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Abstract

Category-level 6D pose estimation can be better general-
ized to unseen objects in a category compared with instance-
level 6D pose estimation. However, existing category-level
6D pose estimation methods usually require supervised train-
ing with a sufficient number of 6D pose annotations of ob-
jects which makes them difficult to be applied in real scenar-
ios. To address this problem, we propose a self-supervised
framework for category-level 6D pose estimation in this pa-
per. We leverage DeepSDF as a 3D object representation and
design several novel loss functions based on DeepSDF to help
the self-supervised model predict unseen object poses with-
out any 6D object pose labels and explicit 3D models in real
scenarios. Experiments demonstrate that our method achieves
comparable performance with the state-of-the-art fully super-
vised methods on the category-level NOCS benchmark.

1 Introduction
6D object pose estimation is an important task in computer
vision that provides object location and orientation. It is
widely applied in robotic manipulation and 3D scene under-
standing. Currently, most existing works (Peng et al. 2019;
He et al. 2020; Zakharov, Shugurov, and Ilic 2019; Xiang
et al. 2017; Wang et al. 2019a) focus on instance-level pose
estimation, relying on 6D pose annotations and exact 3D ob-
ject models available beforehand. However, it is difficult to
annotate the 6D pose and build a 3D model for every object
in real scenarios. Recently, category-level 6D pose estima-
tion (Wang et al. 2019b; Chen et al. 2021, 2020; Tian, Ang,
and Lee 2020) that can predict both the 6D pose and size
of unseen objects without explicit 3D models has started to
gain attention.

Category-level 6D pose estimation commonly learns a
categorical shape prior shared by all instances within a cat-
egory, which enables 6D pose and size estimation even for
unseen object instances. However, existing methods usually
require supervised training with a sufficient amount of 6D
pose annotations of objects. Yet, annotating 6D poses for ev-
ery object in the real world is an unfeasible task. The key to
solving this problem is to adopt self-supervised learning for
pose estimation. Generally, self-supervised methods employ
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a render-and-compare pipeline (Wang et al. 2020; Yang, Yu,
and Yang 2021; Manhardt et al. 2020) that is trained by the
correspondence between the reconstructed object 3D model
and object observation to derive pose parameters (R, t and
s). The high-quality 3D geometric representation of objects
is therefore crucial to self-supervised pose estimation, espe-
cially for category-level pose estimation. However, existing
discrete 3D representations such as voxels, point clouds and
meshes are not enough to represent high-quality shapes. At
present, self-supervised category-level pose estimation with-
out 6D pose labels and suitable 3D models is a challenging
task and there are few studies in this field.

In our work, we move forward along this challenging di-
rection to explore self-supervised category-level 6D pose
estimation. An overview of the architecture is illustrated
in Fig. 1. Inspired by the recently proposed continuous
deep implicit functions which are more expressive and ef-
ficient for representing complex shapes than existing dis-
crete 3D representations, we use a deep implicit function
called DeepSDF (Park et al. 2019) as 3D object representa-
tion in this paper. To enable the self-supervised method to
estimate the pose of unseen objects in a category without an
explicit 3D model for each object, we first train a DeepSDF
decoder on synthetic data to learn categorical shape prior,
then build a self-supervised framework to estimate the pose
parameters and shape latent vector for shape reconstruc-
tion. The self-supervised framework also needs to be pre-
trained with synthetic data in order to have a good initial
state. Given the initial network output (pose and shape la-
tent vector) in the self-supervised training, we first recon-
struct the object’s shape from the DeepSDF decoder and
then design several novel loss functions based on DeepSDF
to enforce an optimal alignment in 3D space between the
reconstructed shape and ground truth point cloud with the
predicted rotation, translation, and scale factor. The discrep-
ancy in shape produces error gradients that backpropagate
to the pose parameters and the shape latent vectors so that
both pose and shape can be optimized. Our code is available
at https://github.com/swords123/SSC-6D.

In summary, the contributions of our work are as follows:

• We propose a self-supervised framework with a deep
implicit 3D surface representation for category-level 6D
pose estimation, which can predict unseen object poses
without an explicit 3D model and pose annotation for
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each object in real scenarios.
• We leverage DeepSDF as a 3D object representation and

design several novel loss functions based on DeepSDF
which makes the pose and shape estimation simultane-
ously converge to the optimal solution.
• Our network generalizes well to the intra-category un-

seen objects and achieves performance almost on par
with the state-of-the-art fully supervised methods on the
category-level NOCS benchmark (Wang et al. 2019b).

2 Related Work
In this section, we briefly review the recent literatures on
fully supervised and self-supervised methods for category-
level pose estimation, while we also review the literatures
for shape representation.

Fully Supervised Methods: The greatest challenge for
estimating 6D poses at the category-level is to tackle the
intra-class object variation problem. Wang et al. (2019b)
built a CNN to map the observed pixels to the NOCS rep-
resentation and the full 6D pose and size were calculated
using the Umeyama algorithm (Umeyama 1991). Similar to
(Wang et al. 2019b), Tian, Ang, and Lee (2020) estimated
the deformation field of the mean shape to predict the corre-
spondences between the observed depth map and the points
in NOCS. CASS (Chen et al. 2020) and FS-Net (Chen et al.
2021) built an encoder-decoder network to effectively learn
the category-level features and estimated 6D pose and size
directly. DualPoseNet (Lin et al. 2021) constructed an addi-
tional implicit pose decoder to reconstruct the input point
cloud in canonical pose which enables refinement during
testing. However, these methods require a sufficient amount
of labeled data for training, which is time-consuming and la-
borious. In our work, we build a self-supervised framework
that does not require any 3D annotations in the real world
but solely takes object observations as self-supervision.

Self-Supervised Methods: Since few works focus on
self-supervised category-level pose estimation, we also in-
troduce some instance-level methods. Self-6D (Wang et al.
2020) and DSC-PoseNet (Yang, Yu, and Yang 2021) built
instance-level 6D pose estimation frameworks by rendering
the corresponding CAD models of targets. However, obtain-
ing exact 3D models for every object is also difficult in
real scenarios. LatentFusion (Park et al. 2020) performed
pose estimation using a few reference images rather than 3D
scans, which is also inflexible in real applications. CPS++
(Manhardt et al. 2020) introduced a self-supervised exten-
sion to bridge the synthetic-to-real domain gap by rendering
the reconstructed mesh from AtlasNet (Groueix et al. 2018).
Considering that the quality of objects’ 3D geometric repre-
sentation is crucial for our self-supervised method, we uti-
lize the DeepSDF (Park et al. 2019) as the shape representa-
tion which enables higher quality shape representation and
makes it easier to discover the common properties of objects
in a certain category.

Shape Representation and Rendering: There have been
several representations of 3D models. Early works used vox-
els to represent 3D shapes and utilized 3D CNNs for feature
extraction or object reconstruction (Wu et al. 2015; Choy

et al. 2016). However, due to the limitations of computation
and memory resources, voxels cannot represent 3D shapes
with high resolution. Point cloud (Qi et al. 2017; Fan, Su,
and Guibas 2017) is a lightweight representation and easy
to be collected by sensors, but it is difficult to obtain water-
tight surfaces from point clouds since there is no topological
relationship among points. Mesh-based methods (Groueix
et al. 2018; Wang et al. 2018) reconstructed the 3D model
from a simple topology, which may lead to nonclosed sur-
face or low performance for complex topologies. For higher-
quality 3D geometric representation, recently proposed deep
implicit functions (Park et al. 2019; Mescheder et al. 2019;
Chen and Zhang 2019) learned accurate geometry through
a decoder and produced continuous surfaces with unlimited
resolution and complex topologies. Therefore, we adopt one
of the deep implicit functions called DeepSDF (Park et al.
2019) as the shape representation in our work and learn the
category-level shape prior to find the common properties for
a specific category.

3 Method
We present our framework of the self-supervised category-
level 6D pose estimation with a 3D shape prior represented
as DeepSDF (Park et al. 2019). The framework is designed
end-to-end, taking the RGB image and point cloud as in-
put and output the object pose and shape (DeepSDF latent
vector). We first leverage DeepSDF to learn the categorical
shape prior from synthetic CAD models (Sec. 3.1) and then
present our proposed architecture for self-supervised 6D
pose and shape estimation (Sec. 3.2). In the self-supervised
training for deriving the pose parameters (R, t, s), we in-
troduce our novel losses based on DeepSDF to align the re-
constructed 6D pose and shape in 3D space with the object
observation. Moreover, we also pretrain our network on the
synthetic dataset to provide good initialization. Finally, more
implementation details are given in Sec. 3.3.

3.1 Category-Level Shape Prior Learning
The greatest challenge for category-level pose estimation is
solving the intra-class object variation problem and predict-
ing the pose for previously unseen objects. Although the
shape varies among different instances, objects of the same
category generally have common attributes and semantic
structures. For example, cans are usually cylindrical, and the
differences among cans are just the height and diameter of
the cylinder. Inspired by the fact that humans can easily infer
a reasonable 3D shape of unseen objects from their extensive
experience and prior knowledge, we first train a DeepSDF
decoder to learn the category-level shape prior from the syn-
thetic dataset as shown at the bottom of Fig. 1.

SDF means Signed Distance Function where SDF value
of a point represents the distance to the surface boundary
and the sign indicates whether the region is inside(-) or out-
side(+) of the shape. A shape’s boundary is encoded as the
zero-level-set. The DeepSDF uses a deep neural network to
regress the continuous SDF value sdf ∈ R from the query
points p ∈ R3 and shape latent vector v ∈ Rk as shown in
Eq. 1:

F(p;v) = sdf (1)
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Figure 1: Overview of the proposed method. After segmenting individual object instances from the cluttered scene, we build an
end-to-end network to jointly predict the rotation, translation, scale and shape latent vector of the object. Several self-supervised
loss functions are designed to constrain consistency between predicted parameters and object observations in real-world data.

where F is the DeepSDF decoder which is composed of
eight fully connected layers. After training, the decoder can
learn the common properties of a certain category and each
instance is mapped to a low-dimensional shape latent vector.
We set the dimension k to 16 for all categories. With the de-
coder, the object surface can be implicitly represented by the
iso-surface of F(v) = 0 and extracted using the Marching
Cubes (Lorensen and Cline 1987) algorithm. Note that the
reconstructed model is in the normalized target coordinate
system and contained within a unit sphere.

In our work, we use the CAD models in the synthetic
dataset of NOCS (Wang et al. 2019b) to train the DeepSDF
decoder F . Since objects of different categories have their
specific shape prior, we train the network separately for each
category. In the next stage for self-supervision, the learned
weights of the decoder will be frozen so that the network can
remember the common properties of each category and the
shape predictor only needs to estimate the low-dimensional
latent vector for each instance thus reducing the difficulty of
shape prediction.

3.2 Self-Supervised Pose and Shape Estimation
Network Architecture: An overview of our self-supervised
pipeline is depicted in Fig. 1. For an observed cluttered
scene, we first detect and segment the individual objects
from the images. For each detected instance, we crop the
RGB image using the bounding boxes and segment the depth
map with the masks, which is converted to a point cloud with
camera intrinsics. Taking the image patch and point cloud
patch as input, we establish an end-to-end network to pre-
dict the object’s rotation R ∈ SO(3), translation t ∈ R3 and
scale factor s ∈ R along with shape latent vector v ∈ Rk as
shown in Fig. 1. Specifically, following Densefusion (Wang
et al. 2019a), we use a CNN-based encoder-decoder net-

work (Zhao et al. 2017) to extract the appearance features
from the RGB image patch and utilize an architecture like
PointNet (Qi et al. 2017) to extract the geometric features
from the point cloud. To perform pixel-wise fusion, the ge-
ometric feature of each point is concatenated with its corre-
sponding image feature using known camera intrinsics. Due
to the limitation of computation and memory resources for
reconstruction, we aggregate the features of all points using
a max-pooling layer and estimate only one pose and latent
vector for the whole object using several fully connected lay-
ers, rather than predict one pose for each pixel-wise feature
like (Wang et al. 2019a). In addition, considering that the
translation t is related to the points coordinates, we predict
the residual translation relative to the average position of the
segmented point patch, which is easier than estimating the
absolute translation directly.

Self-Supervised Training: To train our network with-
out 3D annotations in the real world, we design several
self-supervised loss functions to enforce the alignment be-
tween the reconstructed models and the object’s real ob-
servations. Inspired by the recently proposed render-and-
compare methods (Wang et al. 2020), we first use the cham-
fer lossLchamfer to provide coarse guidance of 6D pose and
scale factor and establish the geometric alignment between
the object’s observed point cloud Pcreal and the visible sur-
face of the reconstructed model Pcrec, where the superscript
c represents the camera coordinate system. Specifically, to
obtain the visible surface from the DeepSDF representation,
we run the sphere tracing algorithm proposed in DIST (Liu
et al. 2020) to obtain the minimal absolute SDF value along
each pixel’s ray direction with its corresponding point, as
shown at the bottom of Fig. 1. The visible point cloud Porec
in the normalized target coordinate system can be acquired
by checking whether the minimal absolute SDF value is less
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Figure 2: The process of pose and shape optimization us-
ing Lsdf . The observed point cloud (green points) gradually
coincides with the surface of the object (black mug).

than a small convergence threshold. we use the predicted
rotation R, translation t, and scale s to transform Porec to
the camera coordinate system Pcrec and build the symmetric
chamfer loss as:

Lchamfer =
1

|Pcrec|
∑

pi∈Pc
rec

min
pj∈Pc

real

‖pi − pj‖2

+
1

|Pcreal|
∑

pj∈Pc
real

min
pi∈Pc

rec

‖pj − pi‖2
(2)

with
Pcrec = sRPorec + t (3)

To simplify gradient propagation and stabilize convergence,
we disable backpropagation for Porec, while gradients only
backpropagate through R, t, and s.
Lchamfer can only adjust the pose and scale, but shape

is also indispensable for pose estimation. Therefore, an ad-
ditional loss function is introduced to constrain the object’s
pose and shape at the same time and expects the network to
converge to a global optimization for both pose and shape.
Specifically, considering that the point clouds collected by
a depth sensor are the surface points of objects, their corre-
sponding SDF values should be zero. To make full use of this
property, we first transform the collected point cloud Pcreal
to the normalized target coordinate system Poreal using the
predicted R, t, and s. Then, we feed the transformed points
and shape latent vector into the DeepSDF decoder to enforce
the output SDF values closer to zero. This process is illus-
trated in Fig. 2. The SDF alignment loss Lsdf is represented
as follows:

Lsdf =
1

|Poreal|
∑

pj∈Po
real

|F(pj ;v)| · 1(‖pj‖2 < 1) (4)

with
Poreal =

1

s
RT (Pcreal − t) (5)

where 1(·) is the indicator function that indicates only the
points inside the unit sphere in the target coordinate system
are considered, which is to avoid the influence of both the
6D pose with large deviations and outliers of the point cloud
on shape adjustment. The discrepancy in the SDF value from
zero produces error gradients that backpropagate through the
decoder to the pose parameters and the shape latent vectors
so that both poses and shapes are simultaneously optimized.
We do so on the basis of such fact that shapes and poses
are inseparable, as correct poses can guide the estimation

of shapes which in turn helps to infer the poses more accu-
rately. We repeat this iterative procedure until convergence.

In addition, to constrain the magnitude of the latent vector
v, we define a regulation loss Lreg for training:

Lreg = eβ‖v‖2 − 1 (6)

where we select the hyper-parameter β manually.
Overall, the total self-supervised loss is defined as:

Lself = λchamferLchamfer + λsdfLsdf
+ λregLreg

(7)

where λchamfer, λsdf and λreg are the trade-off parameters
to balance each loss. In this paper, we set λchamfer = 100,
λsdf = 1.0 and λreg = 0.01.

Pretraining and Joint Learning: For the training of our
self-supervised framework, a good initialization is very im-
portant for pose and shape estimation. In our paper, we first
pretrain our network on the synthetic dataset in a fully su-
pervised manner, which can provide good initialization and
learn prior information about the approximate distribution of
the target’s pose and shape. The fully supervised loss func-
tion on the synthetic dataset is defined as:

Lsup = Lpose + Lv (8)

with

Lpose =
1

N

N∑
i=1

‖(sRxi + t)− (sgtRgtxi + tgt)‖2 (9)

and
Lv = ‖v − vgt‖1 (10)

where xi is the ith point of the N randomly sampled points
from the 3D model. Rgt, tgt and sgt are the ground truth ro-
tation, translation and scale factor, respectively, while vgt is
the ground truth shape latent vector generated from the train-
ing stage of the DeepSDF decoder as described in Sec.3.1.
For symmetrical objects, we follow the solution (Pitteri et al.
2019) to map both the predicted rotation R and ground truth
Rgt to canonical rotations R∗ and R∗gt, respectively, and
Lpose is calculated as:

Lpose =
1

N

N∑
i=1

∥∥(sR∗xi + t)− (sgtR
∗
gtxi + tgt)

∥∥
2

(11)

After pretraining, we train our network in a self-
supervised manner in the real dataset. However, when a
trained neural network is transferred to a new dataset for
training, it will gradually forget the knowledge learned
from the old dataset. Considering that the prior information
learned on the synthetic dataset is very important for training
in real scenes, we propose a simple joint learning strategy
to make our network remember the old knowledge. Specifi-
cally, for each batch, we feed both the labeled synthetic sam-
ples and unlabeled real samples to our network simultane-
ously, and the loss function is computed by the combination
of the fully supervised loss Lsup for the synthetic data and
self-supervised loss Lself for the real data. In summary, the
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(a) (b) (c)

Figure 3: Visualization before and after our point cloud filter
pipeline. (a) is the RGB images. (b) and (c) are the point
clouds before and after our point cloud filter pipeline. It can
be observed that our point cloud filter pipeline is effective in
removing the outliers for different categories.

total loss for training our self-supervised framework in each
batch is defined as:

L =
1

M

M∑
i=1

Lisup +
1

N

N∑
j=1

Ljself (12)

where M and N are the number of synthetic and real sam-
ples in each batch. As shown in Eq. 12, the contributions of
the two types of data to the total loss L are equivalent, so the
impact of their ratio is negligible.

Point Cloud Filtering: In our work, we mainly use the
collected point cloud to supervise our network. However,
due to the inaccurate segmentation masks and the displace-
ment between the depth sensor and RGB camera, the seg-
mented foreground point clouds often contain some back-
ground points, which may make network learning deviate.
Therefore, we present a point cloud filter pipeline to remove
these outliers. As shown in Fig. 3, the outliers are mainly the
points collected from the desktop. we first remove the points
on the desktop using the RANSAC algorithm (Zhou, Park,
and Koltun 2018) and then the sparse outliers that far away
from their neighbors with the statistical outlier removal al-
gorithm (Zhou, Park, and Koltun 2018). Finally, the remain-
ing points are clustered using the DBSCAN algorithm (Es-
ter et al. 1996) where the cluster closest to the camera is
selected as the final point cloud.

3.3 Implementation Details
To segment individual object instances from the cluttered
scene, we use the predicted results from Mask R-CNN (He
et al. 2017), which is fine-tuned on the NOCS dataset (Wang
et al. 2019b) for inference. For each instance, we crop and
resize the image patch to 192×192 and randomly sample
1024 points as the input of our network. We train the pre-
diction network for each category separately so that the es-
timated poses and shapes do not interfere with each other
among different classes.

Benefited from our self-supervised method that does not
require ground truth pose and shape for supervision, we flip
the images in the real dataset for data augmentation, which is
easier to implement than the fully supervised method since it
is difficult to calculate the corresponding 6D pose if the im-
age is flipped. Note that this data augmentation method can

only be applied for mirror-symmetric targets since the image
flip means the corresponding target model is mirrored.

We adopt three stages to train our self-supervised frame-
work. The first stage trains the DeepSDF decoder using the
CAD models for 2000 epochs. Then, we sample 30000 im-
ages on the synthetic dataset and pretrain our prediction net-
work for 10 epochs with the fully supervised loss Lsup. In
the third state, we use the proposed joint learning strategy in
which each batch contains 12 synthetic samples and 2 real
samples with the overall loss L as Eq.12 for self-supervised
training. We use the Adam optimizer (Kingma and Ba 2014)
with an initial learning rate 0.0001 for training which takes
additional 8 epochs on one NVIDIA 2080Ti GPU for ap-
proximately 5 hours for each category.

4 Experiment
4.1 Experimental Setup
Dataset: We conduct our experiments on the NOCS (Wang
et al. 2019b) dataset, which contains six object categories
including bottle, bowl, can, camera, laptop, and mug. It con-
sists of two parts: a synthetic dataset named CAMERA,
which contains 275K rendered images with 1085 CAD mod-
els, and a real-world dataset named REAL, which consists
of 4.3K real-world images from 7 scenes for training and
2.75K from 6 scenes for testing. There are 3 unseen in-
stances per category in each set of the REAL dataset. We
learn the shape prior and pretrain our network using the syn-
thetic CAMERA dataset while applying the self-supervision
on the REAL dataset.

Evaluation Metrics: We evaluate our method and report
the performance on both 3D object detection and 6D pose
estimation following (Wang et al. 2019b). We compute the
average precision of the 3D Intersection-Over-Union (IoU)
at different thresholds for object detection. For 6D pose es-
timation, we report the average precision of n◦m cm, which
denotes that the error is less than n◦ for rotation and m cm
for translation. For symmetric categories (bottle, bowl and
can), the rotation error around the symmetry-axis is not con-
sidered. We use the average result from 6 repeated experi-
ments as the final result in this paper.

4.2 Comparison with Other Methods
Since there are few studies in self-supervised category-level
pose estimation, we list the performances of the state-of-
the-art fully supervised methods in order to see the gap
between the two kinds of learning models, as shown in
Table 1. From the experimental results, we can see that
our method without ICP outperforms NOCS (Wang et al.
2019b) by a large margin in all metrics and achieves al-
most on par performance compared to DeformNet (Tian,
Ang, and Lee 2020), although our method does not rely
on any 3D annotations in the real world for training. Both
our method and CASS (Chen et al. 2020) use an end-to-
end prediction network to estimate the object pose directly,
while CASS also learns pose-independent features to assist
pose estimation. Even so, we still achieve comparable per-
formance. The success of our method is mainly due to our
effective self-supervised loss functions and training scheme,
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Dataset Method 3D Labels mAP (%)
IoU25 IoU50 5◦2cm 5◦5cm 10◦2cm 10◦5cm 10◦10cm

NOCS-REAL

NOCS X 78.72 47.23 7.26 9.86 14.04 24.25 24.51
CASS X 68.09 25.95 19.66 23.60 51.61 59.02 59.25

DeformNet X 80.22 68.73 19.11 21.15 43.39 54.08 56.00
Ours × 83.16 72.95 16.76 19.62 44.12 54.53 56.24

Ours w/ ICP × 83.11 72.67 28.60 33.39 51.82 62.93 65.07

Table 1: Quantitative comparison with other fully supervised methods on the NOCS-REAL test set, where IoU25, IoU50 denote
the 3D IoU at 25% and 50% respectively. We recalculate all the metrics using the revised evaluation source code.

Figure 4: Results on the NOCS-REAL test set. The average
precision at different thresholds on 3D IoU, rotation error,
and translation error.

which can provide great guidance for pose estimation. In
addition, training the network separately for each category
is indeed an assistance for the performance improvement.
Fig. 4 shows the more detailed average precision at different
thresholds for each category. It should be noted that there is
a small mistake in the original evaluation source code, thus
we revised it and recalculated all the metrics. The evaluation
source code after revision is given in our released code.

Our method can also optionally reconstruct the models
from the predicted latent vectors using the Marching Cubes
(Lorensen and Cline 1987) and conduct the ICP (Besl and
McKay 1992) refinement to further improve the accuracy of
pose estimation. The result shows that employing ICP can
strongly enhance our performance for the pose estimation
metrics, especially for stricter metrics such as 5◦2cm with
an 11.84% performance improvement. There is no obvious
impact for the 3D IOU metrics since this metric is not sen-
sitive to the performance of pose estimation when it is good
enough. With ICP refinement, our method outperforms the
others in all metrics, which indicates that our proposed self-
supervised framework is effective in real applications.

4.3 Ablation Study
Evaluations of the training scheme: To verify the effec-
tiveness of our self-supervised framework, we report the ex-
perimental results before and after self-supervised training
on the NOCS-REAL dataset, as shown in Table 2. Test-
directly denotes only pretraining our network on the syn-
thetic dataset and testing on the real-world data directly. Due
to the large domain gap between synthetic and real-world
data, it results in an extremely poor performance. After self-
supervised training on the real-world data, represented as

Model mAP (%)
IoU50 5◦5cm 10◦5cm 10◦10cm

Test-Directly 38.67 4.34 9.07 9.15
Self-Sup w/o Aug 68.20 15.21 48.42 49.80
Self-Sup w/ Aug 72.95 19.62 54.53 56.24

Table 2: Evaluation of our self-supervised training scheme.

Model mAP (%)
IoU50 5◦5cm 10◦5cm 10◦10cm

w/o Lchamfer 17.32 15.31 29.28 33.93
w/o Lsdf 62.28 13.81 38.54 39.66
w/o Lsup 69.71 11.70 49.61 50.93
Full Loss 72.95 19.62 54.53 56.24

Table 3: The impact of each loss function on the NOCS-
REAL test set.

Self-Sup w/o Aug, its performance significantly improves,
e.g., the performance increases approximately 40% at the
10◦10cm metric from 9.15% to 49.80%, which demonstrates
that our proposed self-supervised loss functions provide
enough constraint to estimate correct 6D poses of objects
even if no 3D annotations are provided in the real world.

In addition, benefited from our self-supervised method
that does not rely on labeled poses, we also apply data aug-
mentation by flipping the RGB-D images together with its
corresponding segmentation masks, denoted as Self-Sup w/
Aug. Note that we do not flip the data for the camera cate-
gory since not all cameras are mirror-symmetrical. Based on
this strategy, our method obtains strongly promising perfor-
mance as shown in the last row of Table 2.

Evaluations of the loss functions: We analyze the im-
pact of each loss function in our self-supervised frame-
work, as shown in Table 3. Without Lchamfer, the perfor-
mance is extremely degraded, especially for the IoU50 be-
cause Lchamfer provides coarse guidance of the transla-
tions, rotations, and scale factors of objects. Moreover, Lsdf
works well only when the reconstructed models approxi-
mately align with the collected point cloud under the con-
straint of chamfer loss. Therefore, Lchamfer is so critical
that when it is absent, the network exhibits very poor per-
formance. However, Lchamfer is unable to adjust the object
shape and a poor shape estimation will result in low per-
formance of the 6D pose. Therefore, Lsdf that can jointly
adjust the pose and shape will play an important role. As
shown in the second row of Table 3, when Lsdf is removed,
the performance drops significantly. This indicates that the
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Figure 5: Qualitative results on NOCS-REAL test set. The top row shows the estimated pose and size of every object with the
axis and tight bounding box. The bottom row shows its reconstructed model rendered on the corresponding RGB image.

Category Chamfer Distance (mm)
Test-Directly Self-Sup w/ Aug

Bottle 0.7023 0.0602
Bowl 0.4251 0.0415

Camera 1.0074 0.3752
Can 0.1092 0.1004
Mug 0.1089 0.0335

Laptop 1.2227 0.4520
Average 0.5959 0.1771

Table 4: Evaluations of the reconstructed models with
Chamfer Distance metric on the NOCS-REAL test set.

reconstructed shape is very important for our self-supervised
training. In addition, we also conduct an experiment to ver-
ify the benefits of the joint learning strategy. As shown in
the third row of Table 3, the performance drops obviously if
the Lsup is removed. This shows that the knowledge learned
from the synthetic dataset is very useful for self-supervised
learning on real-world data.

Evaluations of Shape Reconstruction: To evaluate the
quality of the shape reconstruction, we compute the Chamfer
Distance of the scaled reconstructed models with the ground
truth 3D models. Table 4 shows the results for each cate-
gories. From this table, we can see that the average recon-
struction error decreases significantly for all category after
our self-supervised training, which indicates that our self-
supervised framework is effective in improving the quality
of the shape reconstruction.

4.4 Qualitative Results
Fig. 5 shows the qualitative results of our method on the
NOCS-REAL test set. From the top row of Fig. 5, we can
see that our method can accurately detect the objects and es-
timate the 6D pose and size for different categories even if
no 3D annotations are provided for training in the real world.
In addition, we also reconstruct models from the predicted
shape latent vectors with the Marching Cubes and render
them to the corresponding RGB images using the predicted
poses and scale factors, as shown in the bottom row of Fig. 5.
It can be seen that the rendered results are well aligned to
their respective targets, which further indicates that our pro-
posed loss functions can provide sufficient constraints for
both pose estimation and shape reconstruction.

Figure 6: The ground truth 3D models of the camera cate-
gory from the NOCS-REAL training set (top) and test set
(bottom).

4.5 Limitations and Failure Cases
As shown in the middle figure of Fig. 4, the camera cate-
gory shows poor performance in rotation estimation. This is
mainly due to the larger geometry differences of the cam-
era between the training and test set compared to other cate-
gories as shown in Fig. 6, which leads to poor performance
on the test set even for some fully supervised methods. In ad-
dition, although our method can learn the intra-class varia-
tions, it is still difficult to accurately estimate the target shape
when a large geometry difference occurs, which may bring
about incorrect rotation guidance through the chamfer loss
and result in local minima of rotation during training. Fi-
nally, since our prediction network is trained separately for
each category, it requires more parameters when estimating
multiple classes of targets at the same time.

5 Conclusion
We present a self-supervised approach for category-level
6D pose estimation, which can predict unseen object poses
without pose annotations and exact 3D models in real sce-
narios for training. In our work, we leverage DeepSDF as
a 3D object representation and train a DeepSDF decoder
to learn the category-level shape prior. For self-supervised
training, we design several self-supervised loss functions to
make the pose and shape simultaneously optimized. Experi-
ments show that our proposed self-supervised framework is
effective for pose estimation and achieves comparable per-
formance with the state-of-the-art fully supervised methods.
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