
Task-Customized Self-Supervised Pre-training with Scalable Dynamic Routing

Zhili Liu1,2, Jianhua Han2, Lanqing Hong2, Hang Xu2, Kai Chen1, Chunjing Xu2, Zhenguo Li2

1 Department of Computer Science and Engineering,
Hong Kong University of Science and Technology

2 Huawei Noah’s Ark Lab
{zhili.liu, kai.chen}@connect.ust.hk, {hanjianhua4, honglanqing, xu.hang, xuchunjing, li.zhenguo}@huawei.com

Abstract
Self-supervised learning (SSL), especially contrastive meth-
ods, has raised attraction recently as it learns effective transfer-
able representations without semantic annotations. A common
practice for self-supervised pre-training is to use as much
data as possible. For a specific downstream task, however,
involving irrelevant data in pre-training may degenerate the
downstream performance, observed from our extensive ex-
periments. On the other hand, for existing SSL methods, it
is burdensome and infeasible to use different downstream-
task-customized datasets in pre-training for different tasks. To
address this issue, we propose a novel SSL paradigm called
Scalable Dynamic Routing (SDR), which can be trained once
and deployed efficiently to different downstream tasks with
task-customized pre-trained models. Specifically, we construct
the SDRnet with various sub-nets and train each sub-net with
only one subset of the data by data-aware progressive train-
ing. When a downstream task arrives, we route among all the
pre-trained sub-nets to get the best along with its correspond-
ing weights. Experiment results show that our SDR can train
256 sub-nets on ImageNet simultaneously, which provides
better transfer performance than a unified model trained on
the full ImageNet, achieving state-of-the-art (SOTA) averaged
accuracy over 11 downstream classification tasks and AP on
PASCAL VOC detection task.

1 Introduction
Self-supervised learning (SSL) has attracted lots of attention
recently (Caron et al. 2020; He et al. 2020; Grill et al. 2020),
which learns representations via pretext tasks without seman-
tic annotations. Recent works in SSL (Xu et al. 2020; Chen
et al. 2021) show competitive or even better performance on
various downstream tasks compared with supervised learning.
Without the need of annotation, SSL makes it possible to use
a large amount of unlabeled data (e.g., YFCC100M (Tian,
Henaff, and Oord 2021), Instagram (Goyal et al. 2021) and
SODA10M (Han et al. 2021a)) in model pre-training. How-
ever, will more data in self-supervised pre-training always
lead to better transfer performance? In other words, for a
specific downstream task, will irrelevant data in pre-training
hurt the downstream performance instead?

To answer the above questions, we first conduct a prelim-
inary experiment in Sec. 3 to evaluate the transfer perfor-

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

mance of SSL models pre-trained on datasets with different
semantics. We deliberately split the ImageNet into two dis-
joint subsets, namely Subset-A and Subset-B, based on their
semantic dissimilarity in WordNet Tree (Miller 1998). We
pre-train models with Subset-A, Subset-B and the full Ima-
geNet separately using SimSiam (Chen and He 2021) without
data annotations and evaluate the transfer performance on
11 downstream classification datasets. The training epochs
for the three models are the same. As shown in Fig. 1(b),
the model pre-trained on Subset-A shows the best transfer
performance on Aircraft, Cars and SUN397, while the model
pre-trained on Subset-B performs the best on Flowers, Pets,
and Food. Only five out of eleven downstream tasks benefit
more from the full ImageNet. The results indicate that in-
volving irrelevant data in pre-training might instead hurt the
downstream performance. This phenomenon is identified as
the negative transfer in self-supervised pre-training. Similar
observations have also been discussed in (Cole et al. 2021)
and (Tian, Henaff, and Oord 2021). (Cole et al. 2021) further
investigate the importance of using semantic-similar data in
model pre-training for better transfer performance.

Prevailing SSL methods, such as MoCo-v2 (Chen et al.
2020c) and SimSiam (Chen and He 2021), usually neglect
the influence of negative transfer and provide a common
pre-trained model for different downstream tasks. A naive
extension to eliminate the effects of negative transfer is to pre-
train models with task-customized datasets. However, such an
extension is actually impractical considering the burdensome
computational cost of pre-training. (Tian, Henaff, and Oord
2021) simply splits a large-scale dataset (i.e., YFCC100M)
into different subsets for customized model pre-training,
which is not scalable for a large number of downstream tasks.
It is desirable to develop an efficient SSL paradigm that pro-
vides task-customized pre-training models.

In this work, we propose a novel SSL paradigm called Scal-
able Dynamic Routing (SDR), which achieves dynamic pre-
training and efficient deployment for different downstream
tasks. Specifically, we construct the SDRnet with various sub-
nets and train each sub-net with different subsets of the data,
which contain different semantic clusters. We further propose
a data-aware progressive training framework to stabilize the
pre-training procedure of sub-nets and avoid collapse. When
a downstream task arrives, we route among all sub-nets to
obtain the best pre-trained model along with its weights. By

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

1854



Subset-A:

Subset-B:

(a) Samples from Subset-A/B
Aircraft Cars SUN397 Flowers Food Pets Caltech-101 CIFAR10 CIFAR100 DTD VOC07

35

45

55

65

75

85

95

Tr
an

sf
er

 A
cc

ur
ac

y(
%

)

Subset-A
Subset-B
IN

(b) Performance of models pre-trained on different datasets

Figure 1: Transfer performance for models pre-trained on ImageNet Subset-A, ImagNet Subset-B and the full ImageNet on
different downstream datasets. (a) Subset-A is occupied by inanimate objects mostly, while Subset-B mainly contains organisms;
(b) The model pre-trained on the full ImageNet only has the best performance on five out of the eleven tasks.

using SDR, we are able to pre-train a series of sub-nets simul-
taneously for the efficient deployment of various downstream
tasks. To summarize, our main contributions are:

• With extensive experiments, we identify the negative trans-
fer phenomenon in SSL that pre-training with irrelevant
data might degenerate the transfer performance in specific
downstream tasks.

• We propose Scalable Dynamic Routing (SDR), a novel
SSL paradigm that can alleviate the effects of nega-
tive transfer by providing efficient and scalable task-
customized self-supervised pre-training models.

• We successfully train 256 sub-nets simultaneously on Im-
ageNet and achieve the state-of-the-art averaged accuracy
among 11 downstream classification datasets and AP on
PASCAL VOC detection task.

2 Related work
Self-supervised learning, especially contrastive learning,
learns representations without data annotation by “learning to
compare” through a Noise Contrastive Estimation (NCE) (He
et al. 2020) objective. Recently, instance-instance contrastive
learning (Wu et al. 2018; He et al. 2020; Chen et al. 2020a)
becomes prevailing, which directly studies the relationships
between representations of different samples. BYOL (Grill
et al. 2020) and SimSiam (Chen and He 2021) further claims
meaningful representations can be learned without (i) neg-
ative sample pairs, (ii) large batches, and (iii) momentum
encoders. Besides, clustering-based methods, including PCL-
v1, PCL-v2 (Li et al. 2021), and SwAV (Caron et al. 2020),
leverage clustering to yield pseudo labels for learning repre-
sentations. However, existing SSL methods usually offer a
unified pre-trained model which may not be applicable for
various downstream tasks when negative transfer occurs, as
shown in Sec. 3. It is impractical to pre-train different SSL
models for different tasks due to the burdensome compu-
tational cost, thus is desirable to develop an efficient and
scalable task-customized SSL paradigm.
Dynamic neural network is an emerging topic (Han et al.
2021b). Unlike static networks with fixed computational
graphs and weights during inference, dynamic networks can
adapt their structures or parameters to different scenarios,
leading to advantages in terms of efficiency, adaptiveness,

and performance. Based on the dynamic nature, they can be
categorized into instance-wise (Li et al. 2017; Figurnov et al.
2017), spatial-wise (Cao et al. 2019; Wang et al. 2019) and
temporal-wise networks (Campos et al. 2017; Hansen et al.
2019; Tao et al. 2019). In order to allow the adaptiveness
of our pre-trained backbone to different tasks and datasets,
we need to explore task-wise/dataset-wise dynamic networks.
Compared with instance-wise dynamic networks (Odena,
Lawson, and Olah 2017; Liu and Deng 2018), our method fo-
cuses on selecting the best candidate model for a downstream
task/dataset and fixes the network structure during inference.
Multi-task Learning (MTL) aims at learning a model that
can perform well on several downstream tasks, which are usu-
ally pre-defined during training, while SDR can not foresee
any downstream tasks when pre-training. (McDermott et al.
2021), (Liu et al. 2019) and (Hu et al. 2019) show that the
model using a shared backbone for all tasks and multi-heads
for different specific tasks, namely hard-parameter sharing, is
useful on time-series data, language and graph data separately.
(Gao et al. 2021) shows that network design can better benefit
the task relationship, while (Gao et al. 2021) trains a mask
along with the model parameters, so each task has its own
mask. SDR is designed differently by super-sub-net structure,
neither requiring multi-heads nor masks, making SDR more
parameter-efficient. Furthermore, SDR is also scalable for
training 256 sub-tasks simultaneously, which is significantly
larger than most MTL methods.

3 Preliminary on Negative Transfer
In this section, we conduct a preliminary experiment to
evaluate the transfer performance of models pre-trained on
datasets with different semantic annotations. Following (Huh,
Agrawal, and Efros 2016), we split the ImageNet into two
disjoint subsets, namely Subset-A and Subset-B, based on
their semantic dissimilarity in WordNet Tree (Miller 1998),
which can be achieved by searching the WordNet hierarchy
to avoid two splits having the same ancestor at depth four.

In this case, classes in Subset-A are sufficiently disjoint
from Subset-B. Specifically, images in Subset-A are primarily
inanimate objects, such as cars and airplanes, while Subset-B
mainly contains organisms, such as plants and animals. See
Fig. 1(a) as an illustration.

Then, we pre-train with Subset-A, Subset-B and the full

1855



ImageNet separately using SimSiam (Chen and He 2021)
without data annotations, and evaluate the transfer perfor-
mance on 11 downstream classification datasets via the many-
shot classification protocol following (Ericsson, Gouk, and
Hospedales 2021). See more experimental details and hyper-
parameters in Appendix A.

The results are summarized in Fig. 1(b). As can be seen, the
model pre-trained on Subset-A shows the best performance
on Aircraft, Cars and SUN397. Specifically, for SUN397,
the model with Subset-A results in a 7.83% improvement on
classification accuracy compared with the model pre-trained
on the full ImageNet. On the other hand, the model pre-
trained on Subset-B performs the best on Flowers, Pets, and
Food. These results are consistent with the observations that
Subset-A is mostly inanimate objects, while Subset-B mainly
contains organisms. Only five out of the eleven downstream
tasks benefit from the full ImageNet, suggesting that more
data in pre-training is not always better. Involving semantic-
irrelevant data in pre-training might hurt the downstream-task
performance. The observation of negative transfer in self-
supervised pre-training motivates us to develop an efficient
but scalable task-customized SSL paradigm.

4 Method
In this section, we start by a brief introduction of the Sim-
Siam (Chen et al. 2020a), our simple yet effective SSL base-
line, in Sec. 4.1. Then we introduce the proposed Scalable
Dynamic Routing (SDR) paradigm for the simultaneous pre-
training of a series of sub-nets in Sec. 4.2. Finally, we discuss
the efficient deployment of these sub-nets to different down-
stream tasks in Sec. 4.3.

4.1 Overview of SimSiam
SimSiam (Chen et al. 2020a) takes two randomly augmented
views x1 and x2 from an image x as inputs. The two views
are processed by an encoder fθ, which contains a backbone
and a projection MLP head. The encoder fθ shares weights
between x1 and x2. Furthermore, a prediction MLP head hθ

transforms the output of one view and matches it with the
other. SimSiam learns representations by comparing similar-
ity of the encoder output fθ(·) and the prediction head output
hθ(·). Finally, a consistency loss is calculated as:

LSSL(D; θ) = E
x1,x2∼τ(x)

x∼D

hθ(fθ(x1))

∥hθ(fθ(x1))∥2
fθ(x2)

∥fθ(x2)∥2
, (1)

where ∥ · ∥2 denotes the l2-norm, and D, τ(·) indicate the
unlabeled training dataset and distribution of data augmen-
tation respectively. Moreover, the stop-gradient operation is
adopted to avoid collapse solutions in the implementation.

4.2 Scalable Dynamic Routing
As shown in Fig. 2, our Scalable Dynamic Routing (SDR)
paradigm consists of three steps. First, we cluster the dataset
into disjoint subsets, then we construct the SDRnet model
containing many sub-nets and dynamically train each sub-net
with its corresponding subsets through data-aware progres-
sive training. Refer to Algorithm 1 in Appendix D for the

entire training procedure. After pre-training, we can route
among all sub-nets to find the one that transfers best to a
specific downstream task. Following are the details.

Data clustering. The basic idea of SDR is to apply data
with different semantics to train different networks simulta-
neously and efficiently. A clustering procedure is adopted
to group the unlabeled training data into different seman-
tic clusters. We first pre-train a SimSiam model using the
entire dataset and collect all images features, denoted as
F = [f1,f2, ...,fn]. Large-scale clustering is performed
on fixed F following (Caron et al. 2020). Specifically, we
set k to be our desired number of clusters and define the
learnable centroids of the clusters as C = [c1, c2, ..., ck].
Then the assignment of features to the clusters can be
computed as S = F TC. We define an auxiliary matrix
U = [u1,u2, ...,un], which can be regarded as the poste-
rior distribution of clustering (Asano, Rupprecht, and Vedaldi
2019). Our goal is to maximize the similarity between U and
S, which can be denoted as follows,

max
U

[Tr(UTS) + ϵH(U)], (2)

where H(U) denotes the entropy of U . We optimize U
and C iteratively. U is solved by the iterative Sinkhorn-
Knopp algorithm (Cuturi 2013), while C is learned through
SGD to minimize the cross entropy between U and S =
F TC. After several epochs of training, we adopt S to be our
assignment matrix. The final clustering result is denoted as
Di(i = 1, 2, ..., k), and D0 represents the entire dataset.

Framework optimization. The whole SDRnet will be
trained by the entire training set D0, while the i-th sub-net
will be additionally trained with its corresponding sub-dataset
Di. Let W0 be the weights of the total network, and Wi ⊆
W0(i = 1, · · · , k) is the weights corresponding to the i-th
sub-net. The training loss can be formalized as:

min
W0

[LSSL(D0;W0) +
∑
i

LSSL(Di;Wi)], (3)

and the overall objective optimizes the weights of the SDRnet
and sub-nets simultaneously on their corresponding datasets.

Splits of sub-nets and SDR block. Here we introduce our
design of SDR block that is modified from ResNet-block (He
et al. 2016) and scalable to a large number of sub-nets. With-
out loss of generality, we denote every column in Fig. 3 as
a block since our discussion of block behavior is the same
as the layer behavior and all layers in the same block per-
form identically. We split the channels of each block into
two parts: individual groups and shared groups. A path is
defined as an arbitrary connection of individual groups be-
tween consecutive blocks. There are 3 blocks(columns) and
each block contains 2 share groups(grey nodes) and 2 indi-
vidual groups(white nodes). [gl−1

1 , gl1, g
l+1
1 ], [gl−1

1 , gl1, g
l+1
2 ]

are two example paths showed as the blue and red paths,
where gli denotes the i-th individual group of the l-th block.
The total number of paths can be computed from the num-
ber of individual groups and the number of blocks, that is
23 = 8 in the figure. This design makes the model size grow
log-linearly with the number of paths, which is extremely
space-saving than training a model for one sub-dataset. In

1856



(a) Data Cluster ing (b) Data-aware Progressive Training (c) Model Deployment

Cars

Pets

CIFAR

Food

Deployment 

D
is

til
la

tio
n

Shared 

Inactive
Active 

SDR Blocks

Figure 2: An overview of our proposed SDRnet. (a) We first separate unlabeled images into different subsets by clustering; (b)
SDRnet is then constructed with various sub-nets and each sub-net is trained with only one subset of the data by data-aware
progressive training; (c) When a downstream task arrives, we route among all the sub-nets to get the best pre-trained model.

𝑔1
𝑙−1 𝑔1

𝑙 𝑔1
𝑙+1

𝑔2
𝑙−1 𝑔2

𝑙 𝑔2
𝑙+1

(a) Data-aware progressive
training at phase 1

𝑔1
𝑙−1 𝑔1

𝑙 𝑔1
𝑙+1

𝑔2
𝑙−1 𝑔2

𝑙 𝑔2
𝑙+1

(b) Data-aware progressive
training at phase 2

Figure 3: Design of SDR block and data-aware progressive
training. (a) Illustration of progressive training at phase 1.
Each column represents the design of SDR block, which con-
sists of a shared group (2 grey nodes) and several individual
groups (2 white nodes). Path is defined as the connections of
any individual groups in the consecutive blocks. In phase 1,
we add sub-nets containing blue and red paths. (b) Illustration
of progressive training at phase 2. In phase 2, we enlarge the
space with sub-nets containing green and purple paths.

general, each Di will be mapped to a path in advance. When
data in Di comes, it will inference the block with the concate-
nation of the shared group and the individual group defined
in the path, thus Wi is defined as the union of parameters in
the corresponding path and all shared groups.

Data-aware progressive training. It is challenging to
train a large number of sub-nets simultaneously due to the
instability of the training process. Naively sampling a sub-net
and training it with its corresponding dataset always leads
to instability, which finally results in feature collapse in self-
supervised learning. We therefore propose the data-aware
progressive training by block to stabilize the optimization
process. A network space is defined and enlarged progres-
sively after each phase. At each phase, we only sample and
train the networks inside the space. Specifically, the network
space only contains the largest network at first. We start

adding sub-nets whose paths only differ in the last block (i.e.
the blue and red paths in Fig. 3(a)). In the next phase, we con-
tinue to add sub-nets with path green and purple, thus paths
of all sub-nets in the space now differ in the last two blocks,
and go on. With such progressive training, we are able to
train the largest network and many sub-nets simultaneously.

Task-customized knowledge distillation. Besides pro-
gressive training by blocks, we further propose a task-
customized distillation method called SiamKD to balance
the model discrepancy and the possible performance drop
resulted from training with fewer data and less time. Specifi-
cally, features provided by sub-nets are also applied to predict
the features of the largest network. The loss function is repre-
sented as:

LSiamKD(Di;Wi) = E
x1,x2∼τ(x)

x∼Di

h(fWi(x2))

∥h(fWi(x2))∥2
fW0(x1)

∥fW0(x1)∥2
.

(4)
Note that the stop gradient operation is performed on the

SDRnet when calculating LSiamKD, as we distill the SDRnet
to each sub-net unilaterally. Experiments show that SiamKD
significantly outperforms the L2 distillation loss. See the
ablation study in Sec. 5.3 for more details.

4.3 Deployment
When a downstream task comes, one can route among all
the sub-nets to find the best pre-trained model for the task.
As for classification task, one practical implementation is to
adopt the k-nearest-neighbor (kNN) (Wu et al. 2018) classi-
fier for fast performance evaluation. For detection task, early
stopping can be applied to choose the best pre-trained model.
Our experimental results in Sec. 5 verify the effectiveness
and efficiency of the above model selection procedures.

5 Experiment
In this section, we apply the proposed SDR to train SDRnet
and a series of sub-nets. We demonstrate the effectiveness
of SDR by evaluating the resulting pre-trained models on
various downstream tasks including classification and detec-
tion. We also take ablation studies on the number of sub-nets,
training time and the distillation method as shown in Sec. 5.3.

1857



Epochs Aircraft Caltech Cars C10 C100 DTD Flowers Food Pets SUN VOC Avg.

Supervised 90 43.59 90.18 44.92 91.42 73.90 72.23 89.93 69.49 91.45 60.49 83.60 73.75

InsDis (Wu et al. 2018) 200 36.87 71.12 28.98 80.28 59.97 68.46 83.44 63.39 68.78 49.47 74.37 62.29
MoCo-v1 (He et al. 2020) 200 35.55 75.33 27.99 80.16 57.71 68.83 82.10 62.10 69.84 51.02 75.93 62.41
PIRL (Misra and Maaten 2020) 200 37.08 74.48 28.72 82.53 61.26 68.99 83.60 64.65 71.36 53.89 76.61 63.92
PCL-v1 (Li et al. 2021) 200 21.61 76.90 12.93 81.84 55.74 62.87 64.73 48.02 75.34 45.70 78.31 56.73
PCL-v2 (Li et al. 2021) 200 37.03 86.42 30.51 91.91 73.54 70.59 85.34 64.88 82.76 56.25 81.14 69.12
MoCo-v2 (Chen et al. 2020c) 800 41.79 87.92 39.31 92.28 74.90 73.88 90.07 68.95 83.30 60.32 82.69 72.31
SimCLR-v1 (Chen et al. 2020a) 1000 44.90 90.05 43.73 91.18 72.73 74.20 90.87 67.47 83.33 59.21 80.77 72.59
SimCLR-v2 (Chen et al. 2020b) 800 46.38 89.63 50.37 92.53 76.78 76.38 92.90 73.08 84.72 61.47 81.57 75.07
InfoMin (Tian et al. 2020) 800 38.58 87.84 41.04 91.49 73.43 74.73 87.18 69.53 86.24 61.00 83.24 72.21
SeLa-v2 (Asano et.al. 2019) 400 37.29 87.20 36.86 92.73 74.81 74.15 90.22 71.08 83.22 62.71 82.73 72.09
DeepCluster-v2∗ (Caron et al. 2018) 400 48.75 90.52 50.94 94.15 79.33 76.70 93.98 75.90 86.78 65.41 84.30 76.98
SwAV∗ (Caron et al. 2020) 400 51.37 89.65 52.59 93.39 78.72 78.09 93.94 75.92 86.81 63.55 83.92 77.09

SimSiam∗∗ (Chen and He 2021) 200 51.30 87.02 53.80 89.12 68.43 72.99 91.83 67.35 83.64 52.97 83.40 72.90
SDR (SimSiam) 200 55.84 87.55 61.06 90.27 71.39 74.47 92.61 68.93 85.03 55.89 85.02 75.28+2.38

BYOL∗∗ (Grill et al. 2020) 200 45.46 87.82 45.91 91.42 74.37 73.14 90.95 73.13 84.62 56.43 81.99 73.20
BYOL∗∗ (Grill et al. 2020) 400 48.93 90.39 54.43 92.12 75.97 76.65 94.50 74.13 87.81 57.99 82.48 75.95
SDR (BYOL) 400 52.51 91.12 56.09 94.27 79.90 76.33 94.75 76.98 89.86 63.62 85.12 78.23+2.28

Table 1: Transfer performance(%) of self-supervised pre-training models on various classification downstream tasks (Bold: best,
underline: second best). Supervised baseline is also provided in the first row. SDR improves the baselines significantly by 2.38%
and 2.28%. Especially, SDR(BYOL) performs best on seven tasks and second-best on three tasks, achieving state-of-the-art
averaged accuracy. ∗: we take the officially released pre-trained weights and report the transfer performance. ∗∗: denotes our
re-implementation under the same training epochs with SDR for a fair comparison.

5.1 Implementation Details
Model configuration. We apply the SDR block in all four
stages of ResNet. In each stage, all blocks have four individ-
ual groups and one shared group. The size of shared groups
is half of all groups. All blocks in same stage perform iden-
tically. So we can generate 44 = 256 different sub-nets. For
comparison, we enlarge our model so that the size of each
sub-net is close to that of ResNet-50 (He et al. 2016), the
most commonly used backbone in SSL. For deployment, we
reset each sub-net with the corresponding batch normaliza-
tion (BN) statistics in pre-training following (Cai et al. 2019).
We adopt ImageNet as the dataset for self-supervised pre-
training without using labels. We use SimSiam (Chen and He
2021) and BYOL (Grill et al. 2020) as our baseline models.
Considering the simplicity and effectiveness, we perform
most ablations on SimSiam.

Downstream tasks. We validate our method on both clas-
sification and detection. For classification tasks, we adopt
the benchmark proposed in (Ericsson, Gouk, and Hospedales
2021), which considers 11 datasets including both coarse-
grained (e.g., CIFAR100 and VOC2007) and fine-grained
ones (e.g., Standard Cars and FGVC Aircraft), as detailed
in Appendix A. The quality of the pre-trained representa-
tions is evaluated by training a supervised linear classifier
upon the frozen representations in the training set, and then
testing it in the validation set. For detection task, we eval-
uate the pre-trained models on PASCAL VOC detection
dataset with Faster-RCNN, following the transfer protocol
of MoCo (Chen et al. 2020c). Specifically, the pre-trained
model is fine-tuned on the VOC trainval07+12 set and
evaluated on the VOC test2007 set. See Appendix A for

more experimental details and hyper-parameters.

5.2 Results and Analysis
Classification. The transfer performance of pre-trained mod-
els on classification tasks are summarized in Table 1. As can
be seen, SDR improves the performance on all the down-
stream datasets, compared with the model pre-trained on the
full ImageNet, i.e., the SimSiam and BYOL baselines. SDR
achieves 2.38% and 2.23% improvement of accuracy respec-
tively over eleven downstream tasks, demonstrating the effec-
tiveness of task-customized self-supervised pre-training to
alleviate negative transfer. Especially, SDR(BYOL) reaches
the best performance on 7 tasks and second best on 3 tasks,
whose average accuracy also outperforms other state-of-the-
art methods.

Note that the baseline SimSiam and BYOL uses ResNet-
50 as the backbone, whose parameter count is 23.5 million,
while the size of each SDR sub-net is 22.6 million. With a
smaller model, we achieve better results. Besides, under the
same time consumption, we are able to train 256 sub-nets,
showing the scalability of our method. In terms of efficient
deployment, it takes few minutes to route among all sub-nets
using the kNN classifier to find the best model. Compared
with the total training time of SDR, which usually takes
hundreds of hours, the searching time is negligible. On Food-
101 (Bossard, Guillaumin, and Van Gool 2014), for example,
it takes 20 minutes with 8*V100 to decide the best route.

Analysis on downstream tasks. We notice that the per-
formance of the sub-nets varies significantly for different
downstream datasets. As showed in Fig. 4(a), we provide
the performance gains on kNN accuracy of the 256 sub-

1858



P
er
fo
rm
an
ce
 G
ai
n(
%
)

Airc
raft
s
Cal
tec
h
Car
s
Cifa
r10
Cifa
r10
0
DT
D
Flo
wer
s
Foo
d Pet

s
Sun
397 VO

C

(a) Performance gains of sub-
nets

(b) Histogram of performance
gains on Aircraft

Figure 4: (a) Performance gain on kNN accuracy of the 256
sub-nets pre-trained by SDR compared with the baseline
trained on the full ImageNet. (b) Histogram of the perfor-
mance gains on Aircraft dataset. The x-axis is the perfor-
mance gain on kNN accuracy compared with the baseline,
and the y-axis is the number of models.

nets compared with baseline trained on full ImageNet. The
downstream tasks including Aircraft, Cars and Flowers have
significant average performance improvement when using
SDR. That might be because these datasets are fine-grained
datasets sensitive to the negative transfer. Therefore, a subset
of ImageNet tends to provide a better pre-trained model. On
the other hand, downstream tasks like CIFAR10, CIFAR100
and DTD show limited improvement when using SDR. That
might be because these datasets contain classes similar to
those in ImageNet, so that effects of negative transfer are
negligible. As a result, the full ImageNet may provide more
applicable pre-trained models. These observations are also
consistent with the preliminary experiments (see Sec. 3).

For illustration purpose, we plot the histogram of kNN
accuracy on the Aircraft dataset over the 256 sub-nets. The
results are summarized in Fig. 4(b). We further investigate
the distribution of classes for the subset that results in the
best kNN accuracy on Aircraft. As can be seen, the best
pre-trained model for Aircraft is actually pre-trained on a
subset of ImageNet mainly containing images of flying ob-
jects, such as kite, albatross and stork. The results indicate
the effectiveness of the data clustering and data-aware pro-
gressive training process.

Detection. The transfer results for detection task are pro-
vided in Table 2. For detection task, SDR also improves the
baselines by 1.48% and 0.78% in AP with smaller model size,
compared with the models pre-trained on the full ImageNet,
which further verifies the necessity of using task-customized
pre-trained models. In detection, we adopt fast deployment
through early stopping. We train the model that performs best
at iteration 1000, which takes about 15 minutes on 8*V100
for each model. Compared with the six-hours’ fine-tuning
with 8*V100, the routing procedure takes much less time to
produce a reasonable model.

5.3 Ablation Study
Effects of clustering. Here we analyze the importance of
clustering through two controlled experiments. We first
train each sub-net with the total ImageNet(IN), with all
other modules unchanged, including progressive training

AP AP50 AP75

Supervised 53.26 81.51 59.07

InsDis 48.82 76.43 52.40
MoCo-v1 50.51 78.06 54.55
PIRL 45.08 72.50 47.80
PCL-v1 53.93 81.69 59.33
PCL-v 53.92 81.89 59.35
MoCo-v2 44.74 72.82 47.01
SimCLR-v1 52.19 81.36 56.92
SimCLR-v2 51.42 79.40 55.89
InfoMin 44.92 72.72 47.41
SeLa-v2 50.41 80.55 54.35
DeepCluster-v2 51.03 80.93 55.51
SwAV 52.07 81.50 56.03

SimSiam 54.17 80.09 59.58
SDR (SimSiam) 55.65+1.48 81.16+1.07 60.89+1.31

BYOL 52.75 81.83 58.35
SDR (BYOL) 53.53+0.78 82.69+0.86 59.25+0.90

Table 2: Detection transfer results(%) from pre-trained mod-
els using Faster R-CNN FPN on PASCAL VOC. The models
are trained with all layers fine-tuned. Metrics including AP,
AP50 and AP75 are reported.

and knowledge distillation. We call this model SDR-IN-
22.6M(line 2 of Table 3) and name our original model as
SDR-Cluster-22.6M(last line of the table). SDR-Cluster-
22.6M outperforms SDR-IN-22.6M consistently among all
tasks. We achieve a nearly 2.7% mean accuracy improve-
ment, which indicates that training with separate subsets con-
tributes a lot to our SDR. Note that without using clustered
subsets, SDR-IN-22.6M is even exceeded by the SimSiam
baseline, suggesting that the usage of clustered subsets is the
most crucial component in the SDR framework. The other
experiment is to train the model with random clusters. Specif-
ically, we split the ImageNet randomly into 256 sub-datasets
and perform our training procedure subsequently, named as
SDR-Random-22.6M(line 3), which shows a degenerated
performance over all tasks, indicating the great importance
of a reasonable clustering method.

Visualization of clustering. To visualize the clustering
procedure, we single out the four clusters that provide the
best transfer performance on Standard Cars, FGVC Aircraft,
Food-101 and DTD, respectively. We randomly plot four
samples of each cluster, as shown in each row of Fig. 5.
As can be seen, images in a cluster have similar semantics,
suggesting the effectiveness of data clustering. These images
also have semantics similar to the corresponding downstream
tasks, which brings improvement of the transfer performance.

Effects of progressive training v.s. lottery ticket theo-
rem (Frankle and Carbin 2018), which suggests that neural
networks might rely on internal sub-nets that are significantly
smaller than the full parameter count for the majority of their
predictive accuracy. In this experiment, we try to make lot-
tery ticket theorem explicit to see how exactly the usage of
sub-nets may contribute to the success of SDR. We first train
a SimSiam with the same amount of parameters with our

1859



Dataset Param # Aircraft Caltech Cars C10 C100 DTD Flowers Food Pets SUN VOC Avg.

SimSiam IN 23.5M 51.30 87.02 53.80 89.12 68.43 72.99 91.83 67.35 83.64 52.97 83.40 72.90
SDR IN 22.6M 51.95 86.79 55.62 88.60 67.54 72.09 91.83 67.66 82.44 51.58 81.42 72.50
SDR Random 22.6M 48.21 86.23 50.25 86.62 64.41 72.29 92.47 64.45 82.21 50.39 80.13 70.70

SimSiam IN 56.3M 52.31 87.46 54.50 90.05 68.75 73.19 93.11 68.56 83.34 53.27 83.90 73.49
SimSiam IN 22.6M 43.82 63.00 37.72 80.51 50.10 62.81 73.64 50.24 61.43 32.72 68.62 56.78

SDR Cluster 22.6M 55.84 87.55 61.06 90.27 71.39 74.47 92.61 68.93 85.03 55.89 85.02 75.28

Table 3: Effects of clustering and progressive training. The second column(Dataset) for all SDR models means the dataset used
for training each sub-net. SimSiam is always trained by total ImageNet. The third column(Param #) means the parameter count
of the model during testing time. The last line SDR-Cluster-22.6M is our proposed model. (1) The first section is the comparison
of the models trained by the total ImageNet, random splits and the clusters. (2) Comparison of the lottery ticket theorem (Frankle
and Carbin 2018) is provided in section 2. SimSiam is pre-trained under 56.3M and then pruned to 22.6M, which are the exact
sizes of the super-net and sub-net in our SDR framework.

# of sub-nets 1 4 16 64 256

kNN accuracy 53.42 55.77 56.83 57.83 58.13
Training time (GPU hours) 260 370 400 460 500

Table 4: Results of kNN accuracy and training time (i.e., GPU
hours) for SDR with different number of sub-nets.

SDR super-net whose size is 56.3M, denoted as SimSiam-IN-
56.3M. Then we perform pruning, the method to get effective
sub-nets used in (Frankle and Carbin 2018), to get SimSiam-
IN-22.6M, the ‘winning ticket’ of SimSiam-IN-56.3M. Here
22.6M is the exact size of SDR sub-net used for each down-
stream task. As shown in Table 3, SDR-Cluster-22.6M out-
performs SimSiam-IN-22.6M dramatically and consistently
among all tasks, which indicates that choosing the proper sub-
dataset is more crucial than getting the ‘winning ticket’ of
the large model. Furthermore, we notice a large performance
drop of SimSiam after pruning, while SDR performs even
better than the large model SimSiam-IN-56.3M, demonstrat-
ing that simply pruning is not enough to get a better sub-net
while SDR is more effective to get better performance. Based
on the experiments above, we tend to believe that SDR in-
deed benefits from sub-datasets other than merely making
the lottery ticket theorem explicit.

Number of sub-nets. We analyze how different numbers
of sub-nets affect the final results by evaluating the kNN
accuracy averaged over 11 downstream tasks. The model
with one sub-net is actually the SimSiam baseline. The kNN
accuracy and the corresponding training time are reported
in Table 4. As can be seen, with a larger number of sub-
nets, the kNN accuracy increases significantly. Intuitively, a
larger number of sub-nets tends to have a higher probability
of providing proper sub-sets for various downstream tasks,
yet inevitably requiring a longer training time. The proposed
SDR, however, only introduces moderate extra training time
with the increasing number of sub-nets, which is applicable
for real applications.

Effects of distillation. We compare our task-customized
knowledge distillation method, SiamKD, with the vanilla L2
distillation loss (Hinton, Vinyals, and Dean 2015). We train

Figure 5: Image samples of different data clusters.

SDRnet with the L2 distillation loss and SiamKD in Eqn. (4),
respectively, following the implementation in Sec. 5.1. For
the 11 downstream classification tasks, we compute the aver-
age kNN accuracy of the best sub-net, as well as the average
standard deviation of the 256 sub-nets for each downstream
task. The accuracy of SiamKD is 58.13 ± 2.38, while L2
loss only gets 54.66± 0.07. In addition to the inferior perfor-
mance, the L2 distillation results in a small standard deviation
of kNN accuracy and homogenized sub-nets, while SiamKD
maintains the feature diversity of sub-nets, which is essential
for providing a task-customized model. In practice, we also
find SiamKD helps to provide better feature representations
and stabilize the training process.

6 Conclusion
In this work, we first identify the negative transfer phe-
nomenon in SSL that involving semantic-irrelevant data in
pre-training may degenerate the downstream performance. To
address this issue, we propose a novel task-customized SSL
paradigm called Scalable Dynamic Routing (SDR). SDR first
cluster the training data and then train each sub-net with a
different cluster through a data-aware progressive training
framework. Finally, customized sub-nets are deployed to dif-
ferent downstream tasks efficiently. In the experiments, we
succeed in training 256 sub-nets simultaneously, with a total
training cost less than twice of the SSL baseline that provides
only one pre-trained model, achieving SOTA results on aver-
age accuracy among 11 downstream classification tasks and
AP on PASCAL VOC detection task.

1860



References
Asano, Y.; Rupprecht, C.; and Vedaldi, A. 2019. Self-labelling via si-
multaneous clustering and representation learning. In International
Conference on Learning Representations.
Bossard, L.; Guillaumin, M.; and Van Gool, L. 2014. Food-101
– Mining Discriminative Components with Random Forests. In
European Conference on Computer Vision, 446–461.
Cai, H.; Gan, C.; Wang, T.; Zhang, Z.; and Han, S. 2019. Once-
for-all: Train one network and specialize it for efficient deployment.
arXiv preprint arXiv:1908.09791.
Campos, V.; Jou, B.; Giró-i Nieto, X.; Torres, J.; and Chang, S.-F.
2017. Skip rnn: Learning to skip state updates in recurrent neural
networks. arXiv preprint arXiv:1708.06834.
Cao, S.; Ma, L.; Xiao, W.; Zhang, C.; Liu, Y.; Zhang, L.; Nie, L.; and
Yang, Z. 2019. Seernet: Predicting convolutional neural network
feature-map sparsity through low-bit quantization. In Computer
Vision and Pattern Recognition, 11216–11225.
Caron, M.; Bojanowski, P.; Joulin, A.; and Douze, M. 2018. Deep
clustering for unsupervised learning of visual features. In European
Conference on Computer Vision, 132–149.
Caron, M.; Misra, I.; Mairal, J.; Goyal, P.; Bojanowski, P.; and
Joulin, A. 2020. Unsupervised learning of visual features by con-
trasting cluster assignments. In Advances in Neural Information
Processing Systems, 9912–9924.
Chen, K.; Hong, L.; Xu, H.; Li, Z.; and Yeung, D.-Y. 2021. Multi-
siam: Self-supervised multi-instance siamese representation learn-
ing for autonomous driving. In International Conference on Com-
puter Vision, 7546–7554.
Chen, T.; Kornblith, S.; Norouzi, M.; and Hinton, G. 2020a. A
simple framework for contrastive learning of visual representations.
In International conference on Machine Learning, 1597–1607.
Chen, T.; Kornblith, S.; Swersky, K.; Norouzi, M.; and Hinton,
G. 2020b. Big self-supervised models are strong semi-supervised
learners. In Advances in Neural Information Processing Systems,
22243–22255.
Chen, X.; Fan, H.; Girshick, R.; and He, K. 2020c. Improved
baselines with momentum contrastive learning. arXiv preprint
arXiv:2003.04297.
Chen, X.; and He, K. 2021. Exploring simple siamese representation
learning. In Computer Vision and Pattern Recognition, 15750–
15758.
Cole, E.; Yang, X.; Wilber, K.; Mac Aodha, O.; and Belongie, S.
2021. When Does Contrastive Visual Representation Learning
Work? arXiv preprint arXiv:2105.05837.
Cuturi, M. 2013. Sinkhorn Distances: Lightspeed Computation of
Optimal Transport. In Advances in Neural Information Processing
Systems, 2292–2300.
Ericsson, L.; Gouk, H.; and Hospedales, T. M. 2021. How well do
self-supervised models transfer? In Computer Vision and Pattern
Recognition, 5414–5423.
Figurnov, M.; Collins, M. D.; Zhu, Y.; Zhang, L.; Huang, J.; Vetrov,
D.; and Salakhutdinov, R. 2017. Spatially adaptive computation time
for residual networks. In Computer Vision and Pattern Recognition,
1039–1048.
Frankle, J.; and Carbin, M. 2018. The lottery ticket hypothe-
sis: Finding sparse, trainable neural networks. arXiv preprint
arXiv:1803.03635.
Gao, D.; Yang, W.; Zhou, H.; Wei, Y.; Hu, Y.; and Wang, H.
2021. Network Clustering for Multi-task Learning. arXiv preprint
arXiv:2101.09018.

Goyal, P.; Caron, M.; Lefaudeux, B.; Xu, M.; Wang, P.; Pai, V.;
Singh, M.; Liptchinsky, V.; Misra, I.; Joulin, A.; et al. 2021. Self-
supervised pre-training of visual features in the wild. arXiv preprint
arXiv:2103.01988.
Grill, J.-B.; Strub, F.; Altché, F.; Tallec, C.; Richemond, P. H.;
Buchatskaya, E.; Doersch, C.; Pires, B. A.; Guo, Z. D.; Azar, M. G.;
et al. 2020. Bootstrap your own latent: A new approach to self-
supervised learning. In Advances in Neural Information Processing
Systems.
Han, J.; Liang, X.; Xu, H.; Chen, K.; Hong, L.; Mao, J.; Ye, C.;
Zhang, W.; Li, Z.; Liang, X.; and Xu, C. 2021a. SODA10M: A
Large-Scale 2D Self/Semi-Supervised Object Detection Dataset for
Autonomous Driving. arXiv preprint arXiv:2106.11118.
Han, Y.; Huang, G.; Song, S.; Yang, L.; Wang, H.; and Wang,
Y. 2021b. Dynamic neural networks: A survey. arXiv preprint
arXiv:2102.04906.
Hansen, C.; Hansen, C.; Alstrup, S.; Simonsen, J. G.; and Lioma,
C. 2019. Neural speed reading with structural-jump-lstm. arXiv
preprint arXiv:1904.00761.
He, K.; Fan, H.; Wu, Y.; Xie, S.; and Girshick, R. 2020. Momen-
tum contrast for unsupervised visual representation learning. In
Computer Vision and Pattern Recognition, 9729–9738.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learning
for image recognition. In Computer Vision and Pattern Recognition,
770–778.
Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531.
Hu, W.; Liu, B.; Gomes, J.; Zitnik, M.; Liang, P.; Pande, V.; and
Leskovec, J. 2019. Strategies for pre-training graph neural networks.
arXiv preprint arXiv:1905.12265.
Huh, M.; Agrawal, P.; and Efros, A. A. 2016. What makes ImageNet
good for transfer learning? arXiv preprint arXiv:1608.08614.
Li, J.; Zhou, P.; Xiong, C.; and Hoi, S. C. H. 2021. Prototypical Con-
trastive Learning of Unsupervised Representations. In International
Conference on Learning Representations.
Li, X.; Liu, Z.; Luo, P.; Change Loy, C.; and Tang, X. 2017. Not
all pixels are equal: Difficulty-aware semantic segmentation via
deep layer cascade. In Computer Vision and Pattern Recognition,
3193–3202.
Liu, L.; and Deng, J. 2018. Dynamic deep neural networks: Op-
timizing accuracy-efficiency trade-offs by selective execution. In
AAAI Conference on Artificial Intelligence, 3675–3682.
Liu, X.; He, P.; Chen, W.; and Gao, J. 2019. Multi-task deep neu-
ral networks for natural language understanding. arXiv preprint
arXiv:1901.11504.
McDermott, M.; Nestor, B.; Kim, E.; Zhang, W.; Goldenberg, A.;
Szolovits, P.; and Ghassemi, M. 2021. A comprehensive EHR time-
series pre-training benchmark. In Proceedings of the Conference on
Health, Inference, and Learning, 257–278.
Miller, G. A. 1998. WordNet: An electronic lexical database. MIT
press.
Misra, I.; and Maaten, L. v. d. 2020. Self-supervised learning of
pretext-invariant representations. In Computer Vision and Pattern
Recognition, 6707–6717.
Odena, A.; Lawson, D.; and Olah, C. 2017. Changing model be-
havior at test-time using reinforcement learning. arXiv preprint
arXiv:1702.07780.
Tao, J.; Thakker, U.; Dasika, G.; and Beu, J. 2019. Skipping rnn state
updates without retraining the original model. In Proceedings of
the 1st Workshop on Machine Learning on Edge in Sensor Systems,
31–36.

1861



Tian, Y.; Henaff, O. J.; and Oord, A. v. d. 2021. Divide and con-
trast: self-supervised learning from uncurated data. arXiv preprint
arXiv:2105.08054.
Tian, Y.; Sun, C.; Poole, B.; Krishnan, D.; Schmid, C.; and Isola, P.
2020. What Makes for Good Views for Contrastive Learning? In
Advances in Neural Information Processing Systems.
Wang, H.; Kembhavi, A.; Farhadi, A.; Yuille, A. L.; and Rastegari,
M. 2019. Elastic: Improving cnns with dynamic scaling policies. In
Computer Vision and Pattern Recognition, 2258–2267.
Wu, Z.; Xiong, Y.; Yu, S. X.; and Lin, D. 2018. Unsupervised feature
learning via non-parametric instance discrimination. In Computer
Vision and Pattern Recognition, 3733–3742.
Xu, H.; Zhang, X.; Li, H.; Xie, L.; Xiong, H.; and Tian, Q. 2020.
Hierarchical Semantic Aggregation for Contrastive Representation
Learning. arXiv preprint arXiv:2012.02733.

1862


