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Abstract
We study the unsupervised representation learning for the se-
mantic segmentation task. Different from previous works that
aim at providing unsupervised pre-trained backbones for seg-
mentation models which need further supervised fine-tune,
here, we focus on providing representation that is only trained
by unsupervised methods. This means models need to di-
rectly generate pixel-level, linearly separable semantic re-
sults. We first explore and present two factors that have sig-
nificant effects on segmentation under the contrastive learn-
ing framework: 1) the difficulty and diversity of the positive
contrastive pairs, 2) the balance of global and local features.
With the intention of optimizing these factors, we propose the
cycle-attention contrastive learning (CACL). CACL makes
use of semantic continuity of video frames, adopting unsuper-
vised cycle-consistent attention mechanism to implicitly con-
duct contrastive learning with difficult, global-local-balanced
positive pixel pairs. Compared with baseline model MoCo-v2
and other unsupervised methods, CACL demonstrates consis-
tently superior performance on PASCAL VOC (+4.5 mIoU)
and Cityscapes (+4.5 mIoU) datasets.

Introduction
Semantic segmentation which densely assigns semantic la-
bels for every pixel in an image is a fundamental and im-
portant visual task with wide range of application scenar-
ios. Deep learning (LeCun, Bengio, and Hinton 2015) under
the framework of supervised learning together with large
annotated datasets (Deng et al. 2009; Lin et al. 2014) has
taken computer vision to new heights of accuracy in the last
decade and semantic segmentation (Long, Shelhamer, and
Darrell 2015; Chen et al. 2017; Sun et al. 2019; Fang et al.
2019; Zhang, Pang, and Lu 2022) has been ready for com-
mercial usage in the supervised setting. Nevertheless, ob-
taining annotations required by supervised methods is ex-
pensive and costs significant amounts of time (Asano et al.
2020; Fabbri et al. 2018). Different scenarios need annotat-
ing different specific data, making the application of models
very expensive. To this end, here, we study the unsupervised
method to train deep semantic segmentation models.

Inspired by contrastive learning (Chen et al. 2020a; He
et al. 2020; Grill et al. 2020) that makes great progress in

∗Cewu Lu is the corresponding author.
Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Hard positives

Soft positives

Pi
xe

l C
on

tra
st

iv
e 

Le
ar

ni
ng

C
yc

le
 A

tte
nt

io
n 

M
ec

ha
ni

sm
Cycle-back pair Pairs not forming a cycle

Pull inPush away

Frame a Frame b

Frame a Frame b Frame a

Figure 1: Illustration of the cycle-attention scheme. Differ-
ent from the conventional contrastive method that assigns
positive and negative pairs, the cycle-attention scheme im-
plicitly pulls in and pushes out the samples by maximiz-
ing the probability of “cycle back”. Compared to the hard
positive pairs adopted by conventional contrastive meth-
ods, cycle-attention scheme forms soft positive relation-
ships. Best viewed in color.

image-level classification task, we choose the unsupervised
contrastive representation learning framework to solve se-
mantic segmentation task which is essentially a pixel-level
classification task. Some of the previous works tried to ad-
vance the contrastive method from image-level to pixel-level
and their solution can be summarised into two main direc-
tions. One is to design better pre-training methods which are
more suitable for dense tasks (Wang et al. 2021a; Xie et al.
2021). This strategy needs to fine-tune models with super-
vision on downstream tasks (semantic segmentation) after
the pre-training progress. The other one adopts a two-stage
scheme (Xiong et al. 2021; Van Gansbeke et al. 2021). It
takes advantage of optical flow (Sun et al. 2018; Teed and
Deng 2020) or saliency estimation (Qin et al. 2019; Nguyen
et al. 2019) methods to generate preliminary intermediate
results. This strategy adopts complicated and ad-hoc tech-
niques from other fields to get the intermediate results, some
of which are trained by synthesized data in a supervised
manner (Teed and Deng 2020).

In this paper, to this end, we aim at designing an end-to-
end unsupervised representation learning method for the se-
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mantic segmentation task based on the contrastive learning
framework to directly generate linearly separable semantic
results. To this end, we first define and analyse two impor-
tant factors under the contrastive framework: 1) the difficulty
and diversity of the positive contrastive pairs, 2) the balance
between local and global semantics. We discuss what is a
difficult positive pair, how to generate them, and how to bal-
ance global and local information.

With the results of the above analysis, we propose the
cycle-attention contrastive learning (CACL) for semantic
segmentation. Inspired by the cycle-consistency mechanism
designed for the semi-supervised tracking task, we propose
the cycle-attention scheme (see Fig. 1). In CACL, three
stand-alone unsupervised heads work together to learn rep-
resentations. In addition to the cycle-attention head, a pixel
contrastive head and a global contrastive head are designed
to capture local and global features. The cycle-attention
head conducts contrastive learning in an implicit manner and
takes charge of digging more diverse positive samples and
balancing global features with local ones by maintaining the
cycle consistency.

The proposed end-to-end CACL method is effective and
pretty simple. We evaluate it on PASCAL-VOC (Evering-
ham et al. 2010) and Cityscapes (Cordts et al. 2016) datasets
under linear protocol setting to verify results’ linear sep-
arability. Extensive experiments show that CACL works
robustly and we observe consistent performance improve-
ments over baselines. Compared to image-level contrastive
methods, our CACL outperforms MoCo by 4.5 mIoU on
VOC and Cityscapes. Compared with two-stage methods,
CACL achieves better results in a simpler compact structure.

Related Work
Unsupervised Representation Learning Earlier methods
for unsupervised representation learning often involve hand-
crafted pretext such as denoising (Vincent et al. 2008), col-
orization (Iizuka, Simo-Serra, and Ishikawa 2016; Zhang,
Isola, and Efros 2016), inpainting (Pathak et al. 2016), and
jigsaw solving (Noroozi and Favaro 2016; Noroozi et al.
2018). There are more pretext tasks avaliable for video rep-
resentation learning such as ordering (Fernando et al. 2017;
Misra, Zitnick, and Hebert 2016; Wei et al. 2018), motion
estimation (Agrawal, Carreira, and Malik 2015; Jayaraman
and Grauman 2015; Liu et al. 2018), and future frame pre-
diction (Lotter, Kreiman, and Cox 2016; Mathieu, Couprie,
and LeCun 2015; Srivastava, Mansimov, and Salakhudinov
2015; Vondrick, Pirsiavash, and Torralba 2016a,b). The rep-
resentations learned by these pretext tasks are relatively lim-
ited in terms of the performance on downstream tasks. Clus-
tering methods using pseudo labels or prototypes in train-
ing (Caron et al. 2018, 2020a) have also been explored for
unsupervised representation learning.

Contrastive method for representation learning has been
quite popular recently for its simplicity and effective-
ness (Oord, Li, and Vinyals 2018; Hjelm et al. 2018; Zhuang,
Zhai, and Yamins 2019; Tian, Krishnan, and Isola 2020;
Bachman, Hjelm, and Buchwalter 2019; Chen et al. 2020a;
He et al. 2020; Grill et al. 2020; Caron et al. 2020b).
The performance of its representations on downstream tasks

has been comparable to that of supervised learning. These
method are often implemented via a large batch size (Chen
et al. 2020a), a memory bank (Wu et al. 2018) or a nega-
tive queue (He et al. 2020). Some recent works don’t need
negative sample, which use the Siamese network and asym-
metry structures (Grill et al. 2020; Chen and He 2021). Our
method follows the contrastive framework and aims at mak-
ing contrastive learning feasible for end-to-end solving the
pixel-level dense task, semantic segmentation.

Unsupervised Semantic Segmentation Some recent
works (Ji, Henriques, and Vedaldi 2019; Hwang et al. 2019;
Mirsadeghi, Royat, and Rezatofighi 2021) present clustering
objective to train a neural network to discover clusters that
accurately match semantic classes. These works maximize
the discrete mutual information between augmented views
to learn a clustering function. (Xiong et al. 2021; Van Gans-
beke et al. 2021) adopt optical flow or saliency estimation
methods to build two-stage methods.

Our unsupervised segmentation method is also related to
another line of recent works on unsupervised scene decom-
position (Locatello et al. 2020; Burgess et al. 2019; Greff
et al. 2019). These methods represent a scene in terms of
a collection of latent variables with the same representa-
tional format, perform an iterative encoding-decoding step
followed by a comparison in pixel space.

Self-supervised Temporal Correspondence Learning
temporal correspondence is a vital topic for unsupervised vi-
sual representation learning in videos and can be formulated
as dense tracking or flow estimation.

Dense tracking (Xiu et al. 2018; Sun et al. 2021) is to pre-
dict mask in latter frames given the mask in the first frame.
Many self-supervised methods have been developed to avoid
costly human labour of annotations (Zhu et al. 2020; Tok-
makov, Alahari, and Schmid 2017; Han, Xie, and Zisser-
man 2020; Oh et al. 2019; Voigtlaender et al. 2019; Wang
et al. 2019). (Wang, Jabri, and Efros 2019; Jabri, Owens, and
Efros 2020) use cycle-consistency as pretext task. However,
current approaches based on cycle-consistency often lack
pixel-level semantics and utilize image patches as nodes,
making it difficult to apply on segmentation task.

Optical flow estimation problem has also been widely
explored for pixel level temporal correspondence (Lucas,
Kanade et al. 1981; Sun et al. 2018; Teed and Deng 2020).
However, self-supervised optical flow estimation is still
challenging and flow-based methods often suffer when faced
with long-range correspondence.

Method
Before introducing CACL, let’s first analyze two important
factors when applying contrastive learning to dense tasks.

Analysis from Image to Pixel Level
Contrastive learning is designed to maximize the representa-
tion similarity of two “views” that contain common seman-
tics based on the premise that the representation does not
collapse. For the image-level classification task, the main-
stream method to generate positive pairs of “view” is to ap-
ply different augmentations on the same element (image).
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The high dimensionality of each image view guarantees that
the pairs are distant from each other in the input space and
this high diversity makes the model able to learn the com-
mon semantics from noise. When directly applying the con-
ventional contrastive learning to pixel-level tasks, each pixel
as the contrasting element does not contains high-level se-
mantics and the low dimensionality makes it difficult to get
pixel-level views with enough diversity for contrasting. In
order to adapt the contrastive framework to pixel-level, we
need to consider the following two questions:

Do we need global semantics or not? Too little informa-
tion can be carried by a single pixel. Thus, it needs to be
combined with surrounding pixels to form high-level fea-
tures. Although a multi-layer convolutional network with
large receptive fields can capture local features containing
relatively high-level semantics, the contrastive learning tak-
ing a pixel as the basic contrast unit forces them to compete
with each other, making it difficult to gradually learn the
larger-scale higher-level features. Thus, to adjust contrastive
learning to the pixel level, we need to focus on global seman-
tics, as well as the local features to boost the performance.
How to balance them is an important factor to build effective
segmentation models (details in experiment section).

What is a difficult pair of pixel-level views? Also be-
cause of the low dimensionality of pixel-level views, it is
not feasible to directly generate diverse pairs by augmenta-
tion. Samples with insufficient diversity will lead to myopic
models that fail to learn semantics effectively (Grill et al.
2020; Wallace and Hariharan 2020; Azabou et al. 2021).
We need to explore another definition of difficult diverse
pixel pairs, besides augmentation, for pixel-level tasks. This
kind of pixel-to-pixel correspondence naturally exists be-
tween video frames. It is a feasible plan to take videos into
the framework and simply adopting an optical flow algo-
rithm (Sun et al. 2018; Teed and Deng 2020) can provide
us these pixel correspondences. However, this kind of corre-
spondence cannot generate view pairs with the largest diver-
sity because it only links the same position of the same ob-
ject as the pairs. For semantic segmentation, the most diffi-
cult kind is the pairs between the different positions of differ-
ent individuals of the same category. Just as (Li et al. 2020,
2021) show, part state is important for visual understanding.
How to generate them without supervision is our task.

Cycle-Attention Contrastive Learning
Overview We treat the unsupervised segmentation task as
the pixel-level representation learning and follow the con-
trastive learning framework to train the network. Contrastive
learning is one of the self-supervised learning algorithms.
Given a pair of positive samples x, x+ and several negative
ones {x−}, contrastive learning makes the similarity of pos-
itive samples’ representations z, z+ closers than the negative
ones {z−} to learn effective features:

target = −log exp(sim(z, z+)/τ)∑
z′∈{z−}∪z+ exp(sim(z, z′)/τ)

, (1)

where τ denotes the temperature hyper-parameter and simi-
larity function sim is usually defined as cosine similarity.

Commonly, the image-level contrastive learning method
adopts different augmentations of the same image as the
positive samples and different images as negative samples.
However, as mentioned above, for pixel-level settings, an-
other approach is needed to generate diverse positive sam-
ples. We employ videos as input, taking advantage of the
relationships between video frames as basics. Given a video
Vi and its frames {vni }, to better handle the pixel level con-
trastive task, we design three heads above the backbone f(·)
(see Fig. 2): the pixel head gP taking charge of local se-
mantics, the global head gG for global features, and most
importantly, the cycle-attention head gC adopting cycle-
consistency loss to implicit conduct contrastive learning for
digging difficult diverse positive pairs and balance local fea-
tures with global ones. The calculation flow is:

h = f(v)

u, p, c = gG(h), gP (h), gC(h)
(2)

Global and Pixel Head Global and pixel heads are multi-
layered convolutional networks that map the representation
of the backbone into the contrastive target space as (Chen
et al. 2020a; He et al. 2020) do. Global head utilizes a global
average pooling (GAP) layer to get global features and di-
rectly applies the contrastive loss adopting cosine similarity
cos as the similarity measurement to guide backbones learn-
ing global semantics just as image-level contrastive learning
frameworks do:

LG = −log exp(cos(u, u+)/τ)∑
u′∈{u−}∪u+

exp(cos(u, u′)/τ)
, (3)

where u and u+ are features of the frames from the same
video and {u−} is a set of features from other video frames.

For the pixel head, p, p+, and {p−} are treat as three sets
of pixels {pi}, {pi+}, and {pi−}. Similarly, features in {pi−}
can all be treated as negatives since they are pixels from
other videos. While positive pairs are generated by match-
ing pixels between the two frames {pi} and {pi+} from the
same video into matched pair (pi, pi+). As videos naturally
contain matchup between frames’ pixels, we adopt global
head’s features which contain preliminary semantics to gen-
erate the affinity matrix A and guide the pixel head to learn
pixel-level semantics:

Aij = cos(ui, uj+),

pm+ = p
argmaxj(Aij)

+

LP = −log
exp(cos(pi, pm+ )/τ)∑

pk∈{pi
−}∪pm

+
exp(cos(pi, pk)/τ)

,

(4)

where ui and uj+ are pixels in u and u+.
These two heads preliminarily form a hierarchical struc-

ture that modifies the contrastive learning framework into
pixel level. But the pixel positive pairs rely too much on the
semantics learned by the global head. And the positive pairs
are not difficult enough as Fig. 3 shows.

Cycle-Attention Head As mentioned above, the combi-
nation of global and pixel head still cannot find difficult
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Figure 2: The pipeline of our CACL model. Given two frames v and v+ from the same video, three heads adopt the output
of the same backbone as input and map it to their own target spaces. Global head employs the global average pooling (GAP)
to get global features and contrast them to learn the global semantics. Pixel head adopts the affinity matrix from global head
to get the matchup between two sets of pixels {pi} and {pi+}. Pixel-level contrasting is conducted between them. The cycle
head first maps {ci} to {ci+} to get the similarity matrix between them and together with the mapping back process, we get
the probability distribution of where ci getting back (in {ci}). The cycle loss maximizes the probability of back to themselves,
which will softly adjust the distance between the pixels in {ci} and {ci+} in the target space.

enough positive pixel pairs, because the most similar pixels
in two frames usually have little diversity. And the one-way
dependence between the global and pixel head make it hard
to balance them well. Inspired by (Jabri, Owens, and Efros
2020), we propose the cycle-attention head.

The same as the other two heads, the structure of the
cycle-attention head is a multi-layer convolutional network
that maps features to the target space. With the feature ma-
trix c ∈ RH×W,k and c+ ∈ RH×W,k of two frames in the
same video, where k is the number of channels, the cycle-
attention head forms a cycle mappingM through two jump-
ings between {ci} and {ci+}:
M = softmax(〈c, c+〉 /τ)× softmax(〈c+, c〉 /τ) (5)

Note that the features ci, ci+ ∈ Rk of each pixel are l2-
normalized k-dimensional vectors, thus we adopt the inner
product to denote the calculation of cosine similarity and
the softmax function is applied on the last dimension. The
softmax function changes the similarity into transition prob-
abilities and we call each transition as a “jump”. After two
jumpings,M ∈ RH×W,H×W , the similarity matrix among
all the pairs of pixels in {ci}, can be seen as the jump back
distribution. A great representation will make most pixels
jump back to themselves (called “cycle-back”) to maintain
the cycle-consistency (Jabri, Owens, and Efros 2020; Wang,
Jabri, and Efros 2019), thus the optimization target can be
written as:

LC = CrossEntropy(M, I) (6)
where CrossEntropy is cross entropy loss function and I ∈
RH×W,H×W is an identity matrix.

Analysis This cycle-consistency loss actually implicitly
conducts the contrastive learning. It will form soft pixel-
level positive and negative relationships among {ci} and

{ci+}. Intuitively, to achieve a higher probability to cycle
back through {ci+}, the optimization process will make ci

closer to a subset of {ci+} that is far from other pixels in
{ci} and at the same time, make ci keep away from the other
subsets of {ci+} that are close to other cj . Because of the
different distances between ci and all the pixels in {ci+}, the
pull and push forces applied on ci also satisfy a soft distri-
bution (see the lower right of Fig. 2: a thicker arrow means a
larger pull force). It is these automatic pull and push forces
that make the cycle head works in an implicitly contrastive
manner.

Managing the mentioned two problems Since these
soft optimization signals exist among all the pairs of pixels,
compared to the conventional contrastive methods that as-
sign hard positive pairs, the cycle-attention head has the op-
portunity to implicitly dig positive pairs with high diversity
(see Fig. 3). And due to the pixel-to-image-to-pixel calcula-
tion manner instead of the direct pixel-to-pixel contrasting,
the cycle-attention head won’t overly focus on local features
and can find a better balance between the global and pixel
features. By the way, during training, ci will gradually gets
close to a group of pixels in {ci+} to maximize the cycle-
back probability. This means ci gradually attending to a part
of the frame, like attention mechanisms (Wang et al. 2017;
Pang et al. 2021). Thus, we call it the “cycle-attention” head.

According to (Chen et al. 2020a), we add negative sam-
ples in the cycle process to enhance the performance. The
new cycle path to calculateM is {ci} → {ci+} → ({ci} +
{ci−}). Further more, another problem is that the above opti-
mization target ofM is a one-hot vector for each ci to guide
the pixels only jumping back to themselves, but actually
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many pixels in the same frame have relevant semantics. To
this end, we propose a small trick that modifies the one-hot
target to softmax(〈u, u+〉 /τ) and adopt the KL-divergence
as the loss function. That is to say we adopt the global head
to describe the relationships among pixels in the frame, and
we call the trick “soft cycle”.

In summary, for the whole proposed CACL method, the
total training loss is: L = LG + LP + LC .

Pixel Shuffle Due to the requirement of keeping the size
of the input, the convolutional network employs padding.
This makes the calculation flow of pixels in different po-
sitions different because pixels closer to the edge of images
are convolved with more paddings. Thus, the whole network
has an opportunity to leak the position information of pix-
els and according to this position information, the network
can more easily finish the pixel contrastive task at the edges.
Even worse, the optimization target of the cycle-attention
head can be totally solved by the position information, mak-
ing it unable to learn useful semantics.

To this end, we propose the pixel shuffle trick. It adopts
two random rolling distances (a, b) in two directions to mod-
ify the input image X ∈ RH,W :

Xi,j = X(i+a) mod H, (j+b) mod W (7)

After the forward propagation, we roll the output back. Pixel
shuffle solves the position leak problem by making pixels at
every position have the same chance to contact with zero
paddings. In the ablation study, we analyze its effectiveness.

Implementation Details
Contrastive algorithm Our CACL framework can be ap-
plied to various kinds of contrastive learning algorithms. In
our experiments, we follow MoCo (He et al. 2020) to imple-
ment our model. There is an online and a momentum version
of networks in the model. z is generated by the online net-
work that updates its parameters by the optimizer. z− and z+
are generated by the momentum network. The momentum
network is only used in the training phase. {z−} is stored in a
large queue that updates with the training process. The three
heads in CACL maintain their own queues respectively. All
the hyper-parameters in CACL related to MoCo are the same
with MoCo-v2 (Chen et al. 2020b).

Network structure As for the network structure, we uti-
lize ResNet (He et al. 2016) as our backbone f . For the se-
mantic segmentation task, we remove the downsampled lay-
ers in the last two stages and adopt the dilated convolution
layer (Chen et al. 2017), following (Zhao et al. 2017). Thus,
the whole downsample rate is 8. The structures of the three
heads are the same. Both are MLP containing two convo-
lution layers with an 1×1 kernel which can be seen as the
pixel-level linear layer with the same number of parameters.
The number of output channels for the first layer keeps the
same as its input channels and it is followed by a ReLU ac-
tivation layer to build the non-linear structure. The second
layer’s output channel is 128, the same as MoCo-v2.

Augmentation We adopt almost the same augmentation
as MoCo-v2 (Chen et al. 2020b) to preprocess input frames.

The exclusive difference lies that v and v+ are two crops
at the same position of two different frames, instead of two
crops generated from different positions of the same image.

Experiments
Setup
Dataset The unsupervised training is conducted on Ima-
geNet (Deng et al. 2009) and Kinetics-400 (Carreira and Zis-
serman 2017) datasets. Kinetics-400 is a large-scale video
dataset that contains 240k training videos covering 400
action categories. We train the models on their training
splits. The experimental evaluations are conducted on two
commonly used benchmarks, PASCAL-VOC (Everingham
et al. 2010) and Cityscapes (Cordts et al. 2016) datasets.
The training and evaluation splits in PASCAL-VOC contain
about 10k augmented images covering 20 classes, and 3.5k
images covering 19 classes in Cityscapes.

Training Setup We train our CACL on ImageNet and
Kinetics with 16 GPU and the batch size on each GPU
is 32. For each video in Kinetics, we randomly choose
one pair of frames with stride 8. The optimizer we adopt
for training is LARS (You, Gitman, and Ginsburg 2017)
with SGD. The momentum is set to 0.9, while 1e−6 for
weight decay and 0.001 for the trust coefficient of LARS.
The initial learning rate is 1.0 and decayed with a cosine
schedule scheme (Loshchilov and Hutter 2016). The con-
trastive dimension and temperature τ are 128 and 0.07 just as
MoCo (He et al. 2020). For CACL, the size of the queue for
negative samples is 16384, a quarter of MoCo to reduce the
complexity. To reduce the information leak caused by batch
normalization, we adopted shuffle-bn proposed in MoCo.

Evaluation Setup To evaluate the representation quality
learned by the unsupervised models, we adopt the following
two evaluation protocols:

Linear Protocol: Linear evaluation that tests models’ lin-
ear separability is a frequently-used protocol to evaluate the
learned representation (Chen et al. 2020a; He et al. 2020).
For all the models, we remove their projection heads and
take the final output of the backbone as the learned represen-
tation. We take the frozen representation as to the input of a
linear classifier and train it with the ground truth of evalua-
tion datasets. The linear classifier is one convolutional layer
with a kernel of size 1 × 1. We train the classifier for 300
epochs under 0.6 lr and the weight decay is set to 0.

Limited Sample Supervision: We also test the model’s per-
formance with small numbers of data with annotations to
evaluate the representation. The same as the linear protocol,
the evaluated model is the pre-trained backbone with a ran-
domly initialized linear classifier. Here, we do not freeze the
backbone, instead, train the whole network end-to-end with
small number of samples. We fine-tune the models for 1000
epochs on dataset under 0.3 learning rate.

Ablation Study
This section provides ablation studies about the proposed
CACL on Cityscapes dataset. All models are trained on
Kinetics-400 in an unsupervised manner. In addition, we
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backbone pix head glo head cyc head mIoU
Res18 X 28.7
Res18 X 33.2
Res18 X X 34.3
Res18 X X 35.9
Res18 X X X 38.2
Res50 X 44.5
Res50 X X 46.1
Res50 X X X 49.1

(a) Balance between local and global informa-
tion They need to work together and the cycle-
attention head can better balance them.

type of pos pair stride mIoU
only augmentation 0 27.5
cross video frames 2 28.4
cross video frames 4 29.7
cross video frames 8 33.1
decide by global head 4 31.6
decide by global head 8 35.9
+ cycle-attention head 4 34.5
+ cycle-attention head 8 38.2

(b) Difficulty of views Harder views lead
to better results. The cycle head implicitly
generates the hardest ones.

bb elements mIoU

R18 simple model 34.2
R18 + pixel shuffle trick 37.1
R18 + soft cycle trick 38.2

R50 simple model 45.6
R50 + pixel shuffle trick 47.3
R50 + soft cycle trick 49.1

(c) Key elements in CACL Pixel shuf-
fle helps to avoid shortcut. Soft cycle
boosts the performance a little.

Table 1: Ablations on Cityscapes. Default backbone is R18. The unsupervised models are trained on Kinetics. “pix head”, “glo
head”, and “cyc head” denote pixel, global, and cycle-attention heads.
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Figure 3: Visualization. Given a target pixel (noted by red
crosses) from the frame and models under the early stage of
training, we visualize the similarities between representation
of the target pixel and the pixels in the next 8th frame. We
can see that the cycle-attention head digs more difficult pos-
itive pairs that link different parts from different objects. In
addition, in the last row, we show that without pixel shuffle,
there will be shortcuts in cycle-attention head.

give out some experimental supports on the analysis con-
clusions mentioned above.

Balance between local and global information After a
brief analysis, we consider that local and global features
need to work cooperatively to learn powerful representa-
tions. To this end, we design the pixel head that utilizes
information from the global head as the learning guide to
balance local-global relationships. Meanwhile, the proposed
cycle-attention head implicitly learning the soft affinity ma-
trix among pixel and global features further enhances their
balance. In Tab. 1a, we report the performances of differ-
ent settings adopting different levels of contrastive learning.
Note that when only adopting pixel head, the positive pair
of views are simply the pixels at the same position in two
video frames. From the experiment results, we can see that a
stand-alone pixel head cannot get high performance. (Wang
et al. 2021a) draws similar conclusions to ours. Focusing too
much on local information makes it difficult for models to
learn large-scale high-level semantics. Adopting global and

local heads together outperforms the performance of two
heads used independently. This confirms the conclusions of
our previous analysis. Furthermore, after adding the cycle-
attention head, the further enhanced interaction between lo-
cal and global features boosts the performance once again
(+ 2.6 mIoU in average), just as expected.

Difficulty of pixel-level positive views The positive pair
of views that possess enough diversity is one of the key
factors for the contrastive learning to learn effective repre-
sentations. Previous works adopt complex augmentations to
generate image-level positive pairs with high diversity. How-
ever, utilizing augmentations is not an effective method for
pixel-level views as mentioned above. From the results listed
in Tab. 1b, we can see that directly adopting augmentation
indeed achieves a relative poor performance. To increase the
difficulty (diversity), we first take advantage of the relation-
ship between video frames. The larger the stride (in rea-
sonable range) between two frames, the pixels at the same
position of the two frames have larger diversity. It can be
seen that, the performance is gradually improved. Next, we
matching the pixels between the two frames by the features
generated by the global head to dig positives from differ-
ent parts of the object, instead of the same part. The per-
formance boosts once again. Finally, we add cycle-attention
head. The “one-to-all” contrastive scheme makes it possible
to generate pairs from different parts of different objects in
the same category (see Fig. 3), further increasing the dif-
ficulty and diversity. As expected, this setting achieves the
best performance (+ 2.6 mIoU in average).

Some key elements in CACL To avoid the information
leak caused by padding in convolutions layers, we design the
pixel shuffle trick. Tab. 1c shows it effectiveness. It is seen
that without pixel shuffle the performance of CACL is even
worse than the two-heads model. This is because the target
of the cycle-attention head can be solved with only the posi-
tion information, which invalidates the cycle-attention head
and also affects the learning of representations. Pixel shuffle
solves this problem successfully and visualization is shown
in Fig. 3. To solve this problem we also try to adopt padding
of “reflect” mode, but it does not solve the problem com-
pletely. This may be because the receptive field of the net-
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method train data mAcc mIoU
R50 + supervised ImageNet 43.8
R50 + SimCLR ImageNet 39.9
R50 + BYOL ImageNet 38.2
R50 + MoCo-v2 ImageNet 44.5
R50 + VINCE R2V2 26.7
R50 + FlowE BDD100K 45.6
R50 + DenseCL IN + Kinetics-400 51.6 45.3
R50 + PixPro IN + Kinetics-400 51.8 45.4
R50 + SetSim IN + Kinetics-400 52.6 46.3
R18 + MoCo-v2 Kinetics-400 40.0 33.2
R18 + 2 heads Kinetics-400 42.6 35.9
R18 + CACL Kinetics-400 45.7 38.2
R50 + MoCo-v2 IN + Kinetics-400 50.7 44.6
R50 + 2 heads IN + Kinetics-400 53.7 46.1
R50 + CACL IN + Kinetics-400 57.4 49.1

Table 2: Linear protocol results on Cityscapes. “mACC”,
“IN”, and “2 heads” respectively denote mean accuracy, Im-
ageNet, and pixel head + global head.

work is larger than the input image, thus, the model can still
recognize the repeated part as the boundary. We also design
to use soft cycle trick for CACL, instead of only jumping
back to self. This trick provides models with more hierarchi-
cal optimization signals and this thought is also the key idea
of knowledge distillation (Hinton, Vinyals, and Dean 2015).
Results show that it considerably improves performance.

Main Results
In this section, we compare our method with recent strong
baselines on Cityscapes and PASCAL-VOC datasets.

Linear Protocol Tab. 2 reports the performance on
Cityscapes. When adopting ResNet50 as the backbone, we
load the weights of MoCo-v2 pre-trained on ImageNet as the
initial weight and unsupervised train the proposed model on
the video dataset Kinetics-400. For a fair comparison, we
also train the baseline MoCo-v2 under this setting and it
can be seen that the introduction of Kinetics dataset is not
a significant factor affecting the performance. In the first
place, the contrastive learning frameworks are competitive
with the supervised method on semantic segmentation under
the linear protocol. Compared to the DenseCL (Wang et al.
2021a), PixPro (Xie et al. 2021), and SetSim (Wang et al.
2021b), models similarly with a global and a pixel head, our
two heads setting achieves competitive results with much
simpler design, mainly due to the global-local interaction
through the affine matrix A. Compared with the image-level
contrastive models, our CACL improves the performance
by 4.5 mIoU and 6.7 mAcc. As an end-to-end method, our
CACL outperforms the two-stage model FlowE (Xiong et al.
2021) that adopts off-the-shelf optical flow results.

Tab. 3 reports the performance on PASCAL-VOC. The
training setting is the same as the Cityscapes mentioned
above. We can see that compared to other unsupervised
learning methods, contrastive learning frameworks gener-
ate better representation and achieve much higher perfor-
mances. But the image-level models are still not competi-
tive with the supervised method. Our CACL achieves the

method train data mIoU
Co-Occurence (Isola et al. 2015) VOC 13.5
CMP (Zhan et al. 2019) YouTube 16.5
Colorization (Zhang, Isola, and Efros 2016) ImageNet 25.5
IIC (Ji, Henriques, and Vedaldi 2019) coco-stuff 28.0
Feature Clustering VOC 35.2
Instance Discrimination (Wu et al. 2018) ImageNet 26.8
R50 + SimCLR (Chen et al. 2020a) ImageNet 46.3
R50 + MoCo-v2 (Chen et al. 2020b) ImageNet 48.2
R50 + InfoMin (Tian et al. 2020) ImageNet 48.0
R50 + Supervised ImageNet 50.3
R50 + MoCo-v2 (Chen et al. 2020b) IN + K400 48.1
R50 + CACL IN + K400 52.6

Table 3: Linear protocol results on PASCAL-VOC.
“mACC”, “IN”, and “2 heads” respectively denote mean ac-
curacy, ImageNet, and pixel head + global head.

1% 5% 10% 100%
MoCo-v2 24.8 35.0 42.0 62.6
2 heads 31.4 (+6.6) 37.5 (+2.5) 45.6 (+3.6) 63.3 (+0.7)
CACL 34.3 (+9.5) 43.1 (+8.1) 47.8 (+5.8) 64.5 (+1.9)

Table 4: Results (mIoU) with limited samples on Cityscapes.
“2 heads” means pixel head + global head. Models are
trained on Kinetics. In this group of experiments, we adopt
ResNet18 as the backbone.

state-of-the-art results, 4.5 mIoU higher than the baseline,
and also outperforms the supervised method, revealing the
effectiveness of the cycle-attention.

Limited sample supervision Besides the linear protocol,
we also adopt the limited sample supervision protocol to
verify the proposed method. This experiment can reveal the
transferability of the learned representation to downstream
tasks with a small number of data. We randomly sample
a subset of the target dataset and end-to-end fine-tune the
model pre-trained by unsupervised methods. The results are
shown in Tab. 4. We pre-train the models on Kinetics and
report the performance fine-tuned under 1%, 5%, and 10%
training samples of Cityscapes. Results show that CACL
outperforms the strong baseline and the performance gap be-
comes larger when the number of samples goes smaller.

Conclusion
In this paper, we first analyze some key points to design a
pixel-level contrastive framework for dense tasks, based on
which we propose the Cycle-Attention Contrastive Learn-
ing (CACL) method, an end-to-end model for completely
unsupervised semantic segmentation. CACL introduces the
cycle consistency into the contrastive framework which is
able to dig difficult positive pairs in an implicit manner
and better balance the local and global features. Experi-
mental results show that the proposed CACL model consid-
erably outperforms the strong baselines on PASCAL-VOC
and Cityscapes datasets by 4.5 mIoU. We hope CACL can
provide new insight for community to build unsupervised
contrastive-learning-based semantic segmentation models.
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