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Abstract

Although existing face anti-spoofing (FAS) methods achieve
high accuracy in intra-domain experiments, their effects drop
severely in cross-domain scenarios because of poor gener-
alization. Recently, multifarious techniques have been ex-
plored, such as domain generalization and representation dis-
entanglement. However, the improvement is still limited by
two issues: 1) It is difficult to perfectly map all faces to a
shared feature space. If faces from unknown domains are not
mapped to the known region in the shared feature space, acci-
dentally inaccurate predictions will be obtained. 2) It is hard
to completely consider various spoof traces for disentangle-
ment. In this paper, we propose a Feature Generation and Hy-
pothesis Verification framework to alleviate the two issues.
Above all, feature generation networks which generate hy-
potheses of real faces and known attacks are introduced for
the first time in the FAS task. Subsequently, two hypothesis
verification modules are applied to judge whether the input
face comes from the real-face space and the real-face distribu-
tion respectively. Furthermore, some analyses of the relation-
ship between our framework and Bayesian uncertainty esti-
mation are given, which provides theoretical support for reli-
able defense in unknown domains. Experimental results show
our framework achieves promising results and outperforms
the state-of-the-art approaches on extensive public datasets.

1 Introduction
Nowadays, face recognition (FR) has been widely used in
many AI systems in our daily lives. However, endless face
presentation attacks continuously threaten the security of
face applications. To endow the AI systems with this impor-
tant defensive capability, FAS techniques must be equipped.

In the past few years, various FAS approaches have been
proposed. Some representative methods are handcrafted
feature-based (Boulkenafet et al. 2015), movement-based
(Pan et al. 2007), distortion-based (Wen et al. 2015), physio-
logical signal-based (Li et al. 2016) and deep feature-based
(Yang et al. 2014). Although these methods perform well in
intra-domain experiments, the effects decrease severely in
cross-domain scenarios due to poor generalization. With the
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Figure 1: Comparison among domain generalization-based
methods (DG), representation disentanglement-based meth-
ods (RD) and our FGHV framework.

aim of more generalized models, two categories of methods
are currently being studied.

Domain generalization-based methods are exploited to
learn a domain-agnostic feature space. Intuitively, if a model
works well in several known domains, it would be more
likely to be effective in other unknown domains. To achieve
it, commonly used solutions include metric learning (Jia
et al. 2020), adversarial training (Liu et al. 2021b), meta-
learning (Wang et al. 2021) and special structures (Yu et al.
2021c). Despite using different techniques, all these meth-
ods aim to attain a better feature extraction backbone so that
regardless of which domain the input comes from, the back-
bone always outputs generalized features. However, in real
scenarios, it is hard to perfectly map real and fake faces from
different domains to a generalized shared feature space. Ad-
ditionally, from the perspective of Bayesian uncertainty esti-
mation, models will be prone to giving wrong results if they
are fed with what they do not know.

Representation disentanglement-based methods hold the
view that features can be partitioned into liveness-related
parts (i.e., spoof trace) and liveness-unrelated parts (e.g., ap-
pearance, identification, age), and only the liveness-related
parts are leveraged to classify for better generalization. To
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this end, CycleGAN (Zhang et al. 2020) or arithmetic oper-
ations on images (Liu et al. 2020) is utilized to extract the
spoof trace. However, spoof traces vary with the type and
style of attacks. That’s to say, these methods might be con-
fused if inputs from unknown domains are given.

In order to tackle such issues, we propose a Feature Gen-
eration and Hypothesis Verification (FGHV) framework to
verify both real-face feature space and real-face distribu-
tion by generating hypotheses. Fig. 1 depicts the compar-
ison to two related methods. Firstly, we leverage two fea-
ture generation networks to generate features of real faces
and known attacks respectively which are also termed as hy-
potheses. Different from domain generalization-based meth-
ods that construct a shared feature space from raw images in
huge RGB space, hypotheses are generated from latent vec-
tors which are sampled from the same distribution during
training and testing periods. Compared with representation
disentanglement-based methods that mine spoof traces, we
mainly care about features of real faces which are more sim-
ilar across domains. Secondly, we devise a Feature Hypoth-
esis Verification Module (FHVM) to estimate to what ex-
tent the input face comes from the real-face feature space.
Specifically, after generating enough real-face hypotheses
via the feature generation network, the FHVM evaluates the
consistency of correlations between each hypothesis and the
input face. Thirdly, we design a Gaussian Hypothesis Ver-
ification Module (GHVM) to measure the KL divergence
between the input face distribution and the real-face dis-
tribution in the latent space. Furthermore, from the view-
point of Bayesian uncertainty estimation, we analyze that
our framework actually constructs a more effective prior
distribution than Bayesian neural network (Shridhar et al.
2018a,b; Farquhar et al. 2020) to estimate the epistemic un-
certainty, which brings greater effects and better reliability.

The main contributions are summarized as follows:
• The FAS problem is modeled as a classification problem

of real faces and non-real faces, and to the best of our knowl-
edge, feature generation networks for producing hypotheses
are introduced into the FAS task for the first time.

• Two effective hypothesis verification modules are pro-
posed to judge whether the input face comes from the real-
face feature space and the real-face distribution respectively.

• The relationship between our framework and Bayesian
uncertainty estimation is clearly stated. And comprehensive
experiments and visualizations demonstrate the effective-
ness and reliability of our approach.

2 Related Work
We briefly review related works on traditional FAS meth-
ods, and then detail domain generalization-based methods
and representation disentanglement-based methods which
are two popular research orientations based on deep learn-
ing. Finally, we give a sketch of Bayesian deep learning.

Traditional Face Anti-Spoofing. Early researchers have
introduced lots of handcrafted features to achieve FAS task,
such as LBP (Boulkenafet et al. 2015; de Freitas Pereira
et al. 2012, 2013; Määttä et al. 2011), HOG (Komulainen
et al. 2013; Yang et al. 2013) and SIFT (Patel et al. 2016).

Since they are too simple to perform well, more liveness
cues are explored later, such as eye blinking (Pan et al.
2007), face movement (Wang et al. 2009), light changing
(Zhang et al. 2021a) and remote physiological signals (e.g.,
rPPG (Li et al. 2016; Liu et al. 2018; Yu et al. 2021b; Hu
et al. 2021)). However, these methods are always limited by
low accuracy or complicated process in video data.

Domain Generalization-Based Face Anti-Spoofing. Al-
though deep learning facilitates the FAS task, the generaliza-
tion ability for multiple domains still need to be improved.
To this end, researchers have tapped the potential of various
techniques. Some approaches measured and constrained the
distance of features or domains to obtain domain-agnostic
features. For instance, Li et al. (2018a) used the MMD dis-
tance to make features unrelated with domains. Jia et al.
(2020) and Yang et al. (2021) introduced triplet loss (Li
et al. 2019a,b) and Zhang et al. (2021b) even constructed
a similarity matrix to constrain the distance between fea-
tures. Also, many meta-learning-based methods were ex-
ploited to find a generalized space among multiple domains
(Shao et al. 2020; Qin et al. 2020; Kim and Lee 2021; Chen
et al. 2021b; Wang et al. 2021; Qin et al. 2021). Besides,
Wang et al. (2019a) and Liu et al. (2021b) utilized adver-
sarial training, while Yu et al. (2020a,e,c,b, 2021c,a) and
Chen et al. (2021a) proposed some special network struc-
tures and loss functions for better generalization. Although
the effects were improved from different aspects, all these
methods intended to make the feature extraction backbone
generalized. Nevertheless, mapping all real faces and attacks
of different domains to a shared feature space is difficult and
the shared feature space is usually not generalized well. Fur-
thermore, in the view of uncertainty estimation, given some
inputs from unknown domains, these models might produce
surprisingly bad results because of incapacity to distinguish
what they know and what they don’t.

Representation Disentanglement-Based Face Anti-
Spoofing. Some other representative methods for general-
ization realized FAS through detecting spoof traces which
were disentangled from input faces. Stehouwer et al. (2020)
would like to synthesize and identify noise patterns from
seen and unseen medium/sensor combinations, and then
benefited from adversarial training. Liu et al. (2020) in-
tended to disentangle spoof traces via arithmetic operations,
adversarial training and so on. Especially, motivated by Cy-
cleGAN (Zhu et al. 2017), Zhang et al. (2020) finished dis-
entangling liveness features of real faces and attacks by
exchanging, reclassification and adversarial training. Gen-
erally speaking, these methods successfully disentangled
liveness-related features and thus had relatively stronger in-
terpretability. However, the set of attacks is an open set and
it is almost impossible to construct the distribution of attacks
or disentangle diverse spoof traces accurately.

Bayesian Deep Learning. Bayesian deep learning is
one of the commonly used uncertainty estimation methods,
which can capture both epistemic uncertainty and aleatoric
uncertainty. The network combined with Bayesian deep
learning is referred to Bayesian Neural Network (BNN)
(Denker and LeCun 1990; MacKay 1992). Later, several
approximation approaches, such as variational inference
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Figure 2: An overview of the proposed Feature Generation and Hypothesis Verification framework. Feature Hypothesis Verifi-
cation Module introduces the variance constraint (VAR) in both training and testing. Besides, Gaussian Hypothesis Verification
Module draws support from Relative Correlation Constraint (RCC) and Distribution Discrimination Constraint (DDC) in train-
ing, and then acquires the distribution distance (i.e., KL divergence) via latent vectors optimization in testing. The gray arrows
on the right prompt how hypotheses are optimized after a real-face image is input. RCC makes cos(f, gi) higher and cos(f, hi)
lower. VAR compels all cos(f, gi) to be equal. DDC urges cos(hi, gj) lower and cos(gi, gj) higher.

and MC dropout, were presented to model the uncertainty
(Graves 2011; Blundell et al. 2015; Hernandez-Lobato et al.
2016; Gal and Ghahramani 2016). Recently, methods incor-
porated with Bayesian deep learning have been applied to
various fields, such as recommender systems (Li and She
2017), object tracking (Kosiorek et al. 2018), health care
(Wang et al. 2019b) and salient object detection (Tang et al.
2021). Whereas, there are rare applications of Bayesian deep
learning to face anti-spoofing.

3 Proposed Method
As shown in Fig. 2, the Feature Generation and Hypoth-
esis Verification framework contains a traditional Feature
Extraction Backbone, two novel Feature Generation Net-
works and two powerful hypothesis verification modules:
1) Feature Hypothesis Verification Module estimates the
possibility that the input face comes from the real-face fea-
ture space. 2) Gaussian Hypothesis Verification Module
directly measures the KL divergence between the distribu-
tion of the input face and that of real faces in the latent space.

3.1 Feature Extraction Backbone
In our framework, the feature extraction backbone takes a
single face image I ∈ [0, 255]3×H×W as input and outputs
the liveness feature vector fff ∈ RCf , where H × W is the
spatial size and Cf is the dimension of the feature vector.

In the training period, many existing works prefer to di-
rectly constrain this feature vector fff to obtain a shared fea-
ture space. However, after considering the diversity of mul-
tiple domains, we still find it is too difficult to construct a
perfectly generalized feature mapping via limited training
data. After all, the raw image space [0, 255]3×H×W is so
large that we can only get a fraction of samples for training.

Instead, we agree only real faces in multiple domains are
similar, so we merely attempt to classify real and non-real
faces. To achieve it, we mainly construct the real-face distri-
bution and secondarily make the known-attack distribution
the auxiliary by means of feature generation networks.

3.2 Feature Generation Network
Inspired by GAN (Goodfellow et al. 2014), we design two
generation networks to fit the distribution of real faces
and known attacks. Nevertheless, considering that noisy or
blurry images might be generated (Di Biase et al. 2021) and
the detailed information in images is essential to the FAS
task, we urge the two generation networks to directly gener-
ate features instead of raw face images.

The two feature generation networks take a latent vector
zzz ∈ RCz as input, where Cz is the dimension of the latent
vector and zzz ∼ N (000, III) is sampled from the standard multi-
variate normal distribution. One feature generation network
generates a real-face feature vector ggg ∈ RCf and the other
generates a known-attack feature vector hhh ∈ RCf .

For as much as these generated real-face and known-
attack features are not extracted from real collected images,
it is more appropriate to name the generated features as hy-
potheses. For the sake of effective hypotheses, the feature
generation networks are constrained in regard to both feature
space and feature distribution with the assist of the following
two hypothesis verification modules.

3.3 Feature Hypothesis Verification Module
In an attempt to optimize the feature extraction backbone
and the feature generative network in terms of feature space,
Feature Hypothesis Verification Module is proposed, which
evaluates the consistency of correlations between each real-
face hypothesis and the input face feature to determine
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whether the input face comes from real-face feature space.
In our definition, the real-face feature space is a space com-
posed of features which have high consistency of correla-
tions with real-face hypotheses.

Intuitively, the correlations between real-face features
should be high, while the correlations between real-face fea-
tures and non-real-face features should be low. In fact, after
obtaining the face feature fff and the real-face hypothesis ggg,
we utilize cosine similarity to measure the correlation:

cos(fff,ggg) =
fff · ggg

∥fff∥2 · ∥ggg∥2
. (1)

In pursuit of robust consistency estimation, we take mul-
tiple hypotheses into account. And then there will be three
situations: (1) If the input face feature has high correlations
with each real-face hypothesis, the input face will be thought
to be in the same feature space as the real faces. (2) If the
input face feature has low correlations with each real-face
hypothesis, the input face will also be regarded as a sample
from the real-face space but not from the real-face distribu-
tion. This situation will be discussed in Sec. 3.4. (3) If some
correlations are high and the others are low, it will mean that
the input face feature space and the real-face feature space
have some intersecting subspaces. For this situation, we can
determine how these two feature spaces match via measur-
ing the consistency of correlations.

Concretely, we simultaneously sample N Gaussian vec-
tors {zzz1, zzz2, · · · , zzzN} to generate N real-face hypotheses
{ggg1, ggg2, · · · , gggN} and calculate N cosine similarities be-
tween fff and each hypothesis. By reason that mathematical
variance can capture the consistency, we make the variance
of cosine similarities the indicator of space intersection size
as Eq. 2. For real-face inputs, the variance should be small.
As shown in Fig. 2, the included angles between the input
face feature and each real-face hypothesis tend to be simi-
lar. On the contrary, for non-real-face inputs, the variance is
usually large and those included angles tend to be different.

V AR =
1

N − 1

N∑
i=1

(cos(fff,gggi)−
∑N

j=1 cos(fff,gggj)

N
)2 (2)

Even though the variance constraint can not distinguish
the first and the second situations above, it has ability to
identify the third situation which is the most common situa-
tion in actual usage. Moreover, we will partition the first and
the second situations in Sec. 3.4. It should be noted that the
variance constraint does not apply to known-attack hypothe-
ses, because there are various attack types and any attack is
not necessarily highly correlated with other known attacks.

Finally, we conclude the advantages of the FHVM by
revisiting some domain generalization methods (Jia et al.
2020; Yang et al. 2021). These methods map real faces and
known attacks to a shared space, and agree that the scores of
real faces should be close to 1 and those of attacks should be
close to 0. But in this way, if any input face from unknown
domains is not mapped to the known region in the shared
space, the model will probably output an inaccurate score.
Instead, the FHVM urges the feature extraction backbone to

map real faces and non-real faces to different spaces. There-
fore, before the final prediction is given, we can utilize the
variance to check whether the input face belongs to the real-
face feature space, which brings on better reliability.

3.4 Gaussian Hypothesis Verification Module
Since the distribution of real faces is a distribution composed
of features which have high correlations with real-face hy-
potheses and is only a manifold in the real-face space, not
all hypotheses in the real-face space are right real-face fea-
tures, which explains the second situation illustrated in Sec.
3.3. To alleviate this issue, we introduce Gaussian Hypothe-
sis Verification Module which brings in two constraints and
measures KL divergence between the distribution of input
faces and that of real faces.

Relative Correlation Constraint. Considering that the
real-face distribution is only a part of meaningful regions in
the real-face space, we take the attitude that it is necessary to
increase constraints to make this distribution more accurate.
Intuitively, for real-face inputs, the correlations with real-
face hypotheses should be higher than those with known-
attack hypotheses. As for non-real-face inputs, the goal is the
opposite. Thus, we propose Relative Correlation Constraint
(RCC) in a cross-entropy-like form. After formula deriva-
tion, the constraint is represented by Eq. 3, where y′ is 1 for
real-face inputs and is 0 for non-real-face inputs. In particu-
lar, Fig. 2 gives an example of how two types of hypotheses
are optimized with respect to the given real-face input.

RCC =
1

N

N∑
i=1

(ln(ecos(fff,gggi) + ecos(fff,hhhi))

−y′cos(fff,gggi)− (1− y′)cos(fff,hhhi))

(3)

Distribution Distance Measurement. We calculate KL
divergence between the input face distribution and the stan-
dard normal distribution in the latent space where zzz is sam-
pled. For real-face inputs, the RCC losses are usually small,
so the modifications of zzzi are minor. Considering zzz(0) are
sampled from the standard normal distribution, zzz(M) would
also obey the standard normal distribution. On the contrary,
for non-real-face inputs, the modifications are so major that
zzz(M) would obey another unknown distribution.

Enlightened by Schlegl et al. (2017), we utilize the Gradi-
ent Descent approach to search for the corresponding latent
vector of the input face. Specifically, we assume that the in-
put face is a real face, i.e., y′ = 1, and then decrease the
RCC loss via optimizing the latent vector zzz in the hope of
acquiring the real-face hypotheses with higher correlations
and the known-attack hypotheses with lower correlations. In
practice, given an original latent vector zzz(0) ∼ N (000, III), the
RCC loss can be calculated and a new latent vector zzz(1) will
be obtained via Eq. 4, where α is the step length for Gradient
Descent. The latent vector zzz(1) is closer to the corresponding
latent vector of the input face than zzz(0). And after M itera-
tions, zzz(M) is basically able to represent the corresponding
latent vector of the input face. Moreover, since N latent vec-
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tors are sampled before, N corresponding latent vectors of
the input face {zzz(M)

1 , zzz
(M)
2 , · · · , zzz(M)

N } are obtained.

zzz(1) = zzz(0) − α
∂RCC

(0)
y′=1

∂zzz(0)
(4)

For simplification, we assume the corresponding latent
vectors of the input face obey a multivariate normal distri-
bution. KL divergence with the standard normal distribution
N (0, 1) can be computed as Eq. 5, where µ and σ2 are re-
spectively the estimated mean and variance for a certain di-
mension in these latent vectors. After calculating the KL di-
vergences for all dimensions, we average them to acquire
the final KL divergence KL. We use the difference of two
KL divergences ∆KL = KL(M)−KL(0) to judge whether
the input face is real, where KL(0) and KL(M) are the KL
divergence before the initial iteration and that after the fi-
nal iteration, respectively. Note that, KL(0) should be zero
theoretically. But allowing for the limited number of sam-
ples from the standard normal distribution, it is actually a
quite small value. Fortunately, in the experiments, we find
that ∆KL is usually a small value for real-face inputs, while
it is a large value for non-real-face inputs.

KL = −logσ +
σ2 + µ2

2
− 1

2
(5)

Distribution Discrimination Constraint. For further im-
proving the discriminative ability of the real-face distribu-
tion, we not only make real-face hypotheses more concen-
trated, but also make the distances between real-face hy-
potheses and known-attack hypotheses farther. Thus, we im-
pose the distribution discrimination constraint as Eq. 6.

DDC =
1

N2

N∑
i=1

N∑
j=1

(cos(gggi,hhhj)− cos(gggi, gggj)) (6)

Overall Loss. The overall loss function Eq. 7 is the
combination of the variance constraint, the relative correla-
tion constraint and the distribution discrimination constraint,
where λ1 and λ2 are the weights for balance.

Loverall = (2y′ − 1) · V AR+ λ1 ·RCC + λ2 ·DDC (7)

3.5 Relation to Bayesian Uncertainty Estimation
Bayesian deep learning obtains epistemic uncertainty and
aleatoric uncertainty by formulating probability distribu-
tions over the model parameters and outputs. Especially,
the epistemic uncertainty is formulated by placing a prior
distribution over the model parameters. Given some inputs,
the epistemic uncertainty can be estimated by measuring
how much the output varies with these sampled parameters.
In previous works (Shridhar et al. 2018a,b; Farquhar et al.
2020), the prior distribution is usually set as a multivariate
normal distribution with learnable means and variances. As
the model parameters are sampled from the learnt distribu-
tion, the variance of the outputs is leveraged to approximate
the epistemic uncertainty as Eq. 8, where ŷ̂ŷyt = F Ŵt(xxx) is

the t-th sampled output for random weights Ŵt ∼ q(W ),
and q(W ) is the learnt normal distribution.

Epi(yyy) ≈ 1

T

T∑
t=1

ŷ̂ŷy2t − (
1

T

T∑
t=1

ŷ̂ŷyt)
2 (8)

Coincidentally, our proposed approach quite matches the
idea of epistemic uncertainty estimation. The feature gener-
ation network is equivalent to the parameter generation net-
work for the fully-connected layers, which generates ran-
dom weights Ŵt. And the cosine similarity can be regarded
as the sampled output ŷ̂ŷyt.

Nevertheless, compared with the previous uncertainty es-
timation methods which set q(W ) to learnable normal distri-
butions, we make q(W ) an arbitrary joint distribution which
is directly constructed by a generation network. By remov-
ing the strong prior assumption that each model parameter
obeys an independent normal distribution, we achieve more
accurate epistemic uncertainty estimation.

4 Experiments
4.1 Evaluation Basis
Datasets. Above all, we conduct the cross-dataset testing
on four public datasets, i.e., OULU-NPU (denoted as O)
(Boulkenafet et al. 2017), CASIA-MFSD (denoted as C)
(Zhang et al. 2012), Idiap Replay-Attack (denoted as I)
(Chingovska et al. 2012) and MSU-MFSD (denoted as M)
(Wen et al. 2015). After that, the cross-type testing is carried
out on the rich-type dataset, i.e., SiW-M (Liu et al. 2019).
Classification Bases. There are three bases for classifica-
tion: (1) The mean of N softmax outputs derived from
cos(fff,gggi) and cos(fff,hhhi). (2) The variance calculated by Eq.
2. (3) The ∆KL claimed in Sec. 3.4. In cross-dataset testing,
we only use the first score for fair comparison. In cross-type
testing, we use all three scores to show the effectiveness of
our approach.
Implementation Details. All experiments are conducted via
PyTorch on a 32GB Tesla-V100 GPU. For fair comparison,
the architecture of our feature extraction network is Depth-
Net (Liu et al. 2018) which is the same as most alternative
methods. The structures of two feature generation networks
are the same, each of which consists of two fully-connected
layers and a leaky ReLU activation function. The input is
only an RGB image (resized to 3x256x256) and has no need
of HSV image. During the training period, the framework
is trained with SGD optimizer where the momentum is 0.9
and the weight decay is 5e-4. The learning rate is initially 1e-
3 and drops to 1e-4 after 50 epochs. The hyper-parameters
λ1 and λ2 are both set to 1. Our source code is available at
https://github.com/lustoo/FGHV.

4.2 Comparison to Alternative Approaches
Cross-dataset testing. We strictly follow the previous meth-
ods (Jia et al. 2020; Qin et al. 2020) and select one dataset for
testing and the other three datasets for training. As for eval-
uation, we follow the popular metrics, i.e., the Half Total Er-
ror Rate (HTER) and the Area Under Curve (AUC), and let
the Softmax scores derived from real-face correlations and
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Method O&C&M to I O&C&I to M O&M&I to C I&C&M to O
Hter(%) AUC(%) Hter(%) AUC(%) Hter(%) AUC(%) Hter(%) AUC(%)

MS LBP (Määttä et al. 2011) 50.30 51.64 29.76 78.50 54.28 44.98 50.29 49.31
Auxiliary(Depth) (Liu et al. 2018) 29.14 71.69 22.72 85.88 33.52 73.15 30.17 77.61

MMD-AAE (Li et al. 2018b) 31.58 75.18 27.08 83.19 44.59 58.29 40.98 63.08
MADDG (Shao et al. 2019) 22.19 84.99 17.69 88.06 24.50 84.51 27.98 80.02
SSDG-M (Jia et al. 2020) 18.21 94.61 16.67 90.47 23.11 85.45 25.17 81.83
RFM (Shao et al. 2020) 17.30 90.48 13.89 93.98 20.27 88.16 16.45 91.16

NAS-FAS (Yu et al. 2020d) 11.63 96.98 16.85 90.42 15.21 92.64 13.16 94.18
DRDG (Liu et al. 2021b) 15.56 91.79 12.43 95.81 19.05 88.79 15.63 91.75

D2AM (Chen et al. 2021b) 15.43 91.22 12.70 95.66 20.98 85.58 15.27 90.87
Self-DA (Wang et al. 2021) 15.60 90.10 15.40 91.80 24.50 84.40 23.10 84.30

ANRL (Liu et al. 2021a) 16.03 91.04 10.83 96.75 17.85 89.26 15.67 91.90

Ours 16.29 90.11 9.17 96.92 12.47 93.47 13.58 93.55

Table 1: Comparison to face anti-spoofing methods on the cross-dataset testing task for domain generalization.

Method Metrics Rep. Pri.
Mask Attacks Makeup Attacks Partial Attacks

AverageHal. Sil. Tra. Pap. Man. Obf. Imp. Cos. Fun. Gla. Par.

Auxiliary
(Liu et al. 2018)

ACER 16.8 6.9 19.3 14.9 52.1 8.0 12.8 55.8 13.7 11.7 49.0 40.5 5.3 23.6±18.5
EER 14.0 4.3 11.6 12.4 24.6 7.8 10.0 72.3 10.1 9.4 21.4 18.6 4.0 17.0±17.7

DTN
(Liu et al. 2019)

ACER 9.8 6.0 15.0 18.7 36.0 4.5 7.7 48.1 11.4 14.2 19.3 19.8 8.5 16.8±11.1
EER 10.0 2.1 14.4 18.6 26.5 5.7 9.6 50.2 10.1 13.2 19.8 20.5 8.8 16.1±12.2

SpoofTrace
(Liu et al. 2020)

ACER 7.8 7.3 7.1 12.9 13.9 4.3 6.7 53.2 4.6 19.5 20.7 21.0 5.6 14.2±13.2
EER 7.6 3.8 8.4 13.8 14.5 5.3 4.4 35.4 0.0 19.3 21.0 20.8 1.6 12.0±10.0

NAS-FAS
(Yu et al. 2020d)

ACER 9.3 7.9 11.4 12.1 15.8 1.9 2.7 28.5 0.4 15.1 16.5 16.0 3.8 10.9±7.8
EER 9.3 6.8 9.7 11.1 12.5 2.7 0.0 26.1 0.0 15.0 15.1 13.4 2.3 9.5±7.4

DC-CDN
(Yu et al. 2021c)

ACER 12.1 9.7 14.1 7.2 14.8 4.5 1.6 40.1 0.4 11.4 20.1 16.1 2.9 11.9±10.3
EER 10.3 8.7 11.1 7.4 12.5 5.9 0.0 39.1 0.0 12.0 18.9 13.5 1.2 10.8±10.1

Ours
ACER 8.4 7.3 5.2 9.8 14.2 3.2 4.1 16.7 1.9 9.0 18.2 8.3 4.4 8.5±5.1
EER 9.0 8.0 5.9 9.9 14.3 3.7 4.8 19.3 2.0 9.2 18.9 8.5 4.7 9.1±5.4

Table 2: Comparison to face anti-spoofing methods on the cross-type testing task for domain generalization.

Method HTER(%) AUC(%)

Bayesian Neural Network 20.00 88.67
MC Dropout 15.00 92.50

Deep Ensemble 5.83 95.75

Ours 9.17 96.92

Table 3: Comparison to uncertainty estimation methods.

known-attack correlations become the only basis for clas-
sification. Compared to the alternative methods in Table 1,
our FGHV framework has overwhelming performance im-
provement in two cross-dataset settings and comparable ac-
curacy in the left two settings. Although NAS-FAS (Yu et al.
2020d) got a substantial increase in effect by searching a
much stronger backbone than DepthNet, our framework is
able to enhance the effects of cross-dataset scenarios only
with the aid of the three constraints, which indicates better
generalization.

It is worth noting that some ideas between our frame-
work and SSDG (Jia et al. 2020) are quite similar. Firstly,
the asymmetric triplet loss in SSDG and our DDC loss are
both aimed at optimizing distances among features. In fact,
SSDG only constrained input-face features whose quantity
is restricted by the size of datasets. Instead, we choose to re-
strain considerable generated hypotheses so that the distribu-
tion of real faces and that of non-real faces will be accurately
constructed and separated. Secondly, the feature generator
in SSDG is actually a feature extractor and the discriminator
makes extracted features domain-agnostic, while our feature
generation networks are real generators that are optimized
by FHVM and GHVM.

Cross-type testing. Strictly following the cross-type test-
ing protocol (13 attacks leave-one-out) on SiW-M, we se-
lect out one attack type as the unknown testing type and
treat the others as the known training types for each exper-
iment. As for performance metrics, Average Classification
Error Rate (ACER) and Equal Error Rate (EER) are uti-
lized. Since ACER describes the practical performance un-
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RCC VAR DDC HTER(%) AUC(%)

✓ 14.16 91.12
✓ 33.33 64.50

✓ 19.12 86.83
✓ ✓ 10.00 93.92
✓ ✓ 10.83 93.50

✓ ✓ 12.50 94.23
✓ ✓ ✓ 9.17 96.92

Table 4: Comparison of different constraints.

Figure 3: The quantity varies with variance and ∆KL.

der predeterminate thresholds, we additionally take advan-
tage of the variance and ∆KL to assist classification. As
shown in Table. 2, our framework can significantly improve
the overall performance by 2.4% for ACER and 0.4% for
EER. Meanwhile, the results are more stable. Surprisingly,
our framework achieves a great promotion in defense for dif-
ficult obfuscation makeup attacks. Furthermore, it is worth
noting that the variance and ∆KL indeed contribute to de-
tecting attacks (ACERs are overall lower than EERs) so they
are quite practical in actual usage. Consequently, excellent
reliability is guaranteed.

Comparison to uncertainty estimation methods. Since
the FHVM plays a similar role in estimating epistemic un-
certainty, we compare our framework with three represen-
tative uncertainty estimation methods, i.e., Bayesian Neu-
ral Network (Kendall and Gal 2017), MC Dropout (Gal and
Ghahramani 2016) and Deep Ensemble (Lakshminarayanan
et al. 2017). These methods are reproduced on O&C&I
to M setting and the comparison results are shown in Ta-
ble 3. It has been proved that the strong prior assumption
(i.e., normal distribution) in Bayesian Neural Network lim-
its the ability of models. As for MC Dropout, it is too sim-
ple to bring exciting improvement. Moreover, Deep Ensem-
ble outperforms in HTER but underperforms in AUC, which
means that our method and Deep Ensemble are compara-
ble in terms of overall performance. However, Deep Ensem-
ble constructs the distribution for the whole convolution and
fully-connected layers, which explains why it is more time-
consuming and memory-consuming.

Method HTER(%) AUC(%)

No FGN 25.00 83.08
Only RF FGN 15.83 86.67
Only KA FGN 20.00 90.67

Both FGNs 9.17 96.92

Table 5: The impacts of both feature generation networks.

Figure 4: The impact of the number of samples.

4.3 Ablation Study
What is the effect of each constraint? In an effort to ex-
plore the effects of three constraints in our framework, we
do ablation studies on O&C&I to M setting. For each exper-
iment, we select different constraints to optimize the same
framework and then use HTER and AUC for evaluation. As
indicated in Table 4, the framework with single RCC con-
straint can be regarded as the baseline because the RCC is
similar with cross entropy loss. The result of single VAR
constraint is unsatisfactory on account of not constructing
real-face distributions. But if the VAR constraint is accom-
panied with the RCC, the effect will be improved a lot. Ad-
ditionally, the usage of the DDC makes the real-face distri-
bution more discriminative so that the final effect reaches
the current best. In summary, the three constraints are indis-
pensable and boost the effectiveness from different aspects.
Is the FHVM discriminative? By reason that the FHVM
utilizes the consistency of correlations to estimate to what
extent the input face belongs to the real-face feature space,
we analyze how the quantities of real faces and attacks vary
with the variance of correlations on I&C&M to O setting.
As shown in Fig. 3(a), the variances of correlations between
real-face inputs and real-face hypotheses are much lower
than those between attack inputs and real-face hypotheses.
The results point out that the uncertainty estimation is indeed
carried out and the predictions of real-face inputs are more
certain. Hence, the discrimination of the FHVM is proved.
Is the GHVM discriminative? In an attempt to probe the
discrimination of the GHVM, we utilize Gradient Decent
strategy to find the corresponding latent vectors of the in-
put face on I&C&M to O setting as explained in Sec. 3.4.
The number of iterations M is 15 and the step length α is
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Figure 5: The t-SNE visualization.

1. After acquiring ∆KL = KL(15) − KL(0), we create
a histogram to reveal how the quantity varies with ∆KL.
As shown in Fig. 3(b), it is easy to find that ∆KLs of real
faces are generally small while ∆KLs of fake faces are usu-
ally large, which is consistent with our expectation. And if
the threshold is chosen appropriately, the separation of real
faces and attacks can be achieved successfully. Therefore,
the results demonstrate that the GHVM is discriminative.
Is it necessary to introduce two feature generation net-
works? Aiming to explore the necessity of both real-face
and known-attack feature generation networks, we launch a
probe into the impacts of both feature generation networks
(FGN) on O&C&I to M setting. The structure without any
FGN (No FGN) is the same with the conventional binary
classification network. The structure equipped with known-
attack FGN (Only KA FGN) can utilize RCC constraint,
while the structure equipped with real-face FGN (Only RF
FGN) can benefit from both RCC and VAR constraints. And
all three constraints cannot be used until two FGNs (Both
FGNs) are introduced at the same time. The results shown
in Table 5 prove that two feature generation networks ac-
companied with three constraints can bring the greatest im-
provement. Thus, the necessity is self-evident.
Can more sampled latent vectors bring better perfor-
mance or stability? To answer this question, we change
the number of sampled latent vectors to repeat training and
testing on I&C&M to O setting for several times (i.e., twenty
times). For performance assessment, we average the twenty
AUCs on the testset. For stability assessment, we utilize the
maximum and the minimum of the twenty AUCs to reflect
the fluctuation of effects. As depicted in Fig. 4, with the
number of samples increasing, the effects are enhanced a
lot. Furthermore, the training process and evaluation results
become more stable. Taken time consumption and accuracy
into account, the optimal number of samples is 14. Not only
is it possible for us to compromise accuracy and speed, but
applications can benefit from the reproducible experiments
and the robust models.
Will the feature extraction backbone be improved co-
incidentally? Although we are mainly committed to im-
proving the feature generation networks and attach less sig-
nificance to the feature extraction backbone, we intend to
validate whether the feature extraction backbone is also im-
proved coincidentally. To confirm it, we visualize the fea-
tures of input faces via t-SNE (Van der Maaten and Hinton

2008), which is depicted in Fig. 5. We conduct the ablation
study on I&C&M to O setting and treat the model which
is optimized only with cross entropy loss as the baseline
method. According to the visualization, the baseline method
classifies real faces and attacks well just in the source do-
mains but poorly in the target domain. On the contrary, for
our approach, even though attacks are not gathered together,
the real-face regions are well constructed, which makes it
easier to distinguish real faces and non-real faces. That’s to
say, our feature extraction backbone is promoted passingly.

5 Conclusion
In this paper, we propose a feature generation and hypothe-
sis verification framework for FAS. Firstly, for the purpose
of generalization, we regard the FAS task as the classifi-
cation of real faces and non-real faces. Then, two feature
generation networks are devised for the first time and two
hypothesis verification modules are designed to estimate to
what extent the input face belongs to the feature space and
the distribution of real faces. Finally, we analyze the frame-
work from the viewpoint of Bayesian uncertainty estimation
and demonstrate the reliability of the framework. Qualitative
and quantitative analyses show our framework outperforms
the state-of-the-art approaches.
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