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Abstract
Monocular 3D object detection aims to localize 3D bound-
ing boxes in an input single 2D image. It is a highly chal-
lenging problem and remains open, especially when no ex-
tra information (e.g., depth, lidar and/or multi-frames) can be
leveraged in training and/or inference. This paper proposes a
simple yet effective formulation for monocular 3D object de-
tection without exploiting any extra information. It presents
the MonoCon method which learns Monocular Contexts, as
auxiliary tasks in training, to help monocular 3D object de-
tection. The key idea is that with the annotated 3D bounding
boxes of objects in an image, there is a rich set of well-posed
projected 2D supervision signals available in training, such
as the projected corner keypoints and their associated offset
vectors with respect to the center of 2D bounding box, which
should be exploited as auxiliary tasks in training. The pro-
posed MonoCon is motivated by the Cramèr–Wold theorem
in measure theory at a high level. In implementation, it uti-
lizes a very simple end-to-end design to justify the effective-
ness of learning auxiliary monocular contexts, which consists
of three components: a Deep Neural Network (DNN) based
feature backbone, a number of regression head branches for
learning the essential parameters used in the 3D bounding
box prediction, and a number of regression head branches
for learning auxiliary contexts. After training, the auxiliary
context regression branches are discarded for better inference
efficiency. In experiments, the proposed MonoCon is tested
in the KITTI benchmark (car, pedestrian and cyclist). It out-
performs all prior arts in the leaderboard on the car cate-
gory and obtains comparable performance on pedestrian and
cyclist in terms of accuracy. Thanks to the simple design,
the proposed MonoCon method obtains the fastest inference
speed with 38.7 fps in comparisons. Our code is released at
https://git.io/MonoCon.

Introduction
3D object detection is a critical component in many com-
puter vision applications in practice, such as autonomous
driving and robot navigation. High performing methods of-
ten require more costly system setups such as Lidar sensors
(Yan, Mao, and Li 2018; Lang et al. 2019; Qi et al. 2019; Shi
et al. 2020) for precise depth measurements or stereo cam-
eras (Li, Chen, and Shen 2019; Qin, Wang, and Lu 2019; Xu
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Figure 1: Performance comparisons on the car category in
the KITTI 3D object detection benchmark. The proposed
MonoCon shows consistently better performance. See text
for detail.

et al. 2020; Sun et al. 2020) for stereo depth estimation, and
are often more computationally expensive. To alleviate those
“burden” and due to the potential prospects of reduced cost
and increased modular redundancy, monocular 3D object de-
tection that aims to localize 3D object bounding boxes from
an input 2D image has emerged as a promising alternative
approach with much attention received in the computer vi-
sion and AI community (Chen et al. 2016; Manhardt, Kehl,
and Gaidon 2019; Simonelli et al. 2019; Li et al. 2019; Brazil
and Liu 2019; Liu et al. 2020; Wang et al. 2020; Ye et al.
2020; Shi, Chen, and Kim 2020; Luo et al. 2021; Kumar,
Brazil, and Liu 2021; Wang et al. 2021c,d). In addition to po-
tential advantages in practice, developing powerful monoc-
ular 3D object detection systems will facilitate addressing a
fundamental question in computer vision: whether it is pos-
sible to recover 3D structures from only 2D images which
have lost the depth information in the first place.

This paper is interested in 3D object detection in the au-
tonomous driving application. The objective is to estimate
the 3D bounding box for each object instance such as a car
in a 2D image. In the KITTI benchmark (Geiger et al. 2013),
a 3D bounding box is parameterized by: (i) the 3D center lo-
cation (x,y, z) in the camera 3D coordinates (in meters),
(ii) the observation angle α of the object with respect to the
camera based on the vector from the camera center to the 3D
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Figure 2: Illustration of the proposed MonoCon method for monocular 3D object detection without exploiting any extra infor-
mation. It seeks a minimally-simple design. Given an input RGB image of dimensions 3×H×W , a convolution neural network
feature backbone computes the output feature map of dimensions D × h × w, where D is the output feature map dimension,
h = H/s and w = W/s with s the overall stride/sub-sampling rate of the feature backbone (e.g., s = 4). Then, light-weight
regression head branches are used in a direct and straightforward way, including one set of the regression head branches for the
essential parameters (3D locations, shape dimensions and observation angles) which will be used in inferring the 3D bounding
box, and the other set for the auxiliary contexts. Only the heatmap of 2D bounding box centers is class specific, and the others
are class-agnostic. The proposed MonoCon is trained end-to-end and the auxiliary branches will be discarded in testing. In the
right-top, the intermediate results for three regression branches are shown (note that the depth map will only be used sparsely
based on the detected 2D bounding box centers). Best viewed in color and magnification. See text for detail.

object center, and (iii) the shape dimensions (h,w, l), i.e.,
height, width and length (in meters). Based on the extensive
and insightful analyses made by the MonoDLE method (Ma
et al. 2021) in the KITTI benchmark, one main challenge of
improving the overall performance in monocular 3D ob-
ject detection lies in inferring the 3D center location with
high accuracy. To address the challenge, there are two main
types of settings in state-of-the-art monocular 3D object de-
tection, depending on whether there are extra information
(Lidar depth measurements, monocular depth estimation re-
sults by a separately trained model or multi-frames) lever-
aged in training and/or inference. In practice, the 3D center
location (x,y, z) is often decomposed to the projected 3D
center in the image plane (xc, yc) and the object depth z.
With the camera intrinsic matrix assumed to be known in
both training and inference, the 3D location can be recov-
ered with the inferred projected 3D center and object depth.

This paper focuses on end-to-end monocular 3D ob-
ject detection without exploiting any extra information.
It adopts the anchor-offset formulation proposed in the Cen-
terNet (Zhou, Wang, and Krähenbühl 2019) in learning the
projected 3D center based on the 2D bounding box cen-
ter (i.e., the anchor), and proposes a simple yet effective
method that facilitates better overall performance (Fig. 1).
The key idea is to leverage Monocular Contexts as aux-
iliary learning tasks in training to improve the perfor-
mance (Fig. 2). The underlying rationale is that with the
annotated 3D bounding boxes of objects in an image, there
is a rich set of well-posed projected 2D supervision signals
available in training, such as the projected corner keypoints
and their associated offset vectors with respect to the anchor.
They should be exploited in training to induce more expres-
sive representations for monocular 3D object detection. The
proposed method is thus dubbed as MonoCon.

Statistically speaking, the monocular contexts can be
treated as marginal random variables in the image plane,
which are projected from the 3D bounding box random vari-
ables. In measure theory, the Cramèr-Wold theorem (Cramér
and Wold 1936) states that a Borel probability measure
on Rk is uniquely determined by the totality of its one-
dimensional projections. Motivated by the Cramèr-Wold
theorem, the proposed MonoCon method introduces monoc-
ular projections as auxiliary tasks in training to learn more
effective representations for monocular 3D object detection.
In the meanwhile, it seeks a minimally-simple design of the
overall detection system to justify the effectivenss of the un-
derlying rationale and the high-level motivation.

In implementation, the proposed MonoCon utilizes a very
simple design consisting of three components (Fig. 2): a
Deep Neural Network (DNN) based feature backbone, a
number of regression head branches for learning the essen-
tial parameters used in the 3D bounding box prediction, and
a number of regression head branches for learning auxil-
iary contexts. After training, the auxiliary context regression
branches are discarded. In experiments, the proposed Mono-
Con is tested in the KITTI benchmark (car, pedestrian and
cyclist) (Geiger et al. 2013). It outperforms prior arts (in-
cluding methods that use lidar, depth or multi-frame extra
information) in the leaderboard on the car category and ob-
tains comparable performance on pedestrian and cyclist in
terms of accuracy. Thanks to the simple design, the proposed
MonoCon obtains the fastest speed with 38.7 fps (on a single
NVIDIA 2080Ti GPU card) in comparisons.

Related Work and Our Contributions
Auxiliary tasks and auxiliary learning: In machine learn-
ing, auxiliary tasks refer to tasks which are leveraged in
training with the sole goal of better performing the primary
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tasks of interest in inference. The learning procedure is thus
called auxiliary learning, in contrast to multitask learning,
for which all tasks in training will be of interest in inference
too. Auxiliary tasks and auxiliary learning have shown many
successful applications in computer vision (Zhang et al.
2014; Mordan et al. 2018; Liu, Davison, and Johns 2019;
Ye et al. 2021; Valada, Radwan, and Burgard 2018). Al-
though simple, exploiting comprehensive 2D auxiliary tasks
has not been studied well in monocular 3D object detection.
The proposed MonoCon showcases the advantage of auxil-
iary learning for both performance (on the car category) and
inference efficiency in the KITTI benchmark (Geiger et al.
2013).

Monocular 3D detection with extra information:
Monocular 3D detection falls behind lidar-based and stereo-
image based counterparts significantly due to its ill-posed
nature. Therefore, many monocular 3D detection methods
seek solutions with the help of extra information, such as
lidar data (Chen et al. 2021; Reading et al. 2021), off-the-
shelf monocular depth estimation modules (pretrained us-
ing dense depth map) (Xu and Chen 2018; Ding et al. 2020;
Wang et al. 2019; Ma et al. 2020, 2019; Wang et al. 2021a),
multi-frames (Brazil et al. 2020), or CAD models (Xiang
et al. 2015; Chabot et al. 2017; He and Soatto 2019), etc.
Although these methods have shown promising results, how-
ever, most of these models heavily rely on extra modules (i.e.
depth estimation modules, etc.), which entails extra com-
putation cost. As a result, these methods are usually slow
in inference (less than 10 fps), severely hindering their ap-
plications in real-time autonomous driving. The proposed
MonoCon method does not use any extra information and
seeks a minimally-simple design with very promising per-
formance and real-time inference speed achieved. One mo-
tivation is that before exploiting the more computationally
expensive settings using multi-view images or more costly
settings with more sensors, we want to understand the “true”
limit of purely monocular 3D detection methods.

Monocular 3D detection without extra information:
Since the seminal work of Deep3DBox (Mousavian et al.
2017), many efforts (Liu et al. 2019; Li et al. 2020; Cai
et al. 2020; Chen et al. 2020; Bao, Yu, and Kong 2020; Shi
et al. 2021; Liu, Yixuan, and Liu 2021; Zhang et al. 2021;
Lu et al. 2021; Zhang, Lu, and Zhou 2021) have been pro-
posed to utilize 2D-3D geometric constraints to improve 3D
detection performance, which are often posed as multi-task
learning, rather than auxiliary learning. For example, in the
RTM3D method (Li et al. 2020), all of the learned 2D tasks
are used as optimization terms to calculate the 3D location
of cars in the post-processing (using the PnP method) in in-
ference. In the MonoRCNN method (Shi et al. 2021), one
2D task (i.e., 2D box) is used. The 2D box prediction is used
to calculate the depth together with 3D box size in infer-
ence. The SMOKE method (Liu, Wu, and Tóth 2020) does
not learn any 2D task. One main claim in SMOKE is that
2D tasks will interfere the learning of 3D tasks. In exploit-
ing 2D-3D geometric constraints, existing work compute 3D
locations explicitly based on 2D predictions, and thus often
suffer from the well-known error amplification effect. So,
more recent work try to use uncertainty modeling (e.g., the

GUPNet (Lu et al. 2021)), or sophisticated model ensem-
ble (e.g., in MonoFlex (Zhang, Lu, and Zhou 2021)). The
goal of the proposed MonoCon is to investigate the effects of
2D auxiliary tasks in training, and to eliminate the potential
error amplification effect in inference, with improved per-
formance obtained. More recently, there are efforts explor-
ing how to generate extrinsic-invariant (Zhou et al. 2021) or
distance-invariant (Simonelli et al. 2020) representations to
improve 3D detection performance. The proposed MonoCon
is complementary to aforementioned methods by leveraging
well-posed 2D contexts projected from 3D bounding boxes
as auxiliary learning tasks. It has the potential to be easily
extended using aforementioned methods with performance
further improved.

Our contributions: This paper makes three main contri-
butions to monocular 3D object detection as follows: (i) It
presents a simple yet surprisingly effective method, Mono-
Con for purely monocular 3D object detection by learning
auxiliary monocular contexts. At a high level, the proposed
MonoCon formulation can be explained by the Cramèr-
Wold theorem (Cramér and Wold 1936) in measure theory.
(ii) It shows state-of-the-art performance on the car category
in the KITTI 3D object detection benchmark, outperform-
ing prior arts by a large margin. It obtains comparable per-
formance on the pedestrian and cyclist categories. It can run
at a speed of 38.7 fps, faster than prior arts. (iii) It sheds
light on developing more powerful and efficient monocu-
lar 3D object detection systems by exploring and exploiting
even more auxiliary contexts in general applications going
beyond autonomous driving (e.g., robot navigation).

Approach
Problem Definition
Let Λ be the image lattice (e.g. 384 × 1280 in the KITTI
benchmark), and IΛ an image defined on the lattice. As
aforementioned, the objective of monocular 3D object de-
tection is to infer the label (e.g., car, pedestrian and cyclist)
and the 3D bounding box for each object instance in IΛ. The
3D bounding box is parameterized by the 3D center location
(x,y, z) in meters, the shape dimensions (h,w, l) in meters
and the observation angle α ∈ [−π, π], all measured in the
camera coordinate system. The observation angle is used in
prediction due to its underlying stronger relationship with
image appearance. The camera intrinsic matrix is assumed
to be known in both training and inference.

Challenges. Typically, both the shape dimensions and
the orientation are directly regressed using features com-
puted by a feature backbone such as a Convolutional Neural
Network (CNN). The direct regression methods also have
shown good performance for them individually. In the mean-
while, the overall 3D bounding box prediction performance
(e.g., the Average Precision (AP) based on the intersection-
over-union) is relatively less sensitive to the shape dimen-
sions and the orientation, in the sense that if the 3D center
location can be inferred with high accuracy, the AP will not
decrease dramatically even if the shape dimensions and the
orientation are not accurately predicted. By contrast, even
with very accurate estimate of shape dimensions and orien-
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tations, the AP will drop catastrophically if the 3D center
location is perturbed. The underlying reason is the signifi-
cant gap between the shape dimensions (roughly between 1
and 3 meters) and the 3D location (roughly between 1 and
60 meters), and the uncertainty measured for both of them in
monocular images will cause dramatically different effects
for the overall AP.

There are two different formulations in learning the pro-
jected 3D center (xc, yc): One is to directly predict it by
learning a heatmap representation, for which the projected
centers falling outside the image plane are either simply dis-
carded in training (Liu, Wu, and Tóth 2020; Ma et al. 2021)
or cleverly handled with the help from the intersection point
between the image edge and the line from the center of 2D
bounding box to the outside projected 3D center (Zhang,
Lu, and Zhou 2021). The other is to further decompose a
projected 3D center into the center of 2D bounding box
(xb, yb) (i.e., the anchor inside the image plane) and an off-
set/displacement vector (∆x,∆y) with xc = xb + ∆x and
yc = yb + ∆y, following the CenterNet (Zhou, Wang, and
Krähenbühl 2019) formulation. Due to the large variation of
the offset vectors, it is difficult to learn them. Thus, the latter
is often inferior to the former in terms of the overall perfor-
mance (Zhang, Lu, and Zhou 2021; Ma et al. 2021), albeit it
is an intuitively simple and generic representation for learn-
ing the projected 3D center. The proposed method shows that
the latter can work well when sufficient monocular contexts
are exploited in training.

The Proposed MonoCon Method
As illustrated in Fig. 2, the proposed MonoCon method is
simple by design, consisting of three components:

Feature Backbone. Given an input RGB image IΛ of di-
mensions 3×H ×W , a feature backbone f(·; Θ) is used to
compute the output feature map F of dimensionsD×h×w,

F = f(IΛ; Θ), (1)
where Θ collects all the learnable parameters, D is the out-
put feature map dimension (e.g., D = 512), and h and w are
determined by the overall stride/sub-sampling rate s in the
backbone (e.g. s = 4). We use the DLA network (Yu et al.
2018) (DLA-34) that is widely used in monocular 3D object
detection for fair comparisons in experiments.

The 3D Bounding Box Regression Heads. We adopt
the anchor-offset formulation in learning the projected 3D
bounding box center (xc, yc) in the image plane. A regres-
sion head is used to compute the class-specific heatmap Hb
of dimensions c × h × w for the 2D bounding box center
(xb, yb) for each of the c classes (e.g., c = 3 representing
car, pedestrian and cyclist in the KITTI benchmark),

Hb = g(F ; Φb), (2)
where g(·; Φb) is realized by a light-weight module with the
learnable parameters Φb,

F
Conv+AN+ReLU
===========⇒

d×3×3×D
Fd×h×w

Conv
======⇒
c×1×1×d

Hbc×h×w, (3)

where the first convolution also reduce the feature dimension
to d (e.g., d = 64) to be light-weight, and AN represents
the Attentive Normalization (AN) (Li, Sun, and Wu 2020),
which is a light-weight module integrating feature normal-

ization (e.g., BatchNorm (Ioffe and Szegedy 2015)) and
channel-wise feature attention (e.g. the Squeeze-Excitation
module (Hu, Shen, and Sun 2018)). Thanks to its mixture
modeling formulation of the affine transformation in re-
calibrating the features after standardization, it is adopted in
the regression head for learning more expressive latent fea-
ture representations Fd×h×w. The light-weight module ar-
chitecture g(·) (Eqn. 3) is used by all regression heads with
different instantiations (i.e., different learnable parameters).

The regression head of computing the offset vector
(∆xcb,∆y

c
b) from the 2D bounding box center (xb, yb) to

the projected 3D bounding box center (xc, yc) is defined by,
Oc2×h×w = g(F ; Θbc). (4)

Similarly, the depth and the shape dimensions are re-
gressed respectively as follows,

Z1×h×w =
1

Sigmoid (g (F ; ΘZ) [0]) + ε
− 1, (5)

σZ1×h×w = g(F ; ΘZ)[1], (6)

S3D
3×h×w = g(F ; ΘS3D

), (7)
where g(F ; ΘZ) estimates the depth and its uncertainty. The
inverse sigmoid transformation is applied to handle the un-
bounded output of g(F ; ΘZ)[0], as done in (Zhou, Wang,
and Krähenbühl 2019), and ε is a small positive constant
to ensure numeric stability. σZ is used to model the het-
eroscedastic aleatoric uncertainty in the depth estimation as
done in (Chen et al. 2020; Zhang, Lu, and Zhou 2021; Ma
et al. 2021).

For the observation angle α, the multi-bin setting pro-
posed by (Mousavian et al. 2017) is used. The angle range
[−π, π] is divided evenly into a predefined number of b non-
overlapping bins (e.g., b = 12). The observation angle re-
gression head is defined by,

A2b×h×w = g(F ; ΘA), (8)
where the observation angle α is predicted by computing
its bin index, αi ∈ {0, 1, · · · 11} from the first b channels
(using arg max after softmax along the b channels) and the
corresponding angle residual, αr in the second b channels of
A, together with proper conversions to ensure α ∈ [−π, π].

Computing the predicted 3D bounding box. Based on
the peaks in each channel of the heatmap Hb (Eqn. 2) af-
ter non-maximum suppression (NMS) and thresholding with
a threshold τ (e.g., τ = 0.2), a set of 2D bounding box
centers are detected for each class. Without loss of gener-
ality, consider a detected 2D bounding box center (xb, yb)
for a car, the offset vector is retrieved from Oc (Eqn. 4),
(∆xb,∆yb) = Oc(xb, yb). Then, the projected 3D center for
the car is predicted by (xc, yc) = (xb+∆xb, yb+∆yb). The
corresponding depth is predicted by z = Z(xb, yb). With
the camera intrinsic matrix, the 3D location (x,y, z) will
be computed in a straightforward way. Similarly, the shape
dimensions (h,w, l) and the observation angle α can be pre-
dicted for the car. With all these parameter inferred, the 3D
bounding box is predicted.

The Auxiliary Context Regression Heads. The pro-
posed MonoCon method exploits four types of projection
information from 3D bounding boxes as auxiliary learning
tasks.
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i) The heatmaps of the projected keypoints. As done
in computing the 2D bounding box center heatmap Hb
(Eqn. 2), the first type of auxiliary contexts is the heatmaps
of the 9 projected keypoints consisting of the projected 8
corner points and the projected center of the 3D bounding
box, and we have,

Hk9×h×w = g(F ; Θk). (9)
ii) The offset vectors for the 8 projected corner points.

In addition to the offset vector from the 2D bounding box
center to the projected 3D bounding box center,Oc (Eqn. 4),
the second type of auxiliary contexts is the offset vectors
from the 2D bounding box center to the 8 projected corner
points of the 3D bounding box, and we have,

Ok16×h×w = g(F ; Θbk). (10)
Note that this is combined with Eqn. 4 with the first convo-
lution block in g(·) shared in implementation.

iii) The 2D bounding box size. This is as done in the Cen-
terNet (Zhou, Wang, and Krähenbühl 2019). The height and
width of the 2D bounding box are regressed,

S2D
2×h×w = g(F ; ΘS2D

). (11)
iv) The quantization residual of a keypoint location. Due

to the overall stride s (typically s > 1) in the feature back-
bone, there is a residual between the pixel location in the
original input image IΛ and its corresponding pixel location
in the output feature map F after multiplying the stride s.
Consider the 2D bounding box center (x∗b , y

∗
b ) of a car in

the original image, its pixel location in the feature map F is
(xb = bx

∗
b

s c, yb = by
∗
b

s c), and the residual is defined by,
δxb = x∗b − xb, δyb = y∗b − yb. (12)

We model the residual of the 2D bounding box center
(xb, yb) and that of the 9 projected keypoints (xk, yk) sepa-
rately to account for the underlying difference of the nature
of those points. The latter is modeled in a keypoint-agnostic
way as shown in Fig. 2 for simplicity. We have,

Rb2×h×w = g(F ; ΘRb

), (13)

Rk2×h×w = g(F ; ΘRk

). (14)

Loss Functions
We use five loss functions which are widely used in monocu-
lar 3D object detection, consisting of (i) the Gaussian kernel
weighted focal loss (Lin et al. 2017; Law and Deng 2018)
function for the heatmaps (Eqn. 2 and Eqn. 9) as used in
the CenterNet (Zhou, Wang, and Krähenbühl 2019), (ii) the
Laplacian aleatoric uncertainty loss function for the depth
estimation (Eqn. 5 and Eqn. 6), (iii) the dimension-aware L1
loss function for shape dimensions (Eqn. 7), (iv) the stan-
dard cross-entropy loss function for the bin index in obser-
vation angles (Eqn. 8), and (v) the standard L1 loss function
for offset vectors (Eqn. 4 and Eqn. 10), the intra-bin angle
residual in observation angles (Eqn. 8), 2D bounding box
sizes (Eqn. 11) and the quantization residual (Eqn. 13 and
Eqn. 14). We briefly discuss the first three as follows.

i) The Gaussian kernel weighted focal loss function for
heatmaps (Lin et al. 2017; Law and Deng 2018; Zhou,
Wang, and Krähenbühl 2019). Without loss of generality,
consider a regressed heatmap H1×h×w (e.g., the 2D bound-

ing box centers of cars), the ground-truth heatmapH∗1×h×w
is also generated at the resolution of the regressed heatmap.
For each ground-truth center point (x∗b , y

∗
b ) ∈ P in the

original image, its location in the ground-truth heatmap is
(xb = bx

∗
b

s c, yb = by
∗
b

s c) (where s is the overall stride
of the feature backbone). A Gaussian kernel G(x, y) =

exp (− (x−xb)2+(y−yb)2

2·σ2
b

) is used to model the center point,
where σb is a predefined object-size-adaptive standard de-
viation as used in (Law and Deng 2018). If two Gaussian
kernels overlap, the element-wise maximum is kept. All the
G(·, ·)’s are then collapsed to form the ground-truth heatmap
H∗. The loss function is defined by,

L(H,H∗) =
−1

N

∑
(x,y)

{
(1−Hxy)γ log(Hxy), ifH∗xy = 1,

(1−H∗xy)β(Hxy)γ log(1−Hxy),

(15)
where N = |P| is the number of ground-truth points. β and
γ are hyper-parameters (e.g., β = 4.0 and γ = 2.0).

ii) The Laplacian aleatoric uncertainty loss function for
depth (Chen et al. 2020; Ma et al. 2021; Zhang, Lu, and
Zhou 2021). Denote by Z∗1×h×w the ground-truth (sparse)
depth map in which the ground-truth depth of an annotated
3D bounding box is assigned to the corresponding ground-
truth 2D bounding box center location in the lattice of h×w,
i.e., Z∗(xb, yb) (with the same inverse sigmoid transforma-
tion applied as in Eqn. 5). The Laplace distribution is used
in modeling the uncertainty σZ (Eqn. 6). For the prediction
depth Z (Eqn. 5), the loss function is defined by,

L(Z,Z∗) =
1

|P|
∑

(xb,yb)∈P

√
2

σZb
|zb − z∗b |+ log(σZb ), (16)

where P is the set of ground-truth 2D bounding box cen-
ter points, σZb = σZ(xb, yb), zb = Z(xb, yb) and z∗b =
Z∗(xb, yb).

iii) The dimension-aware L1 loss function for shape di-
mensions (Ma et al. 2021), which is motivated by the IoU
oriented optimization (Rezatofighi et al. 2019) and realizes
a re-distribution of the standard L1 loss. Similarly, let S3D∗

be the ground-truth map of shape dimensions assigned to the
ground-truth 2D bounding box center locations in the lattice
of h×w. For the predicted shape dimensions S3D (Eqn. 7),
the loss function is defined by,

L(S3D,S3D∗
) = λ · ||S

3D − S3D∗

S3D
||1, (17)

where λ is the compensation weight to ensure the
dimension-aware L1 loss has the same value as the standard
L1 loss, which is by definition the ratio (without gradients
in training) between the standard L1 loss and the dimension-
aware loss before applying the compensation weight.

The Overall Loss is simply the sum of all loss terms each
of which has a trade-off weight parameter. For simplicity,
we use 1.0 for all loss terms except for the 2D size L1 loss
which uses 0.1.

Experiments
In this section, we test the proposed MonoCon in the widely
used and challenging KITTTI 3D object detection bench-
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Methods, Publication Venues Extra Info. Runtime↓ APBEV |R40|IoU≥0.7 ↑ AP3D|R40|IoU≥0.7 ↑
(ms) Easy Mod. Hard Easy Mod. Hard

PatchNet, ECCV20 (Ma et al. 2020)
Depth

400 22.97 16.86 14.97 15.68 11.12 10.17
D4LCN, CVPR20 (Ding et al. 2020) 200 22.51 16.02 12.55 16.65 11.72 9.51
DDMP-3D, CVPR21 (Wang et al. 2021a) 180 28.08 17.89 13.44 19.71 12.78 9.80

Kinematic3D, ECCV20 (Brazil et al. 2020) Multi-frames 120 26.69 17.52 13.10 19.07 12.72 9.17

MonoRUn, CVPR21 (Chen et al. 2021) Lidar 70 27.94 17.34 15.24 19.65 12.30 10.58
CaDDN, CVPR21 (Reading et al. 2021) 630 27.94 18.91 17.19 19.17 13.41 11.46

RTM3D, ECCV20 (Li et al. 2020)

None

40 19.17 14.20 11.99 14.41 10.34 8.77
Movi3D, ECCV20 (Simonelli et al. 2020) 45 22.76 17.03 14.85 15.19 10.90 9.26
IAFA, ACCV20 (Zhou et al. 2020) 40 25.88 17.88 15.35 17.81 12.01 10.61
MonoDLE, CVPR21 (Ma et al. 2021) 40 24.79 18.89 16.00 17.23 12.26 10.29
MonoRCNN, ICCV21 (Shi et al. 2021) 70 25.48 18.11 14.10 18.36 12.65 10.03
Ground-Aware, RAL21 (Liu, Yixuan, and Liu 2021) 50 29.81 17.98 13.08 21.65 13.25 9.91
PCT, - (Wang et al. 2021b) 45 29.65 19.03 15.92 21.00 13.37 11.31
MonoGeo, - (Zhang et al. 2021) 50 25.86 18.99 16.19 18.85 13.81 11.52
MonoEF, CVPR21 (Zhou et al. 2021) 30 29.03 19.70 17.26 21.29 13.87 11.71
MonoFlex, CVPR21 (Zhang, Lu, and Zhou 2021) 35 28.23 19.75 16.89 19.94 13.89 12.07
GUPNet, ICCV21 (Lu et al. 2021) 34 30.29 21.19 18.20 22.26 15.02 13.12

MonoCon (Ours), AAAI22

None 25.8 31.12 22.10 19.00 22.50 16.46 13.95

Improvement

v.s. Depth +3.04 +4.21 +4.03 +2.79 +3.68 +3.78
v.s. Multi-frames +4.43 +4.58 +5.90 +3.43 +3.74 +4.78

v.s. LiDAR +3.18 +3.19 +1.81 +2.85 +3.05 +2.49
v.s. None +0.83 +0.91 +0.80 +0.24 +1.44 +0.83

Table 1: Comparisons with state-of-the-art methods on the car category in the KITTI official test set. Following the KITTI
protocol, methods are ranked by their performance under the moderate difficulty setting. The best results are listed in bold and
the second place in italic. The runtime of our MonoCon is measured using a single 2080Ti GPU card.

Methods Extra Ped., AP3D|R40|IoU≥0.5 Cyc., AP3D|R40|IoU≥0.5

Easy Mod. Hard Easy Mod. Hard

DDMP-3D Depth 4.93 2.55 3.01 4.18 2.50 2.32
CaDDN Lidar 12.87 8.14 6.76 7.00 3.41 3.30
MonoDLE

None

9.64 6.55 5.44 4.59 2.66 2.45
MonoGeo 8.00 5.63 4.71 4.73 2.93 2.58
MonoEF 4.27 2.79 2.21 1.80 0.92 0.71
MonoFlex 9.43 6.31 5.26 4.17 2.35 2.04
GUPNet 14.95 9.76 8.41 5.58 3.21 2.66
MonoCon 13.10 8.41 6.94 2.80 1.92 1.55

Table 2: Comparisons with state-of-the-art methods on the
pedestrian category and the cyclist category in the KITTI
official test set.

mark (Geiger et al. 2013). We first present comparisons with
prior arts in the leaderboard, and then analyze the proposed
MonoCon method using ablation studies.

Data. The KITTI dataset consists of 7,481 images for
training and 7,518 images for testing. There are three cat-
egories of interest: car, pedestrian and cyclist. The ground
truth for the test set is reserved for evaluation on the test
server. In comparison with prior arts, we train our Mono-
Con on all 7,481 images and the performance is evaluated by
the KITTI official server. For ablation studies, we follow the
protocol used by prior works (Chen et al. 2016, 2015, 2017)
to split the provided whole training data into a training sub-
set (3,712 images) and a validation subset (3,769 images).

Evaluation Metrics. We follow the protocol provided in
the KITTI benchmark. The detection is evaluated by the av-
erage precision (AP) of 3D bounding boxes AP3D|R40 and
the AP of bird’s eye view (APBEV |R40), both with 40 re-
call positions (R40) used and under three difficulty settings
(easy, moderate, and hard). The moderate difficulty level is
used to rank methods in the KITTI leaderboard. The APs are

computed with the intersection-over-union (IoU) threshold
0.7, 0.5 and 0.5 for car, pedestrian and cyclist respectively.

Implementation Details. Our MonoCon is trained on a
single GPU with a batch size of 8 in an end-to-end way for
200 epochs. The AdamW optimizer is used with (β1, β2) =
(0.95, 0.99) and weight decay 0.00001 (not applying to fea-
ture normalization layers and bias parameters). The initial
learning rate is 2.25e−4, and the cyclic learning rate sched-
uler is used (1 cycle), which first gradually increases the
learning rate to 2.25e − 3 with the step ratio 0.4, and then
gradually drops to 2.25e− 4× 1.0e− 4 (i.e., the target ratio
is (10, 1.0e − 4)). The cyclic scheduler is also applied for
the momentum with the target ratio (0.85/0.95, 1) and the
same step ratio 0.4. Due to the auxiliary context regression
heads in training, the complexity of training our MonoCon is
greater in terms of training time and memory footprint. After
training, the auxiliary components will be discarded, result-
ing in faster speed in inference than prior arts. We adopt the
commonly used data augmentation methods such as photo-
metric distortion and random horizontal flipping following
(Zhou, Wang, and Krähenbühl 2019; Ma et al. 2021; Zhang,
Lu, and Zhou 2021). We also utilize random shifting to aug-
ment cropped instances at the edge of images.

Comparisons with State-of-the-Art Methods
Table 1 and Table 2 show the quantitative comparisons of
our MonoCon with state-of-the-art methods. We provide
qualitative results in the supplementary materials.

Comparisons on the car category. Cars are the dominant
objects in the KITTI 3D object detection benchmark, and of
the most interest in evaluation. Our MonoCon consistently
outperforms all prior arts. In terms of the KITTI ranking pro-
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2D Context Heads AN Val, APR40, Car
Ok Rb S2D Hk Rk Easy Mod. Hard

MonoDLE - - X - - - 17.45 13.66 11.68
MonoDLE∗ - - X - - X 22.96 16.76 14.85

(a) - - - - - X 16.57 10.20 8.14
(b) - X X X X X 17.65 11.42 8.71
(c) X X X - - X 21.76 16.09 13.34
(d) X X - X X X 22.72 16.68 13.88
(e) X X X X - X 23.51 17.76 15.03
(f) X - X X X X 24.11 18.28 15.35
(g) X X X X X - 25.37 18.69 15.67

MonoCon X X X X X X 26.33 19.01 15.98

Table 3: Ablation studies on different auxiliary contexts (see
Fig. 2 and Eqn. 9 to Eqn. 14) and the Attentive Normaliza-
tion (Li, Sun, and Wu 2020) (AN in Eqn. 3) in our Mono-
Con. ∗For fair comparisons and to justify our method’s ef-
fectiveness, we re-implement and train a modified and en-
hanced version of the vanilla MonoDLE (Ma et al. 2021)
with the AN added and the exactly same training settings as
our MonoCon. Note that the 2D size is used in both training
and inference in MononDLE.

tocol based on the AP3D|R40 under the moderate difficulty
setting, our MonoCon achieves significant improvement by
1.44% absolute increase against the runner-up method, the
GUPNet (Lu et al. 2021). It also runs faster than prior arts.
The improvement justify the effectiveness of learning more
auxiliary monocular contexts in monocular 3D object detec-
tion for the autonomous driving applications. Our MonoCon
also consistently outperform prior arts in the validation set
with the results provided in the supplementary materials due
to the space limit.

Comparisons on the pedestrian and cyclist categories.
Our MonoCon shows inferior performance than some of the
prior arts. On the pedestrian category, our MonoCon shows
1.35% drop of AP3D|R40 under the moderate setting com-
paring with the best model, the GUPNet (Lu et al. 2021),
but outperforms all other methods in comparisons. On the
cyclist category, our MonoCon shows 1.29% drop compar-
ing with the best purely monocular model, the MonoDLE
method (Ma et al. 2021). Overall, our MonoCon is less ef-
fective on the cyclist category among the three categories.
We observe that the 3D bounding boxes of pedestrian and
cyclist are much smaller than those of car, and the projected
monocular contexts are often in the very close proximity in
the feature map (of the h × w lattice). The close proxim-
ity may affect the learnability and effectiveness of the auxil-
iary contexts. One potential solution is to randomly sample
a subset of auxiliary contexts that are spatially separate from
each other, which we leave to future work.

Ablation Studies
We investigate the effects of learning auxiliary contexts and
of the class-agnostic settings for regression heads in Fig. 2.

The Importance of Learning Auxiliary Contexts and
the Attentive Normalization (AN). Table 3 shows the
comparisons which show the effectiveness of the proposed
MonoCon and justify the importance of the design choices.
One the one hand, without the auxiliary components, our
MonoCon is most similar to the MonoDLE method (Ma
et al. 2021). We retrain an enhanced MonoDLE model which

Data CA Val, APR40, Car Val, APR40, Ped. Val, APR40, Cyc.
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

All X 26.33 19.01 15.98 1.46 1.31 0.99 7.60 4.35 3.55
All - 24.69 18.53 15.49 9.21 6.85 5.49 3.44 1.50 1.50

Car N/A 24.60 18.15 15.36 - - - - - -
Ped. N/A - - - 5.10 4.13 3.10 - - -
Cyc. N/A - - - - - - 2.98 1.66 1.27

Table 4: Ablation studies on the design of regression heads
(class-agnostic (CA) vs class-specific in Eqn. 4 to Eqn. 14)
and the training settings (joint vs separate training of car,
pedestrian and cyclist).

obtains significantly better performance than the vanilla
MonoDLE. Our MonoCon still outperforms the enhanced
MonoDLE by a large margin. On the other hand, we test 7
variants of our MonoCon model from (a) to (g). The aux-
iliary contexts are significantly more important than the At-
tentive Normalization: (g) vs (a) with a 8.49% absolution in-
crease under the moderate difficulty settings, which clearly
shows the significance of the proposed formulation against
some implementation tuning. From (b) to (f), we rank the
importance of the auxiliary contexts based on the perfor-
mance of the model trained without them: the lower the per-
formance is, the more important the context(s) are.

The effects of class-agnostic settings in regression
heads and of training settings. Table 4 shows the com-
parisons. On the one hand, using the class-agnostic design
shows better performance for the car and cyclist categories,
while the class-specific design is significantly better for the
pedestrian category. On the other hand, jointly training the
three categories is beneficial, which indicates that some
inter-category synergy may exist.

Conclusion
This paper proposes a simple yet effective formulation for
monocular 3D object detection without exploiting any extra
information. It presents the MonoCon method which learns
auxiliary monocular contexts that are projected from the 3D
bounding boxes in training. The proposed MonoCon utilizes
a simple design in implementation consisting of a ConvNet
feature backbone and a list of regression heads with the same
module architecture for the essential parameters and the aux-
iliary contexts. In experiments, the proposed MonoCon is
tested in the KITTI 3D object detection benchmark with
state-of-the-art performance on the car category and compa-
rable performance on the pedestrian and cyclist categories.
At a high level, the effectiveness of the proposed MonoCon
can be explained by the Cramèr–Wold theorem in measure
theory. Ablation studies are performed to investigate, and the
results support, the effectiveness of our MonoCon.
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