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Abstract

InstaHide is a state-of-the-art mechanism for protecting pri-
vate training images, by mixing multiple private images and
modifying them such that their visual features are indistin-
guishable to the naked eye. In recent work, however, Carlini et
al. show that it is possible to reconstruct private images from
the encrypted dataset generated by InstaHide. Nevertheless,
we demonstrate that Carlini et al.’s attack can be easily de-
feated by incorporating data augmentation into InstaHide. This
leads to a natural question: is InstaHide with data augmenta-
tion secure? In this paper, we provide a negative answer to this
question, by devising an attack for recovering private images
from the outputs of InstaHide even when data augmentation
is present. The basic idea is to use a comparative network
to identify encrypted images that are likely to correspond to
the same private image, and then employ a fusion-denoising
network for restoring the private image from the encrypted
ones, taking into account the effects of data augmentation.
Extensive experiments demonstrate the effectiveness of the
proposed attack in comparison to Carlini et al.’s attack.

Introduction
Collaborative learning (Yang et al. 2019; Li et al. 2020; Wu
et al. 2020) is an increasingly popular learning paradigm
as it enables multiple data providers to jointly train models
without disclosing their private data. However, recent studies
on model inversion attacks (Fredrikson, Jha, and Ristenpart
2015; Hitaj, Ateniese, and Perez-Cruz 2017; Zhu and Han
2020; Luo et al. 2021) demonstrate that the training data
can be precisely recovered based on the gradients or model
parameters shared during collaborative learning. This leads
to concerns on the security of existing collaborative learning
methods (Huang et al. 2020; Kairouz et al. 2019). To mitigate
the above concerns, (Huang et al. 2020) propose a practical
scheme, InstaHide, which generates the training datasets by
mixing multiple private images into one image (Zhang et al.
2017). The training images produced by InstaHide are called
encryptions in (Huang et al. 2020). Intuitively, InstaHide
aims to corrupt the visual features of the private images (as
shown in Fig. 1) such that the encrypted training images fed
into the models are hardly distinguishable by the naked eye,

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

thus eliminating the threats caused by inversion attacks (Hitaj,
Ateniese, and Perez-Cruz 2017; Zhu and Han 2020).

Recently, however, (Carlini et al. 2020) propose an attack
that can approximately recover the private images encrypted
by InstaHide. The main idea of (Carlini et al. 2020) is to
first cluster the encrypted images based on a similarity met-
ric, and then restore one private image from one cluster of
encryptions by factoring out the useless components. Al-
though this attack works well against the InstaHide Challenge
dataset (ins 2020a), there are three main limitations. First,
(Carlini et al. 2020) is specially designed for the InstaHide
Challenge, where each private image is directly mixed into
T = 50 encryptions. But in applications that T is set to a
small number (e.g., 10), the performance of (Carlini et al.
2020) is greatly degraded (as pointed out by one author of
InstaHide (Arora 2020)). Second, the private images could
be pre-processed by data augmentation before mixing with
other images (this case is included in the source code of
InstaHide (ins 2020b) instead of the challenge dataset (ins
2020a)), and (Carlini et al. 2020) can barely restore distin-
guishable images. Third, (Carlini et al. 2020) can not pre-
cisely restore the original color profiles of the private images,
which would degrade the visual features of the restored im-
ages and lead to indistinguishable results. In this paper, we
investigate a more restricted but more practical problem: how
to precisely restore the visual structures and color profiles of
a private image from a small number of encryptions gener-
ated by InstaHide with data augmentation?

To address this problem, the general idea is first to de-
termine a set of encryptions that contain the same private
image (called homogeneous encryptions), then restore the
private image based on these homogeneous encryptions. In
particular, we view the component produced by irrelevant
mixed images in an encryption as noise. Although the noise
pattern is hard to be mathematically formulated because of
the randomly nonlinear variations on the mixed pixels intro-
duced by InstaHide, it can be learned effectively by a deep
neural network. In this way, we can use a trained network
to remove the noise component and accurately restore the
color profiles and structures of the private image from a small
number (� 50) of encryptions.

Implementing such a neural network is not trivial. Without
careful design, the restored images could be meaningless,
as shown in (Huang et al. 2020). The main difficulty is that
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Figure 1: Examples generated by InstaHide with data aug-
mentation. mi: the original encryption; abs(mi): the image
after removing all pixel signs of mi; xi: the original private
image. ε is defined in the Preliminary section.

the private image could be randomly transformed by geo-
metrical data augmentation before being mixed into multiple
encryptions. Since the salient structures of the private image
are severely corrupted after being processed by InstaHide
(Fig. 1), the widely used image registration methods (Zitova
and Flusser 2003; Ma, Ma, and Li 2019) that rely on visual
features to geometrically align the structures of multiple im-
ages are hardly useful. Therefore, we have to design an image
registration method from scratch to align the salient struc-
tures. In addition, we need to handle the case that one image
is mixed� 50 times, in which the pixel-wise optimization
method used in (Carlini et al. 2020) can not work because
the information provided by the corresponding encoded pix-
els (� 50) that are derived from the same private pixel p is
not sufficient to recover p (as shown in Fig. 4a). We need
to consider a patch-wise restoration method in which the
neighboring information of p is used for its restoration.

To overcome these difficulties, we take the attack on In-
staHide with data augmentation as an image fusion-denoising
task whose inputs are not pre-registered and severely cor-
rupted, and design a registration-fusion-denoising pipeline to
handle this task. We first devise a network component called
image relaxing to automatically align the severely corrupted
private images. Image relaxing can also reduce the noises
caused by the structures of other irrelevant mixed images.
We further give an extensive analysis of the noise pattern
introduced by InstaHide, which inspires us that the corrup-
tion levels of the private image can be reflected by the pixel
variance. Accordingly, we propose a re-weighting method
based on the image variance to pre-process the encryptions
before feeding them into the neural network. Following these
insights, we then design a novel Fusion-Denoising Network
(FDN) to fuse several homogeneous encryptions into a single
encryption and denoise this encryption to recover the private
image. To our knowledge, this is the first work that utilizes a
registration-fusion-denoising pipeline to solve the image re-
construction tasks based on the inputs with not pre-registered
and severely corrupted visual features. We conduct exten-
sive experiments to evaluate the generalization and attack
performance of FDN. The results demonstrate the superior
performance of the proposed scheme to (Carlini et al. 2020).

Related Work
Image fusion is used to integrate the complementary features
of multiple images into one informative image (Zhang et al.
2020a). Before a fusion, the images capturing the same scene
but in different perspectives should be geometrically aligned,
which is known as image registration. The traditional regis-

tration studies (Ma, Ma, and Li 2019), which mainly focus on
extracting and aligning salient structures, such as edges and
corners, are barely useful if the image structures are severely
corrupted. Most fusion studies (Ma, Ma, and Li 2019; Zhang,
Bai, and Wang 2017; Liu, Liu, and Wang 2015; Zhang et al.
2020a) assume that the images input to the fusion algorithms
are pre-registered, and few of them consider the impact of
image noise. Although a few studies consider joint image
fusion and denoising (Li et al. 2018; Liu, Xu, and Fang 2020;
Mei, Dong, and Huang 2019), they assume that the visual fea-
tures of the input images are pre-aligned and not corrupted by
the noise, which is not applicable for attacking the InstaHide
with data augmentation.

Mixup is proposed as a regularization method for neural
network training (Zhang et al. 2017). Since Mixup can ob-
fuscate the visual features of images, some recent studies
(Fu et al. 2019; Raynal, Achanta, and Humbert 2020; Zhang
and Luo 2021) employ it to pre-process the raw training data
for privacy-preserving. However, (Huang et al. 2020) demon-
strate that one private image could be simply restored by
averaging those mixup images containing it. Accordingly,
(Huang et al. 2020) propose InstaHide to enhance the se-
curity of Mixup. But (Carlini et al. 2020) devise an attack
that can restore distinguishable images from the InstaHide
Challenge dataset (ins 2020a) by minimizing the norm of the
noise component. Nevertheless, (Carlini et al. 2020) is specif-
ically designed for the challenge dataset, which is not general
and can be easily defeated by incorporating data augmenta-
tion into InstaHide. On the contrary, our registration-fusion-
denoising pipeline has better generalization and can be easily
extended to the related image restoration tasks without major
modifications.

Preliminary
InstaHide. Given two private images x1, x2 and their corre-
sponding one-hot labels y1, y2, InstaHide mixes x1 and x2
with k−2 public images to get a mixup image, and randomly
flips the pixel signs of this mixup image to obtain the final
encryption m, i.e.,

m = σ ◦ (λ1x1 + λ2x2 +
k∑
i=3

λiui), (1)

where λi (i ∈ {1, · · · , k}) is randomly sampled from [0, 1]

such that
∑k
i=1 λi = 1, and all the images are normalized

into [−1, 1] beforehand. σ is a one-time pad mask uniformly
sampled from {+1,−1}, and ◦ denotes the element-wise
multiplication. Accordingly, the label of m becomes ym =
λ1y1 + λ2y2. The mixup pair (m, ym) is used to train the
desired deep neural networks. Notice that the k − 2 public
images ui (i ∈ {3, · · · , k}), randomly sampled from a public
dataset (e.g., ImageNet (Deng et al. 2009)), are mainly used
to corrupt the visual features of x1 and x2, such that another
party who obtains m can not discern the original private
images. As the public images are useless to the downstream
classification tasks, we call the

∑k
i=3 λiui term in Eq. 1 the

noise component.
Carlini et al.’s Attack on InstaHide. Carlini et al. (Carlini
et al. 2020) propose an attack to restore the private images X

1900



contained in the InstaHide Challenge datasetM (ins 2020a).
The main idea is to first cluster the Challenge dataset, such
that the encryptions in the same cluster contain the informa-
tion of the same private image x ∈ X . After that, for each
cluster of encryptions, a gradient optimization method is em-
ployed to recover the private images by minimizing the `2
norm of the noise component corresponding to the public
images. Specifically, let a private image x be a d-dimensional
vector, A be a |X | × d private image matrix, B be a |M|× d
encryption matrix and C be a |M| × |X | coefficient matrix,
i.e., each row of A denotes a private image x, and each row
of B denotes an encryption image. Therefore, Eq. 1 can be
rewritten as σ ◦ (C ·A+ δ) = B, where δ denotes the noise
component. By preserving only the absolute pixel values,
the randomness of pixel signs caused by σ can be removed:
abs(C · A + δ) = abs(B). Note that it is difficult to di-
rectly solve A from this equation given abs(B) and C as
the unknown noise component δ can significantly change the
distribution of C ·A. Instead, (Carlini et al. 2020) proposes
to solve a modified minimization problem:

argmin
A′∈[−1,1]|X|×d

||δ||22 s.t. C · abs(A′) + δ = abs(B). (2)

However, there is a main defect in Eq. 2 that abs(C ·A) 6= C ·
abs(A), for example, abs

(
[0.5 0.3] · [−0.8 1]

ᵀ)
= 0.1

whereas [0.5 0.3] · abs
(
[−0.8 1]

ᵀ)
= 0.7. Consequently,

it will produce images with obvious color shifts, even leading
to indistinguishable images (Fig. 4).
InstaHide with Data Augmentation. Similar to Mix-
Match (Berthelot et al. 2019), let X = {x1, · · · , xN} be
a private image set, where N is the number of private im-
ages. Before employing InstaHide, we conduct data augmen-
tation on each image xi to generate a transformed dataset
X̂ = {x̂1, · · · , x̂N×K}. Specifically, we generateK−1 aug-
mentations for each image xi: x̂i,j = Augment(xi), j ∈
{1, · · · ,K − 1}. Meanwhile, we denote xi by x̂i,0. All
x̂i,j(i ∈ {1, · · · , N} ∧ j ∈ {0, · · · ,K − 1}) are flattened
into X̂ . After that, we shuffle X̂ to get Ŝ = {ŝ1, · · · , ŝN×K}
and apply InstaHide on X̂ and Ŝ to generate the encryption
datasetM = {m1, · · · ,mN×K} with

mi = InstaHide(x̂i, ŝi, ui,3, · · · , ui,k), ∀i ∈ {1, · · · , N ×K},
(3)

where {ui,3, · · · , ui,k} are k − 2 random public images,
and k is the mixup parameter in InstaHide. Accordingly,
the labels YM = {y1, · · · , yN×K} ofM can be obtained:
yi = λ1yx̂i + λ2yŝi , where yx̂i and yŝi denote the one-hot
labels of x̂i and ŝi; λ1 and λ2 are the corresponding ran-
dom coefficients. Consequently,M and YM are used as the
training dataset for classification tasks.

For data augmentation, we consider the geometric trans-
formations, e.g., random cropping, rotation, and translation,
instead of noise injection and color transformation. Specif-
ically, the former method is widely adopted in deep learn-
ing (Ooi et al. 2015; Shorten and Khoshgoftaar 2019) (also
included in the code of InstaHide (ins 2020b)), and it can
change the structures of images, bringing more difficulty to
the restoration work since we have to align the structures of

multiple transformed images before restoring the original one.
In contrast, the effects of the latter methods are trivial and
can be generally covered by the mixup noise introduced by
InstaHide. Note that the GAN-based augmentation methods,
which typically synthesize new images that are not included
in the original private dataset, can be regarded as an upstream
task of geometric transformations (Shorten and Khoshgoftaar
2019). To better investigate the impact of geometric transfor-
mations on the security of InstaHide, we formally define the
augmentation level ε based on the pixel displacement:

Definition 1 (ε-augmentation). Given an image x with size
W × H and its augmented version x̂. Assume a pixel px
in x has coordinate Cpx = (wpx , hpx); and a pixel px̂
in x̂ has coordinate Cpx̂ = (wpx̂ , hpx̂). Then x̂ is an ε-
augmentation of x if for any possible pixel pairs (px̂, px) that
px̂ is transformed from px, wpx̂ ∈ [wpx − ε

2W,wpx +
ε
2W ]

and hpx̂ ∈ [hpx − ε
2H,hpx +

ε
2H] hold.

Fig. 1 shows an example of images with different data
augmentation levels. Generally, the higher an ε is, the larger
degree an image will be transformed with. For example, ε =
0.5 corresponds to shifting x left for W/4, or cropping x to
3W/4× 3H/4.

The Proposed Attack on InstaHide with Data
Augmentation

We consider a threat model in which the attacker aims to
restore the data owner’s private images X based on the pub-
lished encryptionsM and labels YM. We assume that the
(M,YM) is accessible to the attacker since (Huang et al.
2020) claims that a data owner can directly send these data to
another party for training desired models. Based onM and
YM, our attack consists of three steps (Fig. 2). In the abso-
lute pre-processing step, we remove the mask σ (see Eq. 1)
by conducting abs(mi), ∀mi ∈ M. σ renders the signs of
mixup pixels to useless noise, yet failing to change the ab-
solute pixel values. These absolute values can be utilized by
the restoring algorithms. In the encryptions clustering step,
we find a candidate set of encryptions M fromM containing
the information of the same private image xi. In the image
restoring step, we use a fusion-denoising network (FDN) to
restore xi from the homogeneous encryption set M .

Pixel-Level Noise Pattern
InstaHide is a pixel-wise mixup scheme: the pixels located
in the same position of different images are linearly com-
bined into a mixup pixel, and the sign of this mixup pixel
is randomly flipped. Formally, a pixel pmi,l of an encrypted
imagemi,l is computed by: pmi,l = σ◦(λ1px̂i+λ2pŝi+pδ),
where px̂i and pŝi are pixels from private images x̂i and ŝi.
Without loss of generality, we assume x̂i as the target image
that are commonly shared among a homogeneous encryption
set, and the other image ŝi as another source of noise. After
conducting abs(mi,l), the above equation can be rewritten
as: abs(pmi,l) = abs(λ1p

x̂i + pδ). Now the task becomes
given pmi,l and λ1 (can be inferred from the one-hot labels),
the adversary aims to restore the value of px̂i . This task is
difficult if given only one encryption because pδ and the
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Figure 2: Overview of the proposed attack.

sign of (λ1px̂i + pδ) are both unknown. We assume that the
noise component pδ follows a type of isotropic Gaussian
distribution, which is reasonable since pδ is initially a linear
combination of k − 1 images. Consequently, based on multi-
ple abs(pmi,l) derived from a same px̂i , we can first roughly
infer the signs of the corresponding (λ1p

x̂i + pδ) by a neural
network and then factor out the noise pδ by averaging these
abs(pmi,l) for restoring the original px̂i .

The problem is how to find those abs(pmi,l) derived from
a same px̂i . This is rather challenging in InstaHide with
data augmentation, because the locations of corresponding
abs(pmi,l) are mostly different from the original location of
px̂i after geometric transformations, and the visual features
of the encryptions are barely useful for determining these
transformations. We observe that the neighboring pixels in an
image patch typically change smoothly, i.e., their values are
roughly the same, which means that the neighboring pixels of
x̂i can be used to align and recover x̂i. We therefore design an
image-relaxing structure in the fusion phase to automatically
diffuse the information of neighboring pixels into overlapping
patches (information alignment), then use a window-based
loss function in the denoising phase to patch-wisely restore
the original image.

Clustering Mixup Images
To restore a private image xi, we need to find a possible en-
cryption setM = {mi,l, l ∈ {0, · · · , a}} containing xi or its
transformed versions x̂i,j where j ∈ {1, · · · ,K − 1}. In this
phase, we follow the clustering step in (Carlini et al. 2020),
i.e., splitting the encryptionsM into multiple clusters such
that the encryptions in each cluster contain the information
of the same image. Note that the idea, i.e., first clustering
the encryptions then recovering the corresponding private
images, is inescapable for attacking InstaHide, because it is
impossible to recover the original private image from only a
single encryption given the random and severe corruptness
(Huang et al. 2020; Carlini et al. 2020).

(Carlini et al. 2020) uses a ResNet-28 to compute the sim-
ilarity score for each pair of encryptions, which performs
poorly in InstaHide with data augmentation. Because the pe-
riphery pixels produced by data augmentation are mostly use-
less for similarity comparison (Fig. 1), yet severely degrading
the comparison performance of ResNet-28 since it tries to
remember all the peripheral patterns of training data. There-
fore, we design a new comparative network for computing the

similarity scores (Fig. 5). Specifically, the multi-resolution in-
formation, which has been demonstrated beneficial in image
comparison tasks (Zagoruyko and Komodakis 2015), is used
to help the network pay more attention to the central pixels
than the periphery pixels. For a 32× 32 image, we generate
two 16× 16 images with different resolutions: the first image
is generated by cropping the central part of the original im-
age (high resolution), and the second image is generated by
downsampling at half the original image (low resolution). For
each pair of encryptions, we first generate a high-resolution
pair and a low-resolution pair, then feed them into residual
blocks (He et al. 2016). The results are concatenated and fed
into a dense layer for computing the final similarity score.
As a result, in our experiments, the testing accuracy of the
proposed network can reach 92% under ε = 0.2, whereas the
accuracy of the original ResNet-28 reaches up to 71%.
Additional Filtering. After clustering, we obtain |X | clus-
ters and each cluster consists of |M | homogeneous encryp-
tions, where M = {mi,l, l ∈ {0, · · · , a}}. In the experi-
ments, we find that the encryptions with a large ε (e.g., ro-
tated for 90 degrees), contribute little to or even degrade the
restoration performance. This is because the structures of
private images in these encryptions are difficult to be aligned
with structures of other private images. Thus, we propose an
additional filtering step to retain the neighboring encryptions
in M such that the ε difference between any two neighboring
encryptions is less than a threshold tε with a high probability.
Specifically, we train a filtering model based on an encryp-
tion dataset, where the encryption pairs with ε difference less
than tε are labeled with 1, and otherwise are labeled with −1.
For each cluster M , we first use this filtering model to find
all neighboring encryptions for each mi,l ∈ M , then only
keep the encryption m with most neighbors (together with
its neighbors) in M . As a result, we can guarantee that the
ε difference of any two encryptions in M is less than 2tε as
each encryption differs from m by at most tε. We conduct
experiments with different tε and find the filter with tε = 0.2
achieves a good trade-off between more homogeneous en-
cryptions and less transformation after filtering M .

Restoring Private Images
After obtaining a homogeneous encryption set M , we first
use a re-weighting method to pre-process each encryption
mi,l ∈ M , then feed them into a fusion-denoising network
to recover the target x̂i.
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Re-weighting. Notice that the coefficients λ1 of x̂i are dif-
ferent in different encryptions. The randomness of λ1 may
restrain the network from learning the correct pixel values of
x̂i. To reduce the uncertainty introduced by λ1, we rescale
all encryptions by 1/λ1, i.e., for the pixels pmi,l of mi,l, we
compute abs(pmi,l/λ1) = abs(px̂i + (pδ/λ1)). Note that
after rescaling, the corruptness levels of x̂i are different in
different encryptions. For example, when λ1 = 0.4 or 0.25,
the noise pδ will be enlarged by a factor of 2.5 or 4, respec-
tively. We further observe that the noise level pδ/λ1 can be
reflected by the variance of an encryption: assume px̂i and pδ

are independent, then Var(px̂i + pδ

λ1
) = Var(px̂i) + Var(pδ)

λ2
1

,
which indicates that the larger λ1 is, the smaller the vari-
ance of the encryption will be. Based on this observation,
we further re-weight the encryptions based on their vari-
ances. Specifically, we compute the variances Var(mi,l)
for each mi,l ∈ M , then re-weight mi,l by a factor of
β =

min(V ar(mi,0),··· ,V ar(mi,a))
V ar(mi,l)

. The factor β can ensure
that the pixels of the encryption with the smallest variance
(i.e., with the least corruptions) stay the same, while those
with a larger variance are reduced since they contain more
noise and provide less information of x̂i. The effects of this
re-weighting method are evaluated in the ablation study.
Image Fusion and Denoising. To accurately restore x̂i,
we need to utilize all the information provided by each
mi,l ∈M , i.e., fusing the information of these encryptions.
Recall that the x̂i contained in an encryption mi,l could be
either the original one or the transformed one. Before fusion,
we need to geometrically align these encryptions based on
their respective target images (Ma, Ma, and Li 2019). The
traditional methods (Rublee et al. 2011; Ma, Ma, and Li 2019;
Lowe 2004) are hardly useful since they rely on the visual
features which are severely corrupted in this case (Fig. 1). In-
spired by (Dosovitskiy and Brox 2016), we design an efficient
network component, called image relaxing, to automatically
align the information of target images. Suppose the size of
an encryption is W ×H × 3. Before fusing the encryptions,
we feed them into a convolutional layer with a stride of 2,
resulting in a feature map with size dW/2e × dH/2e × c
(downsampling, c is the number of filters). After that, we up-
sample this feature map to the full image size W ×H × c by
a transposed convolutional layer with a stride of 2. The down-
sampling step can produce translation-invariant features, and
the upsampling step can capture the high-level structures.

To help illustrate the effects of image relaxing, we first
extract the features of two transformed images via a trained
relaxing component and a 3× 3 convolutional kernel, then
simply fuse the corresponding features by averaging them
(Fig. 3a). We observe that the features extracted by normal
convolutions preserve more details, e.g., edges and corners,
but the object structures are corrupted in the fused features be-
cause they are not properly aligned. In the features extracted
by image relaxing, some details are lost, but the original struc-
tures experience less corruption after the fusion. Specifically,
by downsampling and upsampling, image relaxing can trans-
mit the information of a single pixel in the original image
into a patch of neighboring pixels in the feature maps, which
makes the information alignment easier, i.e., from point-wise

alignment to patch-wise alignment. In addition, one encryp-
tion typically contains some structures irrelevant to the target
private image. Image relaxing can lessen the impact of these
irrelevant structures by downsampling, whereas normal con-
volutions preserve these structures and cause many artifacts
on the fused images.

After extracting target features from multiple encryptions,
we need to fuse these features based on a fusion rule. The two
widely used rules are choose-max and average (Ma, Ma, and
Li 2019). In the experiments, we find that the choose-max
rule performs better when |M | ≤ 10; while the average rule
achieves better results when |M | > 10. The reason is that the
average rule could hardly factor out the noise pδ based on a
limited number (e.g., less than 10) of encryptions, if some
outliers, i.e., severely corrupted encryptions with large pδ,
exist. While the choose-max rule mainly focuses on restor-
ing the least corrupted x̂i contained in the encryptions with
larger pixel values (not reduced in the re-weighting phase),
mitigating the impact of outliers. Since the possible num-
ber |M | of homogeneous encryptions input to FDN could
not be determined beforehand, we design a multiple-channel
fusion architecture (Fig. 6) to accept a variable number of
encryptions as the input (all branches share the same set of
parameters). After fusing multiple encryptions, we use a de-
noising network to restore the original private image. Among
multiple denoising networks (such as (Mao, Shen, and Yang
2016; Zhang et al. 2020b, 2019)), we find RNAN (Zhang
et al. 2019) performs best in this task since it can capture the
long-range dependencies between channels and pixels in the
whole image, which is important for FDN to learn the overall
noise distribution and restore private images with accurate
color profiles.
Loss Function. The mean structural similarity index
(MSSIM) (Wang et al. 2004) performs far better than `1 or `2
loss in our task, since MSSIM compares the local difference
between two images over a sliding window, which facilitates
the network to neglect the overall structure distortion caused
by other mixed images and concentrate on restoring local
structures; whereas the other two losses tend to average all
possible color modes and restore blurry images. Since the
`1 loss can facilitate the recovery of pixel intensities (Zhao
et al. 2016), we compute the network loss by combining the
`1 loss and MSSIM:

L = λMSSIMLMSSIM + (1− λMSSIM)L`1 . (4)

Experiments
Setup. We use CIFAR10 (Krizhevsky and Hinton 2009), CI-
FAR100 (Krizhevsky and Hinton 2009), STL10 (Coates, Ng,
and Lee 2011) and CelebFaces (CELEBA) (Liu et al. 2015)
as the training and testing datasets. The λMSSIM in Eq. 4
is empirically set to 0.7. The InstaHide parameterized with
k = 6 is employed unless otherwise specified. We compare
our scheme with two baselines: the Carlini et al.’s original
attack (CA) (Carlini et al. 2020), and a modified CA with
the ResNet-28 used in the clustering phase replaced by our
comparative network (CA-CN). Besides, the MSSIM with
window size 8 (SSIM for short) is used to measure the similar-
ity between the restored images and the ground truth images.
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Note that the `1 and `2 (MSE) losses are not appropriate
for the similarity evaluation in this paper, because they are
pixel-wise metrics and a slight geometric transformation in
the restored images could greatly change the results of them.
More setting details are reported in the arXiv version.

Generalization
There are three hyper-parameters in FDN: the private image
set X used for generating the training dataset of FDN, the
number |M | of homogeneous encryptions in each cluster (i.e.,
the number of inputs to FDN), and the data augmentation
level ε. We now demonstrate the generalization of FDN with
respect to the three hyper-parameters. Specifically, we investi-
gate: given a set of encryptionsMp which is generated from
a private dataset (Xp) with an unknown level of augmentation
(εp) and an unknown number of homogeneous encryptions
derived from a same private image (|Mp|), whether the adver-
sary can restore Xp via an FDN trained on another encryption
setMt generated from different Xt, |Mt|, and εt.
Generalization w.r.t. different datasets Xp. We fix |Mp| =
|Mt| = 10, εp = εt = 0.1, and generate two encryption
datasetsMp andMt based on two private datasets Xp and
Xt. We first train an FDN based onMt and then use it to
restore the Xp fromMp. From Fig. 3b, we observe that the
FDN trained on CIFAR10 achieves the best restoration per-
formance among the first three testing datasets, while the
FDN trained on CELEBA performs worst. Because the im-
age patterns in CIFAR10 are generally the most complicated
among these datasets, which can help the network learn to
restore images with complicated distributions; whereas the
image patterns of CELEBA (human faces) are more simple
and predictable, making the networks trained on it perform
worse on restoring more complicated images. Note that when
testing on the same dataset, the performance of the FDNs
trained on different datasets remains roughly the same (suf-
fering at most 6% degradation), demonstrating FDN’s good
generalization ability with respect to different datasets.
Generalization w.r.t. different data augmentation levels
εp. We fix |Mp| = |Mt| = 10 and Xp = Xt = CIFAR100
(80% for Xp and 20% for Xt; this setting is used when
Xp = Xt), then train and test an FDN based on two en-
cryption datasets generated with two different augmentation
levels εt and εp. From Fig. 3c, we see that with the increase
of εp, the performance of FDN degrades. Because a larger εp
represents a larger transformation to a private image, indicat-
ing that the structures of the private images contained in input

encryptions are harder to be registered. Note that the FDN
trained on εt = 0.1 achieves better performance than other
models. The reason is that when trained on a dataset with
smaller transformations, the FDN learns to restore more im-
age details instead of focusing on registering image structures.
Nevertheless, when tested on a specific εp, different FDNs
perform similarly, demonstrating the good generalization of
FDN under different augmentation levels.
Generalization w.r.t. different number of inputs |Mp|. We
first fix Xp = Xt = CIFAR100 and εp = εt = 0.2, then train
and test an FDN under different |Mp| and |Mt|. From Fig. 3d,
we see that with the increase of |Mp|, the testing performance
of FDNs trained on |Mt| = 30 and 50 improves; while the
performance of the FDN trained on |Mt| = 10 slightly de-
grades. This is because we use the choose-max and average
rules to train FDNs with |Mt| ≤ 10 and |Mt| > 10, respec-
tively. The choose-max rule is more robust under severely
corrupted encryptions than the average rule, producing im-
ages with better quality when |M | ≤ 10. While for |M | > 10,
the average rule can learn more details than the choose-max
rule. But when tested on the same |Mp|, the performances
of FDN trained on |Mt| = 30 or 50 are similar. This shows
the flexibility of FDN, i.e., the adversary can train an FDN
based on different |Mt| without worrying about the quality
degradation of restored images.

Comparison with Carlini et al.’s Attack
Different numbers of input mixups. In this set of experi-
ments, we fix εp = εt = 0.1, then train an FDN based on
Xt = CIFAR10 and |Mt| = 30, and test it under different
|Mp| (i.e., number of input encryptions to FDN). We show the
SSIM results in Tab. 1 and some restored images in Fig. 4a.
From Tab. 1, we see that the modified attack CA-CN per-
forms better than the original attack CA. The reason is that
the ResNet used in CA can produce plenty of false positive
images (i.e., not containing the target private image) in the
same cluster, which brings considerable noise to the input of
the restoration phase and renders the final images indistin-
guishable. Our comparative network in CA-CN can reduce
the false positive cases and transmit more useful information
to the restoration algorithm. In addition, with the increasing
of |Mp|, both FDN and CA can restore the private images
with increasing quality. This is expected since more input
encryptions can provide more details of the private images.
Also, FDN performs better than CA, which can be clearly
demonstrated by the examples in Fig. 4a. The substantial

1904



Dataset Attack Different |M | Different ε
10 20 30 40 50 0.1 0.2 0.3 0.4 0.5

CIFAR100
CA 0.3433 0.3776 0.3824 0.3951 0.4051 0.3917 0.3304 0.3150 0.2986 0.2781

CA-CN 0.4085 0.4580 0.4657 0.4827 0.4961 0.5062 0.4416 0.4041 0.3939 0.3552
FDN 0.5565 0.5936 0.6229 0.6327 0.6458 0.6618 0.6208 0.6009 0.5507 0.5487

CIFAR10
CA 0.3831 0.4165 0.4168 0.4203 0.4335 0.4167 0.3503 0.3259 0.3133 0.2877

CA-CN 0.4677 0.4941 0.5106 0.5206 0.5277 0.5073 0.4515 0.4219 0.4087 0.3674
FDN 0.5490 0.5844 0.6133 0.6289 0.6404 0.6384 0.6029 0.5795 0.5449 0.5320

STL10
CA 0.4098 0.4382 0.4430 0.4495 0.4530 0.4430 0.3561 0.3378 0.3161 0.2849

CA-CN 0.5057 0.5312 0.5449 0.5465 0.5636 0.5636 0.4902 0.4441 0.4303 0.3646
FDN 0.5130 0.5622 0.5923 0.6091 0.6307 0.6429 0.5872 0.5612 0.5111 0.4958

CELEBA
CA 0.3775 0.3872 0.3897 0.3980 0.4039 0.3981 0.3290 0.3111 0.2997 0.2793

CA-CN 0.4593 0.4843 0.4954 0.5018 0.5066 0.5132 0.4275 0.4069 0.3848 0.3404
FDN 0.6302 0.6613 0.6777 0.6895 0.7166 0.7166 0.7032 0.6832 0.6671 0.6264

Table 1: The performance comparison (SSIM) w.r.t. different numbers of inputs |M | and different ε-augmentation.

CIFAR100
 

STL10
 
 

 
 

CIFAR10
 
 

CELEBA

(a) Examples w.r.t. |M |

 
 

CIFAR100
 
 

STL10

CIFAR10 CELEBA

(b) Examples w.r.t. ε

Figure 4: The comparison of restored images w.r.t. (a) different |M | and (b) different ε. The first row shows results of CA; the
second row shows results of CA-CN; and the third row shows results of FDN. See the arXiv version for more examples.

difference between the images restored by FDN and images
restored by CA is in the color profile. FDN can precisely
restore the color profile and salient features, while CA loses
considerable details and generates color shift areas in the
restored images (as discussed in the preliminary section),
which is most obvious in CELEBA.

Different augmentation levels. We first fix |Mp| = 50 and
generate different testing encryption datasets from differ-
ent Xp with different εp, then attack these datasets via an
FDN trained on encryptions generated from Xt = CIFAR10,
|Mt| = 30 and εt = 0.1. Note that we use the filtering phase
to process each set of homogeneous encryptions before in-
putting them to FDN. Tab. 1 and Fig. 4b show the restoration
performance and some examples. From Tab. 1, we observe
that the performance of FDN degrades with the increasing
of εp. The main reason is that the filtering step reduces the
number of homogeneous encryptions input to FDN. Specif-
ically, the general numbers of encryptions input to FDN
after filtering are 25, 19 and 16 corresponding to εp = 0.3,
0.4, 0.5, respectively. Less number of encryptions contain
less information for the restoration of target images, causing
the performance degradation of FDN. Nevertheless, Fig. 4b
shows that FDN can restore far better colors and structures

than CA. Note that CA is a pixel-wise optimization method
which is developed to restore the private images without any
transformations. When recovering images pre-processed by
data augmentation, the corresponding pixels from different
encryptions could be unaligned, and are thus treated as noise
and factored out by CA, leading to considerable detail loss.

In addition, the results of attacking InstaHide Challenge,
the classification utility tests of InstaHide with different ε,
and the ablation studies are reported in the arXiv version.

Conclusion
In this paper, we design a fusion-denoising attack (FDN)
on the real-world variations of InstaHide. Although image
relaxing could cause some detail loss and reduce the sharp-
ness of the restored images, the experiments demonstrate that
FDN can precisely restore the color profiles and structures,
which issues an alert to the ML applications that seek to use
a revised version of InstaHide to protect the private images.
Nevertheless, the motivation of InstaHide, i.e., corrupting
the visual features of private images, is promising in future
studies. We believe more secure methods that incorporate
data encryption into machine learning will play an important
role in both the security community and AI systems.
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