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Abstract

In recent years, creative content generations like style transfer
and neural photo editing have attracted more and more atten-
tion. Among these, cartoonization of real-world scenes has
promising applications in entertainment and industry. Dif-
ferent from image translations focusing on improving the
style effect of generated images, video cartoonization has
additional requirements on the temporal consistency. In this
paper, we propose a spatially-adaptive semantic alignment
framework with perceptual motion consistency for coher-
ent video cartoonization in an unsupervised manner. The se-
mantic alignment module is designed to restore deforma-
tion of semantic structure caused by spatial information lost
in the encoder-decoder architecture. Furthermore, we devise
the spatio-temporal correlative map as a style-independent,
global-aware regularization on the perceptual motion consis-
tency. Deriving from similarity measurement of high-level
features in photo and cartoon frames, it captures global se-
mantic information beyond raw pixel-value in optical flow.
Besides, the similarity measurement disentangles temporal
relationships from domain-specific style properties, which
helps regularize the temporal consistency without hurting
style effects of cartoon images. Qualitative and quantita-
tive experiments demonstrate our method is able to generate
highly stylistic and temporal consistent cartoon videos.

Introduction
Cartoon movies are very popular and attractive across the
world, but creating even a short cartoon movie involves a
complex and time-consuming production process with mul-
tiple stages. Recently, deep learning based methods have
developed a lot of techniques for creative content genera-
tion, like style transfer, semantic image synthesis and neu-
ral photo editing. Video cartoonization aims at creating co-
herent cartoon-styled videos based on real-world videos, as
shown in Figure 1. As a practical technique, it has promising
applications in entertainment and industry.

Given two collections containing unpaired photo and car-
toon images, cartoonization usually leverages generative ad-
versarial networks(GANs) to map the input photo into the
distribution of cartoon images. Different from traditional
style transfer which often adds textures like brush strokes,
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Figure 1: Illustration of video cartoonization. It requires
smooth surface and clear border with temporal consistency
for a typical cartoon artwork.

cartoonization aims to create highly conceptual and abstract
images. Besides, due to the dynamic training characteristic
of unsupervised GANs, it’s harder to achieve stable conver-
gence of style effects in generated images than style trans-
fer which has explicit style constraints. Compared to im-
age cartoonization, video cartoonization has higher require-
ments on the temporal consistency between input and output
frames. There are two challenges to the coherence of output
video. The first one is keeping the structure consistency be-
tween each input and output frame. It’s difficult to preserve
structure consistency of output image while depicting the
highly abstracted cartoon image structure in unsupervised
learning. The second challenge is to guarantee the temporal
coherence of generated frames. Previous works have shown
that the output of deep neural networks is very sensitive to
small changes in pixel values (Azulay and Weiss 2019). The
generator of video cartoonization needs to be robust under
different transformations of input frames.

There are mainly three kinds of methods to solve the
problem of video temporal inconsistency. The first method
explicitly employs optical flow estimated between input
frames to warp the last output frame for generation (Chen
et al. 2017). However, this method highly relies on the ac-
curacy of flow estimation, which is difficult for complex
real-world environments. The second one is to build a task-
independent model that can repair temporal inconsistency
of videos generated by different image-translation models,
such as Deep Video Prior(Lei, Xing, and Chen 2020). But
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Figure 2: Optical flow and our spatio-temporal correlative maps for two real world photos and its cartoon images. We select the
red and green points as source points and build their spatio-temporal correlative maps. The spatio-temporal correlative maps
are more robust under different domains.

this method is time-consuming and hard for real-time appli-
cations. Another method is to add a temporal regularization
upon image-to-image translation models at training stage,
which encourages the coherence of output frames (Wang
et al. 2020b). These traditional methods for temporal consis-
tency often suffer from the limitations of pixel-wise motion
representation, e.g., optical flow. Since images in different
domains have different properties in appearances and tex-
tures, optical flow estimated in the photo domain may not
align well with the cartoon domain. As shown in the third
column of Figure 2, the optical flows estimated for real im-
ages and cartoon images show obvious discrepancies, espe-
cially for the central region with large distortions. Further,
pixel-wise motion representation is unable to handle disoc-
clusion problems where newly appeared pixels have no cor-
respondence with last frame.

To solve above problems, we propose a spatially-adaptive
semantic alignment framework with perceptual motion con-
sistency for coherent video cartoonization in an unsu-
pervised manner. The Spatially-adaptive Semantic Align-
ment(SSA) module is designed to restore the local shift and
deformation of semantic structure caused by spatial infor-
mation lost in the traditional encoder-decoder network ar-
chitecture. To overcome the limitations of dense motion rep-
resentations for complex scenes with large displacements
and disocclusion under different domains, we propose a
style-independent global-aware regularization on Perceptual
Motion Consistency(PMC) via spatio-temporal correlative
maps between input and output video.

Specifically for the SSA module, we first calculate the se-
mantic distance of feature vectors between encoder and de-
coder at each scale. After that, we relocate the decoder’s fea-
ture in a local patch to the position of its nearest encoder’s
features, resulting in a refined structure corresponding to the
encoder’s structure. Such that the structure consistency be-
tween input and output image can be better preserved. For
the PMC module, we introduce spatio-temporal correlative
maps to impose regularization on perceptual motion consis-
tency. Different from the pixel-wise hard correspondence of
optical flow, it measures feature similarity instead of abso-
lute pixel value for each patch of current frame with next
frame. This map builds a probabilistic distribution of each

object’s flow direction in a global context, which can be
generalized in complex situations with disocclusion. Fur-
thermore, the similarity measurement disentangles the tem-
poral relationship from domain-specific attributes such as
color, lighting and texture, so that we can formulate a style-
independent motion representation for different domains.

Our contributions can be summarized as follows: (1) We
propose an effective framework with a style-independent
global-aware regularization on perceptual motion consis-
tency to generate temporal consistent cartoon videos. (2)
A novel generator with spatially-adaptive semantic align-
ment is designed to generate semantic-aware structure con-
sistent cartoon images. (3) We conduct detailed qualitative
and quantitative experiments and demonstrate our method
achieves both stylistic cartoon effect and temporal consis-
tency. Our code will be released on github.

Related Works
Unsupervised Image-to-Image Translation aims to learn
the mapping from a source image domain to a target image
domain with unpaired data. One of the key challenges is to
build a meaningful structure correspondence between input
and output images. Cycle-consistency and its variants are
often used to guarantee the output image can reconstruct the
input image (Zhu et al. 2017; Huang et al. 2018; Liu, Breuel,
and Kautz 2017; Lin et al. 2020a,b). (Park et al. 2020) incor-
porated patchwise contrastive learning to achieve structure
preservation. Recently (Zheng, Cham, and Cai 2021) pro-
posed spatially-correlative maps as domain-invariant repre-
sentations to restrict structure consistency. In this paper, we
learn the unsupervised translation from photo domain to car-
toon domain. Different from the above methods only apply-
ing to images, we extend to generate videos with temporal
consistency.

Image Cartoonization aims to generate cartoon images
with clear edges, smooth color shading and relatively sim-
ple textures from real-world photos. Originally, the pioneer-
ing work CartoonGAN (Chen, Lai, and Liu 2018) was pro-
posed for image cartoonization, which introduced a novel
adversarial loss to encourage clear edges. Recently, (Wang
and Yu 2020) developed three white-box image representa-
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tions that reflect different aspects of cartoon images, includ-
ing texture, surface and structure. Although these models
can generate cartoon styled videos by applying per-frame
translation, their output videos show temporal inconsisten-
cies and flickering artifacts.

Video Temporal Consistency is a research topic about
solving the flickering problem when applying different kinds
of image-based models to videos. Task-independent meth-
ods design a single model for different tasks, which gen-
erate a coherent video from separately processed frames.
(Lai et al. 2018) utilized FlowNet2 to estimate optical flow
as temporal loss to train the transformation network. (Lei,
Xing, and Chen 2020) leveraged deep video prior to itera-
tively optimize each sequence. Task-specific approaches de-
velop different strategies according to each domain, such as
designing specific network architectures (Tassano, Delon,
and Veit 2020; Deng et al. 2021) or embedding optical flow
estimation to capture information of motion (Chen et al.
2017). Recently, (Wang et al. 2020b) proposed compound
regularization for temporal consistent video style transfer.
These methods often heavily rely on pixel-wise correspon-
dence which is sensitive to the different appearances of ob-
jects in photo and cartoon domain.

Methodology
Overview
Given a real world video composed of frames {s0, s1, ...sn},
video cartoonization aims to generate corresponding car-
toon frames {t0, t1, ...tn} whose temporal consistency is
preserved. As shown in Figure 3, at training stage, our model
transforms input consecutive real world photos s0 and s1

into corresponding cartoon images t0 and t1. The generator
builds upon an encoder-decoder architecture consisting of
downsampling, residual blocks and upsampling layers. We
introduce a spatially-adaptive semantic alignment module
into the generator to render semantic-aware structure con-
sistent cartoon images. To restrict perceptual motion consis-
tency, we first extract multi-level features from both input
and cartoon images with pretrained deep network. Then, we
introduce the spatio-temporal correlative maps of features to
regularize perceptual motion consistency between input and
output video. We employ adversarial mechanism to optimize
the cartoon effect of generated images, where the generator
and discriminator are updated alternatively.

Spatially-Adaptive Semantic Alignment
To address the problem of structure deformation in the de-
coding stage, we introduce the spatially-adaptive semantic
alignment(SSA) module into the generator. As shown in Fig-
ure 3, to refine the structure of upsampled feature maps
gl(x) ∈ RC×H×W in the l-th level of decoder, we adopt
the feature maps f l(x) of encoder in corresponding layer to
relocate the placement of decoder features.

Specifically, for a source feature vector f li (x) in location
i, we define a local patch of size N = R2 around i in gl(x)
as its semantic candidates {glj(x)|j ∈ {1, 2..., N}}. We first
compute the magnitude of similarity between them:

zlij(x) = (f li (x))
T (glj(x)) (1)

Then, we apply spatial-wise softmax to [zli1, z
l
i2, ...z

l
iN ],

which constructs a normalized correlative map as a kernel.
Each element of the kernel is calculated as follows:

αl
ij(x) =

exp(zlij(x))∑N
k=1 exp(z

l
ik(x))

(2)

Finally, we obtain the refined feature in location i by ag-
gregating semantic candidates with above kernel weight:

rli(x) =
N∑
i=1

αl
ij(x)g

l
j(x) (3)

Similar to pooling operations, this module replaces the
output of convolution with a summary statistic of the nearby
outputs. Furthermore, there are two properties of our pro-
posed module: First, it’s spatially-adaptive, where different
kernels are applied for different locations. Second, instead
of embedding hand-craft static pooling like max or average
pooling, our module dynamically generates the kernel based
on the semantic similarity of features.

For pixel-wise prediction tasks like image translation and
semantic segmentation, the structure of output image needs
to align with input image. Suffering from the low-resolution
bottleneck, encoder-decoder architectures lacks fine-grained
structure alignment. Traditional methods like U-net often
use skip connections to alleviate this problem. The skip con-
nection propagates encoder’s high-resolution information to
upsampled output with concatenation for precise localiza-
tion. However, it only strengthens the spatial alignment in-
stead of semantic alignment. By contrast, our proposed SSA
repairs the semantic misalignment by relocating each local
patch of upsampled outputs with the high-resolution feature
maps of encoder(The influence of the patch width will be
further discussed in ablation study.).

Besides, the SSA has the edge-preserving smoothing
characteristic especially suitable for cartoonization task. For
features within the same semantic region, the kernel of se-
mantic candidates tends to be an average kernel, which helps
render smooth surface in this region. For features near the
border of a semantic region, the kernel will assign dominant
weight to locations within the border. Thus the edges be-
tween different objects can be well preserved, which is con-
sistent with cartoon image’s property, as shown in Figure 1.

Perceptual Motion Consistency
Traditional methods often utilized warping error with opti-
cal flow to inhabit temporal inconsistency between output
frames (Chen et al. 2017; Park et al. 2019; Kim et al. 2019).
The formulation of warping error is:

Lwarp = ‖ti −Wi−1,i(t
i−1)‖ (4)

where Wi−1,i denotes the optical flow that warps pixels of
si−1 to si.

However, there are three limitations of the pixel-wise tem-
poral regularization. First, optical flow describes the spa-
tial variation of pixel but ignores its value variation. Actu-
ally, the brightness and color appearances of the same object
might be different on consecutive frames due to illumination
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Figure 3: The architecture of our proposed method. Given two consecutive frames of real-world photos, the spatially-adaptive
semantic alignment module is introduced into our generator to produce semantic-aware structure consistent cartoon images.
After that we derive the spatio-temporal correlative maps from extracted features of input and cartoon images to regularize the
perceptual motion consistency. Besides, content loss is used to restrict the structure correspondence between input and output
image, and adversarial loss is used to optimize the cartoon effect of output images.

effects. As a consequence, warping error tends to keep the
same value corresponding to last frame’s output, even when
the input value has changed. Second, images in different do-
mains have different properties in appearances and textures,
optical flow estimated in the photo domain is hard to align
with that in cartoon domain, which is illustrated in Figure 2.
Third, optical flow can not handle the disocclusion problem
since newly appeared pixels have no correspondence with
last frame.

Here, we propose the perceptual motion consistency to
formulate a style-independent global-aware motion repre-
sentation under photo and cartoon domains. We denote h
as the pretrained feature extractor. Take input video as ex-
ample, for the extracted feature h(si)j of patch j in current
frame si, we compute its similarity magnitudes with all fea-
tures of next frame. We introduce it as the spatio-temporal
correlative map, formally:

Csij ,s
i+1 =

(
h
(
si
)
j

)T (
h
(
si+1

))
(5)

where h
(
si
)
j
∈ RM×1,M is the number of channels in fea-

ture maps, h
(
si+1

)
∈ RM×N contains features for all loca-

tions of size N in frame si+1, such that Csij ,s
i+1 ∈ R1×N

captures the correlation between source patch j with each
patch of next frame.

Next, we formulate the perceptual motion representa-
tion between consecutive frames as a collection of spatio-
temporal correlative maps:

Csi,si+1 = [Csi0,s
i+1 ;Csi1,s

i+1 ; ...;CsiN ,si+1 ] ∈ RN×N (6)

After that, we calculate the multi-level spatio-temporal
correlative maps corresponding to extracted features at dif-
ferent scales between source and target domain. Here cosine
loss is used to restrict the perceptual motion consistency:

Lmotion = ‖1− cos(Csi,si+1 , Cti,ti+1)‖1 (7)

The spatio-temporal correlative maps model the motion as
correspondence of semantic features in a global context. It’s
more robust under domains with different appearances and
styles by exploiting the similarity measurement of high-level
features. Besides, it can handle the problem of disocclusion
by leveraging the global relationships of newly appeared ob-
jects.

Loss Functions
Besides the perceptual motion loss, the cartoonization effect
of generated images is also optimized with adversarial loss.
Here, we model three representations extracted from images
to optimize the generated cartoon images, including the sur-
face representation that contains smooth surface of cartoon
images, the structure representation that refers to flattened
global content, the texture representation that reflects tex-
tures and details in cartoon images.

To derive surface representation, guided filter Fgf (He,
Sun, and Tang 2013) is adopted for edge-preserving filter-
ing. It removes the textures and details of input image with
the help of a guided image, which can be the input image
itself. A discriminator Ds is leveraged to determine whether
the structure representations of output images are similar to
that of cartoon images. Let Ip denote the input photo and Ic
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indicate the reference cartoon images, the surface loss is
Lsurface(G,Ds) = logDs(Fgf (Ic, Ic))

+ log(1−Ds(Fgf (G(Ip), G(Ip))))
(8)

To derive structure representation, a superpixel algo-
rithm (Felzenszwalb and Huttenlocher 2004) is deployed to
segment images into separate semantic consistent regions.
After that, each region is filled with a corresponding color,
which generates the structure representation Fst, The struc-
ture loss is:
Lstructure = ‖V GG(G(Ip))− V GG(Fst(G(Ip)))‖ (9)
To derive texture representation, we convert images into

grayscale. Another discriminator Dt is used to distinguish
the distribution of cartoon images from generated images.
And the texture loss is formulated as:
Ltexture (G,Dt) = logDt(Fgray(Ic))

+ log(1−Dt(Fgray(G(Ip))))
(10)

Besides, content loss is utilized to regularize the structure
consistency between photo and cartoon images,

Lcontent = ‖V GG (G (Ip))− V GG (Ip)‖ (11)
The total variation loss is incorporated to encourage the

smoothness of generated images,

Ltv =
1

H ∗W ∗ C ‖∇x (G (Ip)) +∇y (G (Ip))‖ (12)

Finally, the objective of full model is formulated as the
summation of adversarial loss, perceptual motion loss, con-
tent loss and total variation loss:

Ltotal = λ1Lsurface + λ2Ltexture + λ3Lstructure

+ λ4Lcontent + λ5Ltv + λ6Lmotion
(13)

Experiment
Experimental Setup
Dataset. For real-world photos, we adopt 10000 human
face images from FFHQ dataset and 6227 landscape im-
ages from CycleGAN dataset (Zhu et al. 2017). For car-
toon images, we use images from WhiteboxGAN (Wang
and Yu 2020), including 10000 images of cartoon faces from
P.A.Works, Kyoto animation and 14615 images from car-
toon movies produced by Shinkai Makoto, Hosoda Mamoru,
and Miyazaki Hayao. We apply random affine transforma-
tions on photo images to imitate input consecutive video
frames. For test set, we use 1541 real-world images from
(Zhu et al. 2017; Chen, Liu, and Chen 2020) and 1583 car-
toon images from above cartoon movies. During training, all
images are resized to 256× 256 resolution.
Implementation Details. We implement our model using
Pytorch Lightning (Falcon 2019). Our generator consists of
two downsampling layers, four residual blocks and two up-
sampling layers. LeakyReLU is used as activation function.
The local patch width of SSA is set as R = 3. Patch dis-
criminator with spectral normalization (Miyato et al. 2018)
is adopted to identify each patch’s distribution. We use
Adam (Kingma and Ba 2015) optimizer with momentums
0.5 and 0.99. The learning rate is set to 0.0002. The loss
weight are set as λ1 = 0.1, λ2 = 1, λ3 = 200, λ4 =
200, λ5 = 20000, λ6 = 0.1.

Methods FID to Cartoon FID to Photo
CycleGAN 99.39 99.32

CUT 93.07 105.64
LSeSim 95.26 87.66

CartoonGAN Shinkai 98.46 70.86
CartoonGAN Paprika 111.40 136.12
CartoonGAN Hosoda 98.07 136.12
CartoonGAN Hayao 107.25 119.81

WhiteboxGAN 90.98 50.69
Ours 87.96 41.11

Table 1: Performance comparison of different methods.
Smaller FID values indicates closer distance between gen-
erated images and reference images.

Evaluation of Cartoon Effects
In quantitative experiments, following recent works (Wang
and Yu 2020; Park et al. 2020), we employ the Frechet
Inception Distance (FID) (Heusel et al. 2017) to evaluate
the quality of generated images. The FID to cartoon im-
ages reflects the quality of cartoon style effects, and the
FID to photo indicates content consistency between in-
put photo and generated images. We compare with five
SOTA methods, including unsupervised image translation
methods CycleGAN (Zhu et al. 2017), CUT (Park et al.
2020), LSeSim (Zheng, Cham, and Cai 2021) and image
cartoonization methods CartoonGAN (Chen, Lai, and Liu
2018) and WhiteboxGAN (Wang and Yu 2020).

The quantitative results are shown in Table 1. We can ob-
serve that our model has the lowest FID to cartoon images.
Besides, our model surpasses previous methods in FID to
photo images by a large margin(9.58). This benefits from
that our model can better preserve the structure information
in source image, which proves the effectiveness of our SSA
module.

The qualitative results are shown in Figure 4. We find
that the generated images of our method depict vivid car-
toon styles. First, from the aspects of color style, our re-
sult displays brighter lightness and higher image contrast
without damaging the overall style of source image. Other
SOTA methods like CUT, LSeSim and CartoonGAN gener-
ate images with severe color variation. Second, our method
removes negligible details and presents a smoother surface
for each semantic region. By contrast, compared methods
especially for CycleGAN, CUT and CartoonGAN still keep
original high-frequency information. Third, with the help of
SSA module, our method highly abstracts source image and
preserves semantic-aware consistent structure. Compared
with the previous best model WhiteboxGAN, our method
achieves more natural structure abstraction as shown by the
man face in the fourth row.

Evaluation of Temporal Consistency
To evaluate the coherence of generated videos, we calcu-
late the widely-used warping error as (Lei, Xing, and Chen
2020). For each output frame ti of a sequence, we calculate
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Source Image CycleGAN CUT LSeSim CartoonGAN Shinkai WhiteboxGANOurs

Figure 4: Qualitative comparison on cartoon effects, the first and third rows show the source image and generated cartoon
images of different methods. The second and fourth rows refer to the magnified details in the red box of images.

its warping error with frame ti−1 for short-term consistency:

Eshort =
1

N − 1

N∑
i=2

‖M ◦ (Wsi→si−1(ti)− ti−1)‖1 (14)

where Wsi→si−1 is the backward optical flow between si−1
and si, M is the corresponding occlusion mask. We also
calculate the warping error of each frame with frame t1 for
long-term consistency:

Elong =
1

N − 1

N∑
i=2

‖M ◦ (Wsi→s1(t
i)− t1)‖1 (15)

Following recent works, we evaluate the temporal consis-
tency on DAVIS (Perazzi et al. 2016) dataset. The optical
flow is estimated with pretrained RAFT model (Teed and
Deng 2020). In addition to aforementioned methods, we also
adopt post-processing models including Blind (Lai et al.
2018) and Deep Video Prior(DVP) (Lei, Xing, and Chen
2020) upon the SOTA image cartoonization method White-
boxGAN for comparison.

The quantitative results are shown in Table 2. Our
method performs best for long-term temporal consistency
and achieves lower short-term warping error than that of
source video. For image translation models, CartoonGAN,
LSeSim, CUT and WhiteboxGAN have higher warping er-
ror. For post-processing methods, Blind can decrease the
short-term warping error but increase long-term warping er-
ror. DVP achieves the lowest warping error but it requires
several minutes to process a single sequence. Our method
has comparable performance on temporal consistency with

Method Eshort ↓ Elong ↓
Source Video 0.0532 0.262
CartoonGAN 0.0810 0.305

LSeSim 0.0691 0.272
CycleGAN 0.0607 0.240

CUT 0.0718 0.264
WhiteboxGAN 0.0670 0.266

WhiteboxGAN+Blind 0.0610 0.296
WhiteboxGAN+DVP 0.0490 0.2487

Baseline 0.0746 0.273
Baseline + SSA 0.0643 0.262
Baseline + PMC 0.0667 0.258

Baseline + SSA+Compound Loss 0.0517 0.250
Baseline + SSA+PMC(Ours) 0.0526 0.237

Table 2: Short-term and long-term warping error of different
models on temporal consistency.

post-processing methods, and this proves the capability of
PMC to restrict temporal consistency.

The qualitative results are shown in Figure 5, where gen-
erated cartoon images with the warping error heat map
are illustrated for different methods. Our method preserves
temporal consistency in most regions except for objects
with rapid motion. Image translation methods in the first
row show obvious high-frequency errors in the background.
Post-processing methods decrease the warping error a lot
but hurt the cartoon effect (e.g. clear edge). By contrast, our
method both enhance the temporal consistency and renders
great cartoon style effects.
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Input CycleGAN CUT LSeSim WhiteboxGAN

WhiteboxGAN+Blind WhiteboxGAN+DVP Baseline Baseline+SSA+Compound OursBaseline+SSA

CartoonGAN

Figure 5: Qualitative comparison on temporal consistency. The first and third rows show source image and generated cartoon
images of different methods. The second and fourth rows show the heat maps of warping error that indicate the differences
between two adjacent video frames. Please refer to the supplementary materials for a video demonstration.

Ablation Study and Analysis

We conduct experiments on different variants of our model
to evaluate the effectiveness of our proposed SSA and PMC
module. We also adopt the optical flow based compound reg-
ularization (Wang et al. 2020a) for comparison with PMC.
The comparison results are shown in Table 2 and Figure 5.

Effectiveness of SSA By introducing SSA, our model de-
creases the short-term warping error by 0.0112 and the long-
term warping error by 0.011. As shown in generated images,
SSA helps remove the obvious strokes generated by base-
line model and better preserve the semantic-aware structure
consistency. This indicates the structure consistency deriv-
ing from SSA can also benefit the temporal consistency.

Effectiveness on temporal consistency of PMC Simply
applying PMC on baseline model benefits both short-term
and long-term temporal consistency. By adding PMC regu-
larization upon SSA, our model further decreases the short-
term and long-term warping error by 0.0117 and 0.025. The
compound regularization boosts the temporal consistency
but it generates artifacts where a long edge segments the
background region. By contrast, the PMC regularization can
better restrict the temporal consistency without hurting the
quality of generated images.

Analysis on the local patch width of SSA To explore the
relationship between granularity of semantic alignment and
local patch width in SSA, we conduct experiments without
SSA and with SSA of different patch widths from 3 to 7.
As shown in Figure 6, (1) the generated image without SSA
demonstrates obvious artifacts and structure inconsistency.
(2) As the increase of patch kernel size, the generator can
capture more coarse semantic regions and the generated im-
ages have smoother structure.

Souce Image R=3 R=5 R=7w/o SSA

Figure 6: Images generated by our model without SSA and
with SSA of different patch widths. Please zoom in to see
the details.

Conclusion
In this paper, we propose a spatially-adaptive semantic
alignment framework with perceptual motion consistency to
generate temporal consistent cartoon videos. The proposed
SSA module restores the local shift and deformation of se-
mantic structure, which helps render semantic-aware struc-
ture consistent images. The PMC module builds a style-
independent global-aware regularization on perceptual mo-
tion consistency to generate coherent cartoon videos. Exper-
iments and ablation study demonstrate the effectiveness of
our proposed modules.
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