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Abstract

In this paper, a new deep learning network named as graph-
based point tracker (GPT) is proposed for 3D object tracking
in point clouds. GPT is not based on Siamese network applied
to template and search area, but it is based on the transfer of
target clue from the template to the search area. GPT is end-
to-end trainable. GPT has two new modules: graph feature
augmentation (GFA) and improved target clue (ITC) mod-
ule. The key idea of GFA is to exploit one-to-many relation-
ship between template and search area points using a bipar-
tite graph. In GFA, edge features of the bipartite graph are
generated by transferring the target clues of template points
to search area points through edge convolution. It captures
the relationship between template and search area points ef-
fectively from the perspective of geometry and shape of two
point clouds. The second module is ITC. The key idea of ITC
is to embed the information of the center of the target into
the edges of the bipartite graph via Hough voting, strength-
ening the discriminative power of GFA. Both modules signif-
icantly contribute to the improvement of GPT by transferring
geometric and shape information including target center from
target template to search area effectively. Experiments on the
KITTI tracking dataset show that GPT achieves state-of-the-
art performance and can run in real-time.

Introduction
The goal of 3D object tracking is to estimate the 3D bound-
ing box of a target within the search area of the current frame
when the 3D bounding box of the target in the template of
the previous frame is given. 3D object tracking is attracting
considerable attention within the society of computer vision
and robotics since it is used in various applications ranging
from autonomous driving to mobile robotics. To realize 3D
object tracking, we need a sensor or a combination of mul-
tiple sensors. Among the various sensors or their combina-
tions, the two most popular sensors for 3D object tracking
are RGB-D sensor and LiDAR.

RGB-D sensor can provide visual as well as geometric in-
formation about the target, and it has been widely used for
3D object tracking in indoor applications (Song and Xiao
2013; Held et al. 2016; Bibi, Zhang, and Ghanem 2016;
Kart, Kamarainen, and Matas 2018; Xiao et al. 2018; Kart
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et al. 2019). However, RGB-D has a drawback; that the max-
imum range of the sensor is relatively short and visual infor-
mation is sensitive to illumination changes, preventing them
from being used in outdoor applications.

LiDAR is also being used widely in outdoor applications
such as autonomous driving. LiDAR outputs a point cloud
that captures the contour of the nearby environment and is
robust to illumination changes. However, when using Li-
DAR, it is difficult to train the features from the unstructured
point cloud using CNNs, because of the sparsity and disor-
der of the point cloud. In this paper, we will focus on 3D
object tracking in point clouds from LiDAR.

3D tracking in the point cloud was initially motivated
by the success of Siamese network in 2D object track-
ers (Bertinetto et al. 2016; Guo et al. 2017; He et al. 2018;
Wang et al. 2018; Li et al. 2018a). As a pioneering work, Gi-
ancola, Zarzar, and Ghanem (Giancola, Zarzar, and Ghanem
2019) proposed a 3D Siamese tracker that encodes model
and candidate shapes into a latent representation regular-
ized by shape completion. Based on this 3D Siamese tracker
baseline, Zarzar, Giancola, and Ghanem (Zarzar, Giancola,
and Ghanem 2020) and F-Siamese tracker (Zou et al. 2020)
which take double Siamese networks were proposed. They
first generate proposals and then refine the proposals. More
specifically, Zarzar, Giancola, and Ghanem generate a small
number of proposals from bird eye view (BEV) Siamese net-
work using BEV representation of point clouds. F-Siamese
tracker generates frustum based proposals from the result of
2D Siamese tracker using images. They improved the perfor-
mance of the 3D Siamese tracker baseline with an efficient
region proposal network, but they still suffer from the loss
of geometric details due to the one-dimensional representa-
tion of each proposal. Recently, P2B (Qi et al. 2020), a new
method based on the transfer of information from the tem-
plate to the search area, was proposed as an alternative to the
Siamese approach. P2B augments the features by transfer-
ring the target clue from the template to the search area and
localizes the 3D target bounding box using the augmented
feature in the search area. P2B demonstrated excellent per-
formance compared to the previous 3D Siamese tracker. De-
spite its success in 3D object tracking, we believe that there
are still some inefficiencies in the feature augmentation in
P2B. Specifically, (1) the similarity used in P2B is not suf-
ficient to capture the details of the one-to-one relationship
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interwoven between a template point and a search area point
because each similarity is represented only as a scalar value.
(2) A one-to-all relationship between a single search area
point and all the template points is considered in P2B, but
it may include uninformative features or cause ambiguity in
search area feature representations.

To address the above concerns in P2B, we propose a
new deep learning network named graph-based point tracker
(GPT). Our GPT is motivated by P2B and thus, it is based
on the transfer of target clue from the template to the search
area. The main difference between GPT and P2B lies in how
the features from the template and the search area are com-
bined. Unlike P2B, our GPT exploits the one-to-many rela-
tionship between a search area point and its nearby template
points, augmenting features more effectively than P2B. Our
GPT has two new modules for effective feature augmen-
tation: (1) graph feature augmentation (GFA) and (2) im-
proved target clue (ITC). In the GFA module, we model the
one-to-many relationship between a search area point and
its nearby template points using a bipartite graph and ex-
tract features from the edges of the graph using edge con-
volution. In the ITC module, we move the information of
the target from the template seed to the template center via
Hough voting (Qi et al. 2019) and embed the template center
information into the edges of the bipartite graph. Finally, the
outputs from the two modules are combined to regress the
final 3D box.

The main contributions of our GPT are threefold. (1) We
propose a graph feature augmentation module (GFA) that
builds one-to-many relationships between the template and
search area, transferring target clues effectively from the
template to search area. (2) We propose a novel improved
target clue (ITC) that captures the information of the tem-
plate target center. (3) Our GPT achieves state-of-the-art per-
formance on the KITTI tracking dataset (Geiger, Lenz, and
Urtasun 2012) and is suitable for real-time applications (38
FPS on a single GPU).

Related Works
Deep Learning on Point Clouds. Deep learning on point
clouds is challenging because of the sparsity and disorder
of unstructured point clouds. Ealy studies (Su et al. 2015;
Maturana and Scherer 2015) addressed this issue by con-
verting a point cloud to structured data, such as a 2D image
or voxel grid. PointNet (Qi et al. 2017a) presented a method
that learns a global representation without input data con-
verting, using point-wise MLPs. To learn local representa-
tion, some studies (Qi et al. 2017b; Xu et al. 2018; Li et al.
2018b; Zhao et al. 2019; Thomas et al. 2019) have proposed
using sampling and grouping to aggregate the information of
neighbor points. Others (Wang et al. 2019; Xie et al. 2018;
Yang et al. 2019; Yan et al. 2020) have proposed captur-
ing global context using k-NN graphs in feature space or
an attention mechanism. Recently, deep learning is widely
adopted for several tasks with point clouds such as 3D reg-
istration (Aoki et al. 2019; Wang and Solomon 2019), 3D
object detection (Shi, Wang, and Li 2019; Shi et al. 2020; Qi
et al. 2019; Pan et al. 2021), and 3D object tracking (Gian-
cola, Zarzar, and Ghanem 2019; Qi et al. 2020).

3D Object Tracking in Point Clouds. As a pioneering
work, Giancola, Zarzar, and Ghanem (Giancola, Zarzar, and
Ghanem 2019) presented 3D Siamese tracker. This approach
generates target proposals using Kalman filter and leverages
shape completion for latent vector regularization, but it can-
not be trained end-to-end. Motivated by the aforementioned
study, Zarzar, Giancola, and Ghanem (Zarzar, Giancola, and
Ghanem 2020) and F-Siamese tracker (Zou et al. 2020) ap-
ply double Siamese networks, one each for a better region
proposal from bird eye view representation of point clouds
and 2D image. However, they depend more on generating
the search area than the performance of the tracker itself.
Recently, P2B (Qi et al. 2020), which aims to first embed the
information of the template into the search area, and then to
localize the target center in the search area, has been pro-
posed.

Feature Augmentation. There have been several recent
methods for one-shot learning (Dixit et al. 2017; Chen et al.
2019), domain adaptation (Volpi et al. 2018), imbalanced
classification (Zhang et al. 2019), visual recognition (Chen
et al. 2021), and semantic segmentation in point cloud (Qiu,
Anwar, and Barnes 2021), which applied feature augmenta-
tion to avoid lack of clues and to enrich features. P2B (Qi
et al. 2020) first applied feature augmentation in the 3D ob-
ject tracking. It builds relationship between the template and
the search area using similarity matrix. This approach, how-
ever, overlooks the reliable relationship building, which is
paramount to accurately transfer tracking clues from tem-
plate to search area. Specifically, P2B relates each relation-
ship using only a scalar value (similarity), and considers all
template points for a search area point, which causes the loss
of details for the relationship and builds redundant relation-
ship. To address this issues, We introduce one-to-many rela-
tionship via bipartite graph embedding.

Method
Overview
When a target is given in the form of a template point cloud
Ptmp = {xT,i ∈ R3}N1

i=1, the problem considered herein is
3D tracking and it aims at tracking a 3D bounding box in
the search area point cloud Psea = {xS,j ∈ R3}N2

j=1 of the
search area so that the bounding box encompasses the target
in Psea, where N1 and N2 denote the number of points in the
two clouds Ptmp and Psea, respectively.

To solve the problem, a new framework named graph-
based point tracker (GPT) is proposed. GPT consists of two
parts: (1) feature augmentation and (2) 3D box regression.
The architecture of GPT is motivated by P2B (Qi et al. 2020)
and it consists of two parts. GPT is also end-to-end trainable.

The first part of GPT is graph feature augmentation
(GFA). This part aims to transfer the target clue of the tem-
plate Ptmp to the search area Psea via a bipartite graph em-
bedding, which is the key contribution of this paper. The
target clue of a template point is embedded into the corre-
sponding search area point (later, the point is called a node)
in the graph by edge convolution (Wang et al. 2019). Fur-
thermore, the center of the target is also embedded into the
search area Psea as an additional target clue via the improved
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Figure 1: Pipeline of GPT for 3D object tracking in point clouds. Given two input point clouds template and search area, the
backbone network samples seed points. The search area seeds are augmented to target-specific search area nodes using graph
feature augmentation module with improved target clue which provides additional information of template. target-specific
search area nodes are processed as target proposals by voting and classification branches. Finally, the target proposal with
highest targetness score is verified as final 3D bounding box.

target clue (ITC) module. ITC aims to strengthen the dis-
criminative power of a point (= node) in the search area Psea

by providing the information about the center of the target.
The second part of GPT regresses a 3D bounding box us-

ing the augmented features from the first part. In this part, a
point (=node) in the search area Psea is projected to the po-
tential center of the target via Hough voting. This projection
lowers the likelihood of there being no search area nodes
in the vicinity of the target center, and the projection im-
proves the accuracy of the 3D tracking. Then, the potential
centers are grouped into L clusters, making L target propos-
als. The architecture of GPT is summarized in Fig. 1. The
tensor symbols used in the subsequent sections are also de-
picted in the figure.

Feature Augmentation
Here, we transfer feature information from the target tem-
plate to the search area. Specifically, the geometric and
shape information of the template seeds are transferred to the
search area seeds so that search area seeds can find the cor-
responding template seeds with similar geometric and shape
information effectively. This step is motivated by the target
specific feature augmentation in P2B (Qi et al. 2020) but
its details are completely different. The main difference be-
tween them is how the geometric information among indi-
vidual template seeds is used. The key idea of this paper is
that edges are connected between the template and search
area seeds in a bipartite graph, and the clues of template
seeds are transferred to search area seeds through edge con-
volution. Details will be provided at the end of the section.

Seed Encoding. First, we feed the two sets of points
{xT,i}N1

i=1 and {xS,j}N2
j=1 to a backbone network to obtain

seed points {sT,i = [xT,i; f
seed
T,i ] ∈ R3+Dseed}M1

i=1 and {sS,j =

[xS,j ; fseedS,j ] ∈ R3+Dseed}M2
j=1, respectively, where M1 and M2

denote the number of seeds taken from the two sets of clouds
Ptmp and Psea, respectively; M1 < N1 and M2 < N2; and the
indices i and j in the sets {sT,i}M1

i=1 and {sS,j}M2
j=1 are slightly

abused, but they do not cause confusion; Dseed is the dimen-
sion of the output from the backbone network. Here, Point-

Net++ (Qi et al. 2017b) is used as a feature backbone, but
the backbone is not restricted to it.

Graph Feature Augmentation. After seed encoding, we
feed two sets of features {fseedT,i }

M1
i=1 and {fseedS,j }

M2
j=1 to fea-

ture transformation functions φ : RDseed → RDnode and
ϕ : RDseed → RDnode , and make two sets of nodes NT =

{nT,i = [xT,i; f
node
T,i ] ∈ R3+Dnode}M1

i=1 and NS = {nS,j =

[xS,j ; fnode
S,j ] ∈ R3+Dnode}M2

j=1, respectively, as shown in Fig. 2,
where

fnode
T,i = φ

(
fseedT,i

)
, i = 1, 2, · · · ,M1,

fnode
S,j = ϕ

(
fseedS,j

)
, j = 1, 2, · · · ,M2;

(1)

Dnode is the dimension of the output from the two transfor-
mation functions φ and ϕ; and Dnode < Dseed. Functions φ
and ϕ are implemented using 1×1 convolutions. They aim at
reducing the feature dimension of point clouds from Dseed to
Dnode, reducing computational resources. By connecting the
directed edges from NT to NS using k-nearest neighbor (k-
NN), we build a bipartite graph G = (NT ,NS , E). That is, all
the edges in G are directed fromNT toNS , and thus the set of
edges are represented by E = NT ×NS . When building a bi-
partite graph G, k-NN is performed based on the Euclidean
distance of {fnode

T,i }
M1
i=1 and {fnode

S,j }
M2
j=1 in the feature space.

This implies that the bipartite graph G embodies relation-
ship between similar-looking points. In the bipartite graph
G, the number of incoming edges of the nodes in NS is k

(indeg(nS,j) = k) but the number of incoming edges of the
nodes in NT is zero (indeg(nT,i) = 0).

Next, target clues from the template nodes NT are trans-
ferred to the search area nodes NS using edge convolution
(EdgeConv) (Wang et al. 2019) through a bipartite graph G.
Specifically, we define the edge features between two nodes
nT,i and nS,j as eij = hΘ(nT,i, nS,j) and compute the output
of EdgeConv at the j-th node nS,j in the search area NS by

f̃node
S,j = ⊕

i:(i,j)∈E
eij = ⊕

i:(i,j)∈E
hΘ

(
nT,i, nS,j

)
, (2)

where hΘ : R3+Dnode × R3+Dnode → RD̃node is a nonlin-
ear function with a set of learnable parameters Θ and ⊕ is a
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Figure 2: Graph feature augmentation.

simple symmetric aggregation function and makes up for the
disorder of edges in a graph. Then, using the output of Edge-
Conv f̃node

S,j , the target-specific search area node is defined
by

ñS,j =
[
xS,j ; f̃node

S,j

]
∈ R3+D̃node . (3)

In this paper, tilde (∼) implies that the corresponding vari-
able is a character related to target-specific quantities. In
EdgeConv, the edge features eij = hΘ(nT,i, nS,j) between
two nodes nT,i = [xT,i; f

node
T,i ] and nS,j = [xS,j ; fnode

S,j ] are im-
plemented using MLP by

eij = hΘ

(
nT,i, nS,j

)
= MLP


 xT,i

fnode
T,i − fnode

S,j

fnode
T,i

 |Θ
 ∈ RD̃node

(4)
and max pooling is used as a symmetric aggregation ⊕. That
is, a target-specific search area node ñS,j = [xS,j ; f̃node

S,j ] is
realized by

f̃node
S,j = ⊕

i:(i,j)∈E
eij = max

i:(i,j)∈E
MLP


 xT,i

fnode
T,i − fnode

S,j

fnode
T,i

 |Θ


(5)
and the input of the MLP hΘ is [xT,i; f

node
T,i − fnode

S,j ; fnode
T,i ] ∈

R3+2Dnode . Here, it should be noted that the target-specific
search area node ñS,j obtained from the bipartite graph G,
and it includes the geometric position of nearby template
nodes, global template shape, and local shape difference be-
tween the template and search area nodes. The geometric
position is captured by xT,i; and the global template shape,
and local shape difference between target and search area
nodes are captured by fnode

T,i and fnode
T,i − fnode

S,j , respectively.
This step is named Graph Feature Augmentation (GFA).

Improved Target Clue. We believe that there is still room
to exploit in the bipartite graph embedding. Our approach
considers the center of the template seeds sT,i. The template
seeds sT,i only capture the limited local clue and they do
not have global information about the their center. In ad-
dition, there are often few template seeds sT,i around the
template center and thus the center is very likely to fall in
empty space due to the inherent sparsity of point cloud.
To address this issue, we use a voting module (Qi et al.
2019) to generate potential template center vT,i which lie
closer to the template center than template seeds sT,i while
maintaining the template features. The voting module is im-
plemented using another MLP. It takes the template seed
sT,i = [xT,i; f

seed
T,i ] and outputs the geometric space offset
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Figure 3: Improved target clue module.

∆xT,i ∈ R3 and a feature offset ∆fT,i ∈ RDseed , generating
a template vote vT,i = [yT,i; f

vote
T,i ], where yT,i = xT,i + ∆xT,i

and fvoteT,i = fseedT,i +∆fT,i. Finally, we apply 1×1 convolution
to the vote to make v̄T,i = [yT,i; f̄

vote
T,i ] ∈ R3+DITC , as shown

in Fig. 3, and the set of new points {v̄T,i}M1
i=1 are actually used

to represent the global shape of the template point cloud
Ptmp. In other words, the feature fnode

T,i of the template node
in Eq. 5 is replaced with the feature f̄voteT,i of the template
vote and target-specific search area node ñS,j = [xS,j ; f̃node

S,j ]

is computed using edge convolution:

f̃node
S,j = ⊕

i:(i,j)∈E
eij = max

i:(i,j)∈E
MLP


 xT,i

fnode
T,i − fnode

S,j

f̄voteT,i

 |Θ


(6)

Target Proposal
As in P2B (Qi et al. 2020), we move target-specific search
area nodes {ñS,j}M2

j=1 to the potential target center in the
search area via Hough voting as shown in Fig. 1. Specifi-
cally, the voting module (which is different from the one in
ITC) takes the target-specific search area node ñS,j and out-
puts the geometric space offset ∆xS,j ∈ R3 and a feature off-
set ∆f̃node

S,j ∈ RD̃node , generating a target-specific search area
vote ṽS,j = [yS,j ; f̃voteS,j ] where yS,j = xS,j + ∆xS,j and f̃voteS,j =

f̃node
S,j + ∆f̃node

S,j . The classification module takes the feature
f̃node
S,j and outputs the search area node-wise targetness-score
tnode
j ∈ [0, 1]. From the set of target-specific search area votes
{ṽS,j}M2

j=1, we use random sampling to choose a subset of
votes {ṽS,`}L`=1, where L is the number of target proposals.
Then, for each target-specific search area vote ṽS,`, we ap-
ply the ball query (Qi et al. 2017b) to generate a cluster
C` = {ṽS,j |‖yS,j − yS,`‖2 < R} with a radius R. Then, MLP
followed by max pooling is applied to each cluster to obtain
the cluster-wise feature vector, and another MLP takes the
cluster-wise feature vector to generate proposal offset ∆yS,`,
rotation θ` and proposal-wise targetness score tprop` : t

prop
`

∆yS,`
θ`

 = MLP

 max
j:ṽS,j∈C`

MLP


t

node
j

yS,j
f̃voteS,j



 . (7)

Then, the box proposal is represented by p` = [tprop` ; yS,` +

∆yS,`; θ`] ∈ R1+3+1. Finally, the box proposal p` with highest
tprop` is verified as final target bounding box.

Loss
The loss functions of GPT consists of voting regression loss,
the loss about seed-wise targetness and proposal-wise target-
ness, and the loss about the accuracy of target bounding box.
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First, let us consider the voting regression loss that is used in
the voting in template and search area. Unlike P2B, VoteNet
is applied not only to the search area but also to the template.
First, the search area voting regression loss Lsea-reg defined as

Lsea-reg =
1

MSN

∑
j

∥∥∆xS,j −∆gtS,j
∥∥ · I (ñS,j on target

)
(8)

is used, and it is the same as in P2B, where ∆gtS,j is the
ground-truth offset from ñS,j to the target center in the
search area and MSN denotes the number of trained nodes
in the search area, where MSN =

∑
I(ñS,j on target). Second,

the template voting regression loss Ltemp-reg is defined simi-
larly, as

Ltmp-reg =
1

MTS

∑
i

∥∥∆xT,i −∆gtT,i

∥∥ · I (sT,i on target
)

=
1

M1

M1∑
i=1

∥∥(xT,i + ∆xT,i

)
−
(
xT,i + ∆gtT,i

)∥∥
=

1

M1

M1∑
i=1

∥∥xT,i + ∆xT,i

∥∥.
(9)

In the above equation, I(sT,i on target) is removed because
all the points sT,i in Ptmp are on the target in template and
MTS denotes the number of trained seeds in the template and
MTS = M1. ∆gtT,i is the offset from xT,i to template center;
xT,i + ∆gtT,i = 0 as it denotes that the template center is
the origin of the coordinate. Then the regression loss Lreg is
computed as Lreg = λsea-regLsea-reg+λtemp-regLtemp-reg, where Lsea-reg

and Ltmp-reg are loss weights of search area and template re-
gression. In addition, we use a node-wise targetness score
loss Lcls, a proposal-wise targetness score loss Lprop, and a
target bounding box proposal loss Lbox, as in P2B, where Lcls

and Lprop are defined using binary cross entropy and Lbox is
defined in terms of the 3D center of bounding box and yaw
angle using smooth-L1 loss. Then the final training loss L is
computed as

L = Lreg + λclsLcls + λboxLbox + λpropLprop, (10)

where λcls, λbox, and λprop are loss weights of seed-wise target-
ness score, target bounding box proposal, and proposal-wise
targetness score, respectively.

Comparison with P2B
The main difference between our GPT and P2B (Qi et al.
2020) is how the template information is combined with the
search area information. In P2B, the clues from the tem-
plate seeds are transferred to search area seeds through two
kinds of channels. The first one is the local tracking clue and
the second one is the global target clue. P2B tries to cover
the entire spectrum of clues by combining local and global
clues. Unfortunately, however, we believe that some ineffi-
ciency still remains in the combination. First, let us consider
the problem of the local tracking clue. The local tracking
clue is implemented using a similarity in P2B. The clue im-
plies a one-to-one relationship (similarity) between all the
possible pairs of a single template seed and a single search
area seed. Each one-to-one relationship is represented only
as a scalar value, so the details about difference between the
related pairs are lost.

Next, let us consider the problem of the global target clue.
This clue can be considered a one-to-all (not one-to-many)
relationship. As before, if all the template seeds are consid-
ered in the association, uninformative and ineffective seeds
that are far from a certain search area seed will be used
in the association, which will degrade the performance. In
summary, the local tracking clue and the global target clue
in P2B can be considered as a one-to-one and a one-to-all
relationship, respectively, but they are ineffective. What we
really need is one-to-many relationship with reliable one-to-
one relationships, and our GPT is the actual realization of
this via bipartite graph embedding.

The ITC is an aspect that represents the difference be-
tween P2B and our GPT. In P2B, only the seeds in the search
area are moved to the center of the target in the search area
by VoteNet, whereas not only the seeds in the search area but
also those in the template are moved to their respective cen-
ters by VoteNet in GPT. The basic idea on the use of VoteNet
in the template is that the center of the template provides an-
other important clue on the target in the search area, and it
should be transferred to the search area nodes.

Experiments
Experimental Setting
Dataset. To validate our GPT, we use the KITTI tracking
dataset as a benchmark (Geiger, Lenz, and Urtasun 2012).
As the ground truth (GT) of its test set is not available, we
divide its training set into three sets, and use them for train-
ing, validation, and testing. The KITTI training set has 21
scenes. Following the settings in previous works (Giancola,
Zarzar, and Ghanem 2019; Qi et al. 2020), we use scenes 0-
16 for training, scenes 17-18 for validation and scenes 19-20
for testing. Although there are eight types of targets in the
dataset, we use only four types (Car, Pedestrian, Van, and
Cyclist) due to the lack of training data for the other types.
For each scene, we generate tracklets by concatenating the
frames containing the same target instance of the above four
types by time order for their target instances.

In training, template point cloud Ptmp is generated by ac-
cumulating the points within the first and the immediately
preceding GT boxes. Search area point cloud Psea is selected
by lengthening each edge of the previous GT box by 4 m
(i.e., by 2 m in each direction from the center of the edge)
and sampling points from the enlarged box (including back-
ground points). The template and search area point clouds
are normalized to N1 = 512 and N2 = 1024, respectively,
by randomly abandoning or duplicating points. When more
training points are needed, random offset is applied to the
center of the GT box. Similarly, in testing, template Ptmp is
generated by accumulating the points within the first GT box
and the immediately preceding tracking result. The search
area is also selected by enlarging the previous tracking re-
sult (=box) by 4 m on each edge and sampling points from
the enlarged tracking box.

Evaluation Metric. As in other papers regarding the
tracking (Giancola, Zarzar, and Ghanem 2019; Qi et al.
2020), we use One Pass Evaluation (OPE) (Wu, Lim, and
Yang 2013) as an evaluation metric to compare GPT with
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Car Ped Van Cyc Mean6424 6088 1248 308

Success

SC3D 41.3 18.2 40.4 41.5 31.2
BEV-3D 36.3 17.9 - 43.2 -
F-Siam 37.1 16.3 - 47.0 -
P2B 56.2 28.7 40.8 32.1 42.4

GPT 59.1 35.2 49.6 34.3 47.4

Precision

SC3D 57.9 37.8 47.0 70.4 48.5
BEV-3D 51.0 47.8 - 81.2 -
F-Siam 50.6 32.3 - 77.3 -
P2B 72.8 49.6 48.4 44.7 60.0

GPT 75.6 63.6 60.6 46.3 68.4

Table 1: 3D object tracking results. The numbers under types
of targets are the number of frames. Note that F-Siam uses
point clouds and RGB images both as input but other meth-
ods use point clouds only.

other methods. OPE measures the Success and Precision of
the tracking results. Success is defined as the IoU between
the tracking result and the GT bounding box. Precision is de-
fined as the AUC for distance between the centers of track-
ing result and GT from 0 to 2 m.

Implementation Details
As in P2B (Qi et al. 2020), PointNet++ (Qi et al. 2017b)
with three set abstraction (SA) layers is used as a backbone
in GPT. In the three SA layers, the radii of their receptive
fields are set to 0.3, 0.5, and 0.7 m, respectively. The size
of the range query is set to 32, and the number of points
is cut in half by random down-sampling in each SA layer.
Thus, after applying three SA layers, the backbone outputs
M1 = N1/23 = 64 template seeds and M2 = N2/23 = 128

search area seeds with Dseed = 256 feature dimension. In
GFA, template and search area seeds are transformed to
nodes with Dnode = Dseed/2 = 128 feature dimension by φ

and ϕ, respectively, and the bipartite graph G is constructed
with k = 16. Moreover, the edge feature can be strength-
ened by the ITC feature with DITC = 128, and GPT gen-
erates the target-specific search area node ṽS,j ∈ R3+D̃node

with D̃node = 256. ṽS,j is fed into regression (=voting) and
classification branches and L = 64 clusters with the radius
R = 0.3 m and 16 query points are generated. The clusters
are then used as proposals. When we train our GPT, the rel-
ative weights of the loss are set to λsea-reg = 0.9, λtmp-reg = 0.1,
λcls = 0.2, λbox = 0.2, and λprop = 1.5. An Adam optimizer is
used, the batch size is 48, and the learning rate is initially set
to 0.001, which is reduced by a rate of 0.2 every 12 epochs.

Experimental Result
Our GPT is compared with Giancola, Zarzar, and
Ghanem (Giancola, Zarzar, and Ghanem 2019) (SC3D),
Zarzar, Giancola,and Ghanem (Zarzar, Giancola, and
Ghanem 2020) (BEV-3D), F-Siamese tracker (Zou et al.
2020) (F-Siam) and P2B (Qi et al. 2020). SC3D, BEV-3D,
and F-Siam are Siamese trackers, whereas P2B is a tracker
that fuses the template and search area features by target-
specific feature augmentation.

fnode
S fnode

T f̄vote
T Success Precision

(i) X 58.1 73.7
(ii) X 58.9 75.3
(iii) X 59.1 75.6
(iv) X X 58.7 75.0
(v) X X 59.1 75.5
(vi) X X 58.9 75.4
(vii) X X X 58.8 75.2

Table 2: Target-Specific Search Area Node f̃node
S,j .

Success Precision

GPT w/o ITC 58.9 75.3
GPT w/ ITC 59.1 75.6

P2B w/o ITC 56.2 72.8
P2B w/ ITC 57.9 73.5

Table 3: Analysis of improved target clue.

Tab. 1 presents the comparison results of our GPT with the
previous methods. GPT outperforms all the previous meth-
ods. In case of rigid targets (=Car, Van), the Success and
Precision rates of GPT are higher than those of the previous
methods by more than 2.8 and 2.9, respectively. In case of
deformable target (Pedestrian), Success and Precision rates
of GPT are higher by more than 8.8 and 12.2, respectively.
Only in Cyclist, not our GPT but Siamese trackers take the
best. This might be that the number of training samples for
Cyclist is much less than that of other targets.

Ablation Studies
Target-Specific Search Area Node f̃node

S,j . We conduct
further experiments to check the variation of the perfor-
mance when we change the inputs to the target-specific
search area node f̃node

S,j in Eq. 6. xT and fnode
T −fnode

S are used
as default inputs in the edge feature, and f̄voteT from the ITC
is replaced with other variables. The results are summarized
in Tab. 2. OPE metrics using fnode

T are higher than those us-
ing fnode

S . This might be because the search area contains
many more clutter points than template; thus template node
fnode
T is more reliable than the search area node fnode

S . When
we replace fnode

T with f̄voteT from ITC, the performance is
improved further. This is because the template center pro-
vides additional information that was not available in tem-
plate node.

Effectiveness of Improved Target Clue. To demonstrate
the effectiveness of the ITC module, we applied the module
not only to GPT but also to P2B. The results are summarized
in Tab. 3. In the table, “w/o ITC” denotes the case in which
either the template seed or node is used instead of the output
from the ITC. In both methods, the ITC module improves
the tracking performance. This implies that the information
about target center obtained from ITC plays an important
roles in localizing the target precisely in the search area.

Analysis of Feature Transform Function. We tested
three different cases of the feature transformation functions
φ and ϕ that are used on the front of the GFA: none, sharing
weight (φ = ϕ), and not sharing weight (φ 6= ϕ). We also

2058



None φ = ϕ φ 6= ϕ

Success w/o ITC 56.9 57.0 58.9
w/ ITC 57.5 57.3 59.1

Precision w/o ITC 73.0 72.6 75.3
w/ ITC 73.3 72.8 75.6

Table 4: Analysis of feature transformation function.

Training
Success Precision

k 1 16 64 1 16 64

In
fe

re
nc

e

1 55.4 49.2 41.7 71.5 61.2 54.5
4 55.2 54.5 45.4 71.3 68.9 58.6
16 55.6 59.1 53.2 72.4 75.6 69.0
32 52.9 57.8 56.0 68.9 73.7 71.8
64 50.0 58.4 58.4 65.1 75.0 74.9

Table 5: Graph construction with various k.

tested two cases of using and not using ITC. The results
are summarized in Tab. 4. When φ = ϕ, tracking perfor-
mance is not improved from “none” (=no transform); This
implies that the feature transformation functions only reduce
the feature dimensions. When φ 6= ϕ, however, tracking per-
formance is improved from “none” (=no transform); This
implies that the feature transformation functions treat the
template and search area separately in such a way that their
difference is represented well in a bipartite graph G.

Graph Construction with Various k. Some experiments
are conducted to see the effect of k in GFA on the tracking
performance. We trained and tested GPT while varying k
from 1 to 64. As summarized in Tab. 5, GPT achieves the
best Success and Precision when k = 16 in training and
testing. Here, k = 1 is one-to-one matching; it is too local,
and it does not capture one-to-many relationship. k = 64 is
similar to one-to-all matching and is ineffective due to the
redundant relations. One-to-many relationship with k = 16
in both training and testing outperforms all other settings.

Template Generation. We evaluated four different set-
tings of template generation during testing, as presented
in Tab. 6. We used first frame GT (First), previous result
(Prev.), concatenation of first frame GT and previous result
(F&P) and concatenation of all previous results (All) to gen-
erate a template for testing. “F&P” is the best in GPT and
P2B, whereas “All” is the best in SC3D. Note that SC3D
is trained with “All” whereas P2B and GPT is trained with
“F&P” to reduce preprocessing time. This implies that the

First Prev. F & P All

Success
SC3D 31.6 25.7 34.9 41.3
P2B 46.7 53.1 56.2 51.4

GPT 52.6 56.7 59.1 57.0

Precision
SC3D 44.4 35.1 49.8 57.9
P2B 59.7 68.9 72.8 66.8

GPT 66.1 72.0 75.6 72.7

Table 6: Ways for template generation.

Prev. result Prev. GT Curr. GT

Success
SC3D 41.3 64.6 76.9
P2B 56.2 82.4 84.0

GPT 59.1 82.8 84.4

Precision
SC3D 57.9 74.5 81.4
P2B 72.8 90.1 90.3

GPT 75.6 90.1 90.4

Table 7: Ways for search area generation.

GT P2B𝑻𝑻 = 𝟎𝟎 GPT

Figure 4: Qualitative results on Car. From left to right, the
GT box in the first frame of each tracklet, GT model, P2B,
and our GPT model generated by tracking results.

Siamese approach SC3D needs as much information as pos-
sible. GPT outperforms SC3D and P2B across all settings of
template generation.

Search Area Generation. We evaluated three different
settings of search area generation during testing. The results
are summarized in Tab. 7. The three settings involve using
previous result (Prev. result), previous GT (Prev. GT), and
current GT (Curr. GT). The last two settings are unrealistic
but are also evaluated, as in other papers. Compared to the
state-of-the-art method P2B (Qi et al. 2020), GPT shows im-
proved performance in all three settings. Specifically, GPT
demonstrates higher improvement in Prev. GT than in the
other unrealistic settings (Prev. GT and Curr. GT), possibly
because the two unrealistic settings excessively simplify 3D
target tracking problems.

Qualitative Results
For a qualitative comparison of the competing methods, we
accumulated all the points within the tracking result (=box)
over the entire sequence, as shown in Fig. 4. More results
will be illustrated in supplementary material.

Conclusion
In this work, we present a graph-based point tracker (GPT)
that builds reliable and efficient one-to-many relationship
via a bipartite graph embedding. Our GPT achieves state-
of-the-art performance by exploiting two key modules, GFA
and ITC. Experimental results demonstrate the effectiveness
of our proposed modules from various perspectives. We be-
lieve that our approach can be extended to more relation-
based applications such as registration, moving object seg-
mentation and sensor fusion.

2059



Acknowledgements
This work was supported in part by the National Research
Foundation of Korea (NRF) grant funded by the Korea gov-
ernment (MSIT) (NRF-2019R1A2C1007153). This work
also supported in part by the Industry Core Technology De-
velopment Project, 20005062, Development of Artificial In-
telligence Robot Autonomous Navigation Technology for
Agile Movement in Crowded Space, funded by the Ministry
of Trade, industry Energy (MOTIE, Republic of Korea).

References
Aoki, Y.; Goforth, H.; Srivatsan, R. A.; and Lucey, S. 2019.
PointNetLK: Robust & Efficient Point Cloud Registration
Using PointNet. In CVPR.
Bertinetto, L.; Valmadre, J.; Henriques, J. F.; Vedaldi, A.;
and Torr, P. H. S. 2016. Fully-Convolutional Siamese Net-
works for Object Tracking. In ECCVW, 850–865.
Bibi, A.; Zhang, T.; and Ghanem, B. 2016. 3D Part-Based
Sparse Tracker With Automatic Synchronization and Regis-
tration. In CVPR.
Chen, T.; Cheng, Y.; Gan, Z.; Wang, J.; Wang, L.; Wang,
Z.; and Liu, J. 2021. Adversarial Feature Augmentation and
Normalization for Visual Recognition. arXiv:2103.12171.
Chen, Z.; Fu, Y.; Zhang, Y.; Jiang, Y.-G.; Xue, X.; and Si-
gal, L. 2019. Multi-Level Semantic Feature Augmentation
for One-Shot Learning. IEEE Transactions on Image Pro-
cessing, 28(9): 4594–4605.
Dixit, M.; Kwitt, R.; Niethammer, M.; and Vasconcelos, N.
2017. AGA: Attribute-Guided Augmentation. In CVPR.
Geiger, A.; Lenz, P.; and Urtasun, R. 2012. Are we ready for
autonomous driving? The KITTI vision benchmark suite. In
CVPR, 3354–3361.
Giancola, S.; Zarzar, J.; and Ghanem, B. 2019. Leveraging
Shape Completion for 3D Siamese Tracking. In CVPR.
Guo, Q.; Feng, W.; Zhou, C.; Huang, R.; Wan, L.; and Wang,
S. 2017. Learning Dynamic Siamese Network for Visual
Object Tracking. In ICCV.
He, A.; Luo, C.; Tian, X.; and Zeng, W. 2018. A Twofold
Siamese Network for Real-Time Object Tracking. In CVPR.
Held, D.; Levinson, J.; Thrun, S.; and Savarese, S. 2016.
Robust real-time tracking combining 3D shape, color, and
motion. IJRR, 35(1-3): 30–49.
Kart, U.; Kamarainen, J.-K.; and Matas, J. 2018. How to
Make an RGBD Tracker ? In ECCVW.
Kart, U.; Lukezic, A.; Kristan, M.; Kamarainen, J.-K.; and
Matas, J. 2019. Object Tracking by Reconstruction With
View-Specific Discriminative Correlation Filters. In CVPR.
Li, B.; Yan, J.; Wu, W.; Zhu, Z.; and Hu, X. 2018a. High Per-
formance Visual Tracking With Siamese Region Proposal
Network. In CVPR.
Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; and Chen, B.
2018b. PointCNN: Convolution On X-Transformed Points.
In NIPS, volume 31. Curran Associates, Inc.
Maturana, D.; and Scherer, S. 2015. VoxNet: A 3D Convo-
lutional Neural Network for real-time object recognition. In
IROS, 922–928.

Pan, X.; Xia, Z.; Song, S.; Li, L. E.; and Huang, G. 2021. 3D
Object Detection With Pointformer. In CVPR, 7463–7472.
Qi, C. R.; Litany, O.; He, K.; and Guibas, L. J. 2019. Deep
Hough Voting for 3D Object Detection in Point Clouds. In
ICCV.
Qi, C. R.; Su, H.; Mo, K.; and Guibas, L. J. 2017a. Point-
Net: Deep Learning on Point Sets for 3D Classification and
Segmentation. In CVPR.
Qi, C. R.; Yi, L.; Su, H.; and Guibas, L. J. 2017b. Point-
Net++: Deep Hierarchical Feature Learning on Point Sets in
a Metric Space. In NIPS, volume 30.
Qi, H.; Feng, C.; Cao, Z.; Zhao, F.; and Xiao, Y. 2020.
P2B: Point-to-Box Network for 3D Object Tracking in Point
Clouds. In CVPR.
Qiu, S.; Anwar, S.; and Barnes, N. 2021. Semantic Segmen-
tation for Real Point Cloud Scenes via Bilateral Augmenta-
tion and Adaptive Fusion. In CVPR, 1757–1767.
Shi, S.; Guo, C.; Jiang, L.; Wang, Z.; Shi, J.; Wang, X.; and
Li, H. 2020. PV-RCNN: Point-Voxel Feature Set Abstrac-
tion for 3D Object Detection. In CVPR.
Shi, S.; Wang, X.; and Li, H. 2019. PointRCNN: 3D Object
Proposal Generation and Detection From Point Cloud. In
CVPR.
Song, S.; and Xiao, J. 2013. Tracking Revisited Using
RGBD Camera: Unified Benchmark and Baselines. In
ICCV.
Su, H.; Maji, S.; Kalogerakis, E.; and Learned-Miller, E.
2015. Multi-View Convolutional Neural Networks for 3D
Shape Recognition. In ICCV.
Thomas, H.; Qi, C. R.; Deschaud, J.-E.; Marcotegui, B.;
Goulette, F.; and Guibas, L. J. 2019. KPConv: Flexible and
Deformable Convolution for Point Clouds. In ICCV.
Volpi, R.; Morerio, P.; Savarese, S.; and Murino, V. 2018.
Adversarial Feature Augmentation for Unsupervised Do-
main Adaptation. In CVPR.
Wang, Q.; Teng, Z.; Xing, J.; Gao, J.; Hu, W.; and Maybank,
S. 2018. Learning Attentions: Residual Attentional Siamese
Network for High Performance Online Visual Tracking. In
CVPR.
Wang, Y.; and Solomon, J. M. 2019. Deep Closest Point:
Learning Representations for Point Cloud Registration. In
ICCV.
Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S. E.; Bronstein, M. M.;
and Solomon, J. M. 2019. Dynamic Graph CNN for Learn-
ing on Point Clouds. ACM Trans. Graph., 38(5).
Wu, Y.; Lim, J.; and Yang, M.-H. 2013. Online Object
Tracking: A Benchmark. In CVPR.
Xiao, J.; Stolkin, R.; Gao, Y.; and Leonardis, A. 2018. Ro-
bust Fusion of Color and Depth Data for RGB-D Target
Tracking Using Adaptive Range-Invariant Depth Models
and Spatio-Temporal Consistency Constraints. IEEE Trans-
actions on Cybernetics, 48(8): 2485–2499.
Xie, S.; Liu, S.; Chen, Z.; and Tu, Z. 2018. Attentional
ShapeContextNet for Point Cloud Recognition. In CVPR.

2060



Xu, Y.; Fan, T.; Xu, M.; Zeng, L.; and Qiao, Y. 2018. Spi-
derCNN: Deep Learning on Point Sets with Parameterized
Convolutional Filters. In ECCV.
Yan, X.; Zheng, C.; Li, Z.; Wang, S.; and Cui, S. 2020.
PointASNL: Robust Point Clouds Processing Using Nonlo-
cal Neural Networks With Adaptive Sampling. In CVPR.
Yang, J.; Zhang, Q.; Ni, B.; Li, L.; Liu, J.; Zhou, M.; and
Tian, Q. 2019. Modeling Point Clouds With Self-Attention
and Gumbel Subset Sampling. In CVPR.
Zarzar, J.; Giancola, S.; and Ghanem, B. 2020. Effi-
cient Bird Eye View Proposals for 3D Siamese Tracking.
arXiv:1903.10168.
Zhang, Y.; Sun, B.; Xiao, Y.; Xiao, R.; and Wei, Y. 2019.
Feature augmentation for imbalanced classification with
conditional mixture WGANs. Signal Processing: Image
Communication, 75: 89–99.
Zhao, H.; Jiang, L.; Fu, C.-W.; and Jia, J. 2019. PointWeb:
Enhancing Local Neighborhood Features for Point Cloud
Processing. In CVPR.
Zou, H.; Cui, J.; Kong, X.; Zhang, C.; Liu, Y.; Wen, F.; and
Li, W. 2020. F-Siamese Tracker: A Frustum-based Double
Siamese Network for 3D Single Object Tracking. In IROS,
8133–8139.

2061


