparison, the internal
classifiers and their insertions are the same in both baselines
and our approach.
Metrics. For clarity, we use average FLOPs on the whole test
dataset as the metric to measure the computational cost of a
network. As for the classification performance, we report the
cumulative Top-1 accuracy on all classifiers. In other words,
we consider a sample to be correctly classified if there is at
least one correct prediction in all classifiers. In addition, we
report the peak RAM usage of various networks during the
inference.

Main Results

Effectiveness of the ReX layer. We first test the compatibil-
ity of ReX with different networks. Table 2 shows that ReX
based models achieve slightly better performance while sig-
nificantly reducing the required computation and peak RAM.
Next, we study the memory-optimized method (Gural and
Murmann 2019). DNNs have a high computational cost and
such re-compute intensive optimizations make the network
infeasible even for large devices, e.g., ResNet34 (7 exits)
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Figure 4: Top-1 accuracy v.s. inference latency on ImageNet. The inference speed
is measured on an ARM processor (left) and an iPhone 12 (right). Our method is
implemented with the predefined count k ∈{1, 2, 3, 4}.
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Figure 5: Performance of modifying vary-
ing modules and different classifiers with
a single ReX layer.

Method FLOPs Params VWW ImageNet

Confidence-based (2018; 2019)

Original 301M 3.4M 90.3% 71.7%
MixedPool (2016) 213M 3.1M 86.7% 65.4%
GFGP (2019) 239M 3.2M 87.4% 66.2%
LiftPool (2021) 254M 3.3M 88.3% 68.3%
Stride Conv 267M 3.3M 88.0% 68.9%
ReNet 295M 3.5M 87.8% 66.8%
ReX Layer 246M 3.1M 89.7% 71.1%

Entropy-based (2016)

ReNet 295M 3.5M 87.6% 66.7%
ReX Layer 246M 3.1M 89.4% 69.9%

Consistency-based (Ours)

ReNet 295M 3.5M 89.3% 68.5%
ReX Layer 246M 3.1M 91.0% 72.8%
ReNet + ReX 327M 3.5M 91.4% 73.5%

Table 3: Comparison of Top-1 accuracy with different down-
sampling operators and exit criteria on Visual Wake Words
(VWW) and ImageNet. Here we use MobileNetV2 (6 exits)
as the base network.

requires 28.7 GFLOPs in this scheme (Table 2).
Semantically, ReX is a generalized pooling operator, so

we compare ReX with other downsampling methods. We
used them to modify the early module of a network to reduce
the size of image by a factor of 4 × 4. In addition, we also
compare ReX and ReNet (Visin et al. 2015) as a pooling
layer. The results are shown in Table 3. It can be observed
that our method outperforms the alternative baselines by large
margins in terms of efficiency. For example, on ImageNet,
ReX achieves 2.8% higher mAP (71.1% v.s.68.3%) than the
strongest baseline, LiftPool (Zhao and Snoek 2021), with the
same memory usage.
Improvements from Consistency-based Early Exit. In
Table 3, we also compare the results of CBEE with the
confidence-based method (Kaya, Hong, and Dumitras 2019;
Huang et al. 2018) and entropy-based mechanism (Teerapit-
tayanon, McDanel, and Kung 2016). It is clear that consider-

ing the consistency of classification decisions leads to signif-
icantly better performance. Moreover, CBEE can achieve a
considerably better trade-off between speed and accuracy by
adjusting predefined count k, which we will describe below.
Experiments on an ARM processor and an iPhone. Since
the proposed ReX is designed for edge devices, we investigate
the practical inference speed of our method on an ARM
processor1 and an iPhone 12 (with Apple A14 Bionic) using
Pytorch Mobile2. The single-thread mode with batch size
1 is used following (Howard et al. 2019). We first measure
the time consumption of obtaining the prediction at each
possible exit, and then take the weighted average according
to the number of validation samples exiting at each exit.
The results are shown in Figure 4. We change the count
within k ∈{1, 2, 3, 4}, and plot the corresponding Accuracy
v.s. Latency relationships in black dots. We also present the
variants of baselines with the same SDN architectures. One
can observe that ReX effectively accelerates the inference of
MobileNetV2 (6 exits).
Modification for modules or classifiers. Note that here we
replace varying modules, and feature reduction layer of differ-
ent classifiers. We use MobileNetV2 (6 exits) as base models
and the performance of each classifier (colored dots) is pre-
sented in Figure 5. The figure suggests that changing any
intermediate classifier can achieve better performance, while
replacing early module one leads to better efficiency with
an insufficient computational budget and without sacrificing
later accuracy. ReX is most effective when used to replace
early module one where the activation sizes are large, and
hence, require the most memory and computation. One can
observe the later classifiers suffer from a severe degradation
(even more than 10%) when more modules are modified.

Exploring the Larger Receptive Field
In this section, we are interested in whether the convergence
of ReX is affected by RNN and if ReX still maintains accu-
racy for a downstream task even when the receptive field is
large. To this end, we consider the image classification task

1Quad-Core ARM Cortex-A57 MPCore combined with Dual-
Core NVIDIA Denver 2 64-Bit CPU.

2https://pytorch.org/mobile/home/.
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Figure 6: Comparison of ReX and baselines in terms of train-
ing loss and test accuracy. ReX converges better than base-
lines with the same shape of input-output feature maps, and
generalizes better than ReNet.

with CIFAR-10 dataset (Krizhevsky and Hinton 2009) but
the ReX and baselines are required to down-sample the input
of 32 × 32 × 3 to a vector of size 1 × 1 × 128 in one go,
i.e., both patch size and stride are 32. This is followed by a
fully connected (FC) layer projection to 10 from 128. We use
h1 = 32, h2 = 16 for the ReX with patch size and stride as
32. For Mixed pooling models, a 1 × 1 convolution of 128
filters is used before Max and Average pooling. Here, we fol-
low the prescribed optimization procedure from (Visin et al.
2015), using SGD with an initial learning rate of 0.05. We
run training for 90 epochs and compare with baselines. Re-
sults are shown in Figure 6. Our method achieves an accuracy
of 72.71%, while the convolution layer, ReNet, and mixed
pooling’s accuracy are 56.24%, 41.16% and 34.46%, respec-
tively. The ReX outperforms other methods by a substantial
amount both in test accuracy and training loss.

Analytical Results
Ablation: ReX. We first consider the changes in accuracy,
peak RAM, and FLOPs on different hyperparameters of ReX
like patch size, hidden dimensions, and stride. Then we vali-
date the effectiveness of different components. Here we use
MobileNetV2 (6 exits) as the base network and the dataset
is ImageNet-1k. Note that the last line refers to the ReX-
MobileNetV2 (6 exits) in Table 1, and the first block of
Table 4 are variations on it. We also remove or alter the
components of the ReX architecture in the second block of
Table 4. For a clear comparison, here we do not change the
classifier in the architecture. One can observe that further fine-
tuning hyper-parameter leads to a better trade-off between
accuracy and compute requirements. Moreover, adopting a
linear projection fL and a bidirectional RNN R2 are both
important techniques to achieve high accuracy.
Impact of Predefined Count k. As illustrated in Figures 4
and 7, varying count k can lead to different speed-up ra-
tios and performance. For a MobileNetV2 (6 exits), CBEE
reaches peak performance with a count of 3 or 4. On Ima-
geNet and Visual Wake Words, CBEE can always outperform
the baseline with a count between 4 and 5. One can observe
that the latency drops as the count k goes down (see Fig-
ure 4). An interesting phenomenon is that the relationship
between accuracy and counts is an inverted-U curve, which
may be attributed to the overthinking problem (Kaya, Hong,

Ablation FLOPs Peak RAM Acc.

Stride s=6 0.19G 0.1MB 70.5%
Patch Size h=w=4 0.23G 0.2MB 71.7%
Patch Size h=w=12 0.26G 0.2MB 72.0%
Hidden Sizes h1=8, h2=8 0.21G 0.1MB 71.1%
Hidden Sizes h1=16, h2=16 0.28G 0.4MB 73.1%

w/o Global Vectors V G 0.21G 0.1MB 69.7%
w/o Row Summary V R 0.22G 0.1MB 70.9%
w/o Column Summary V C 0.22G 0.1MB 70.8%

Patch Size h=w=6; s=4;
Hidden Sizes h1=16, h2=8

0.24G 0.2MB 72.8%

Table 4: Comparison of accuracy, peak RAM and FLOPs for
variations in hidden dimensions, patch size and stride in ReX
for MobileNetV2 (6 exits) and on ImageNet-1k dataset.

Predefined Count

Figure 7: Accuracy scores under different count k with Mo-
bileNetV2 (6 exits). The black dotted lines represent the
original MobileNetV2 without internal exits.

and Dumitras 2019). That is to say, the later classifier may
make a wrong prediction for samples that were classified
correctly by an early classifier, while increasing the count k
help more samples flow to the later classifier. Thus, it is clear
that a proper count leads to considerably better performance.
Besides, the optimal k may be different on varying datasets.

Conclusion
This paper has proposed a memory-efficient recurrent ag-
gregation operator (ReX), which uses RNNs to effectively
aggregate intra-patch features within a large receptive field,
while reducing peak RAM and power consumption for adap-
tive networks. The resulting model, named ReXNet, can be
easily extended to stop inference dynamically by introducing
a CBEE criteria, which is based on the consistency of classifi-
cation decisions over several modules. Extensive experiments
demonstrate that our method outperforms existing works in
terms of both theoretical computational efficiency and actual
inference speed.
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