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Abstract
Domain generalization typically requires data from multiple
source domains for model learning. However, such strong
assumption may not always hold in practice, especially in
medical field where the data sharing is highly concerned and
sometimes prohibitive due to privacy issue. This paper stud-
ies the important yet challenging single domain generaliza-
tion problem, in which a model is learned under the worst-
case scenario with only one source domain to directly gener-
alize to different unseen target domains. We present a novel
approach to address this problem in medical image segmen-
tation, which extracts and integrates the semantic shape prior
information of segmentation that are invariant across domains
and can be well-captured even from single domain data to fa-
cilitate segmentation under distribution shifts. Besides, a test-
time adaptation strategy with dual-consistency regularization
is further devised to promote dynamic incorporation of these
shape priors under each unseen domain to improve model
generalizability. Extensive experiments on two medical im-
age segmentation tasks demonstrate the consistent improve-
ments of our method across various unseen domains, as well
as its superiority over state-of-the-art approaches in address-
ing domain generalization under the worst-case scenario.

Introduction
Deep networks are notoriously difficult to generalize to new
domains due to distribution shift between training and test-
ing data acquired at different situations. Domain generaliza-
tion (DG) has recently emerged to improve the generaliz-
ability of deep networks on unseen domains. Most exist-
ing DG methods typically require to learn from multi-source
distributions to extract representations that are robust to dis-
tribution shifts (Li et al. 2017b). However, the prerequisite to
aggregate multi-domain data may not be always achievable
in practice. In the field of medical imaging, for example,
the data present privacy concerns and are prohibitive to be
shared before taking complex procedures including ethical
approval and patient consent (Price and Cohen 2019). In this
regard, directly generalizing a deep model trained with only
single-domain data to any unseen domain is increasingly im-
portant and has wider applicability in medical applications.

This problem is single domain generalization (SDG), the
worst-case scenario of DG with only one source domain
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available for model learning. Under this constraint, previous
DG methods depending heavily on accessing multi-domain
data can hardly work well or lack feasibility in the SDG set-
ting. For instance, the adversarial learning method (Li et al.
2018a) learns domain-invariant representations by regular-
izing the feature space of multiple data sources, which is
infeasible in the case when only one domain is provided for
training. Recently, a few studies have started to address SDG
problem with the typical solution of adversarial data aug-
mentation (Volpi et al. 2018; Qiao, Zhao, and Peng 2020; Li
et al. 2021), which aims to synthesize fictitious samples from
single-domain data to potentially simulate the data distribu-
tions of unseen domains. However, since it is extremely dif-
ficult to anticipate the distribution of test data, these methods
are less effective in medical imaging where the domain dis-
crepancies could be large due to complex factors and hardly
be simulated from source data (e.g., the domain shift caused
by whether using endorectal coil in prostate MRI scanning).
Moreover, medical data are usually high-dimensional with
tremendous tissue details, making it non-trivial to create
high-quality virtual data even after careful model tuning.

Regarding these limitations, we instead aim to address
the challenging SDG problem in a simple yet effective way,
which is inspired by two key observations in medical im-
age segmentation tasks. First, though the image appearances
differ across clinical centers, the semantic shape of segmen-
tation is highly consistent across data sources reflecting the
general anatomical structures in medical images. Encourag-
ingly, such shape information can be well-represented even
within one single domain, without necessarily aggregating
data from multiple clinical sources. Second, though the tar-
get distributions of large discrepancies can hardly be sim-
ulated during model training, they can instead be explored
at test time by considering the given inference sample as a
hint. This enables us to mitigate the image distribution bias
of single-domain training by adjusting model parameters for
each unseen data distribution accordingly at test time.

Based on these insights, we present a new method for ad-
dressing SDG named Test-time Adaptation from Shape Dic-
tionary (TASD). The core idea is to integrate the general
semantic shapes extracted from single-domain data into the
segmentation network, and further effectively leverage these
prior information through test-time adaptation to generalize
the single-domain model to any unseen domains. To this
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end, our TASD first establishes a dictionary learning strat-
egy to extract a set of explicit shape priors from the single
source domain. A regression branch is then embedded onto
the network, which produces weighting coefficients to inte-
grate these dictionary items, so that the segmentation could
be derived by jointly recognizing the sample features as
well as the pre-collected shape priors to facilitate generaliza-
tion. Next, when deploying the model to new domains, we
have devised a dual-consistency regularization mechanism
to adapt the model parameters at test time, which jointly en-
forces the consistency of shape coefficients and segmenta-
tion predictions under different input perturbations applied
to the inference data. Such adaptation strategy allows to dy-
namically update the model parameters especially for the
regression branch at test time, which enables the model to
adaptively utilize the shape prior information under any un-
seen data distributions to improve model generalizability.

Our main contributions are highlighted as follows:

• We present a novel approach to address the challenging
single domain generalization problem for medical image
segmentation, by explicitly exploiting the general seman-
tic shape priors that are extractable from single-domain
data and are generalizable across domains to assist do-
main generalization under the worst-case scenario.

• We also devise an effective test-time adaptation strat-
egy with dual-consistency regularization, which allows
to adaptively utilize the shape prior information at any
unseen data distributions to improve model generaliz-
ability.

• We conduct extensive experiments on two typical medi-
cal image segmentation tasks, i.e., prostate MRI and reti-
nal fundus image segmentation. With only single-domain
training, our method significantly improves generaliza-
tion performance on many unseen domains, outperform-
ing the state-of-the-arts.

Related Work
Domain generalization aims to generalize models to com-
pletely unseen domains without accessing target data dur-
ing training (Chattopadhyay, Balaji, and Hoffman 2020; Du
et al. 2020; Hoffer et al. 2020; Liu et al. 2021; Seo et al.
2020; Yue et al. 2019; Fan et al. 2021; Dou et al. 2021). Pre-
vious progress on DG is mainly made by enabling models
to learn from multi-source domain data to reduce the model
bias. A plenty of methods aim to extract domain-invariant
representations by aligning the feature space of multiple data
sources (Muandet, Balduzzi, and Schölkopf 2013; Ghifary
et al. 2015; Hsu, Lv, and Kira 2017; Motiian et al. 2017;
Li et al. 2018a,b). Some other studies have introduced self-
supervised learning (Huang et al. 2020) or model-agnostic
meta-learning (Li et al. 2017a; Dou et al. 2019; Balaji,
Sankaranarayanan, and Chellappa 2018; Li et al. 2019) to
regularize the model training with multiple domains to learn
generalizable representations. Recently, the worst-case sce-
nario with only one source domain available for model train-
ing has been attempted in (Qiao, Zhao, and Peng 2020; Volpi
et al. 2018; Wang et al. 2021b; Li et al. 2021) with adversar-
ial domain augmentation. Typically, (Qiao, Zhao, and Peng

2020) propose a method which incorporates meta-learning
and Wasserstein auto-encoder to facilitate the learning effi-
ciency from generated data. Considering the large domain
discrepancies and the difficulty in data generation for medi-
cal images, we instead tackle the challenging SDG problem
from a new perspective by leveraging the domain-invariant
shape information of medical anatomies and promoting ef-
fective test-time utilization of these learned shape priors.

Dictionary learning seeks to find a set of basic ele-
ments to compose a dictionary such that a given input
can be well represented by a sparse linear combination of
these learned elements. Successful applications of dictio-
nary learning have emerged in various image recognition
tasks (Zhang et al. 2012; Heimann and Meinzer 2009). For
example, dictionary learning is employed in (Vu and Monga
2017) to learn a set of common patterns and class-specific
patterns from different objects for image classification. (Cao
et al. 2015) present semantic label dictionary which ex-
plicitly fuses the label information into dictionary represen-
tation and explores the semantic correlations between co-
occurrence labels for multi-label image annotation. In med-
ical applications, dictionary learning is conducted in (Tong,
Wolz et al. 2015) to find a set of most representative at-
lases, which are then applied for label propagation to solve
a multi-organ segmentation task. In our work, we employ
dictionary learning to explicitly extract the shape priors of
medical anatomies from single-domain data, and more im-
portantly, we integrate the learned shape dictionary into deep
models to facilitate the generalization on unseen domains.
To our best knowledge, this is the first work to leverage dic-
tionary learning to solve model generalization problem.

Test-time learning is recently proposed to utilize the dis-
tribution information from the target data presented at test
time to quickly adapt models with a few gradient steps (Chen
et al. 2021; Pandey et al. 2021). The main differences of
prior works lie in how to devise the objective for driv-
ing test-time learning and which part of network parame-
ters to be updated at test time. For instance, the pioneer
work (Sun et al. 2020) exploits the test data via an auxil-
iary branch with self-supervision to adapt the encoder of a
classification model. Later on, Wang et al. (2021a) penal-
ize the entropy of model predictions on test data to adapt
the batch normalization layer for generalization purpose. For
test-time adaptation on medical image segmentation, Karani
et al. (2021) introduce a denoising autoencoder into test-
time learning to adapt an image normalization module. This
method requires iterative refinement of model predictions
and takes nearly 12 minutes for the adaptation on one medi-
cal volume data, which therefore cannot satisfy the real-time
adaptation requirement in clinical scenarios. Compared with
these methods, our test-time update is tightly-coupled with
the learned generalizable shape dictionary, and is driven by
the lightweight dual-consistency regularization mechanism
which enables the model to dynamically utilize the shape
priors according to various data distributions at test time.

Methodology
An overview of our method Test-time Adaptation from Shape
Dictionary is shown in Fig. 1. This section describes the two
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Figure 1: Overview of our proposed Test-time Adaptation from Shape Dictionary (TASD). During training, we establish dictio-
nary learning to extract the explicit shape priors from single domain data and integrate these prior information into the network
by introducing a regression branch to produce shape coefficients for combining these dictionary items. When testing on new
domains, we dynamically adapt the model parameters especially on the regression branch to adaptively utilize the prior infor-
mation to improve generalization, which is driven by dual-consistency regularization mechanism which jointly regularizes the
consistency of shape coefficients and segmentation predictions under different perturbations (η, η′) onto the inference data.

main components of TASD followed by its technical details
of source domain training and test-time update.

Integrating Shape Dictionary for SDG
Construction of shape dictionary: The semantic shapes of
segmentation reflect the underlying anatomical structures in
medical images, thus are independent of the scanner effects
from observed domains. In light of this, we expect to harness
this general shape information, which can be well-captured
even within single source domain, to boost model general-
ization in SDG. Motivated by the nature of dictionary learn-
ing to learn representative elements, we employ it to ex-
plicitly extract the representative shape priors from single-
domain data, and further effectively integrate the shape in-
formation into the task model to provide references for the
segmentation at unseen domains.

Specifically, dictionary learning is to find a set of basic el-
ements (called dictionary), such that a given input can be ap-
proximated as their sparse linear combinations. In our case,
denote S = {(xi,yi)}Ni=1 as the single source domain data
containing N pairs of data and labels. We intend to find a
dictionary D consisting of K explicit shape templates, i.e.,
D = {d1,d2, . . . ,dK}, that is able to represent the diverse
segmentation masks {yi}Ni=1 in the task. To ensure that the
shape dictionary learned from one domain is representative
enough to be extended to unseen domains, two principles
need to be considered for its construction: (1) K ≪ N , the
number of shape templates should be much smaller than the
number of masks in the single source data (e.g., K = 48
for N = 400), to reduce overfitting of the learned dictio-
nary, (2) the mask yi should be represented with as few el-
ements as possible (i.e., the coefficients for linear combina-
tion should be sparse), to maximize the representation power
of each template in the shape dictionary. For simplicity, we
consider a binary segmentation task (i.e., yi ∈ RH×W ),
while the extension to multi-class segmentation is straight-

forward by constructing a shape dictionary for each class in
the same way. Then the generation of dictionary is equiv-
alent to solving the optimization problem with respect to
the shape dictionary D ∈ RK×H×W and the coefficients
α = [α1,α2, . . . ,αN ] (αi ∈ RK denotes the learned coef-
ficients of dictionary for each yi) as:

argmin
D,α

N∑
i=1

(||yi −
K∑
j=1

djαij ||22 + λ||αi||1), (1)

where λ is a balancing parameter to regularize the learned
coefficients. In our implementation, we fixed λ as 1.2/

√
m

(m denotes the input resolution, i.e., H × W ) as this is a
general solution in dictionary learning to yield sparse coef-
ficients. The optimization problem in Eq. 1 can be solved
using the well-established online dictionary learning algo-
rithm (Mairal et al. 2009), which iteratively draws each im-
age mask yi to find its sparse coefficients with least-angle re-
gression and update the dictionary D with block-coordinate
descent. Meanwhile, this learning algorithm is parameter-
free hence does not need parameter-tuning. We show in ex-
periments that the shape dictionary learned in this way is
representative and can well generalize to unseen domains.
Integration of shape dictionary into deep network: After
obtaining the learned shape dictionary, we further incorpo-
rate it into the deep model, aiming to enable the segmenta-
tion to be performed with references from these shape priors
for boosting generalization. To this end, we embed a regres-
sion branch onto the network (see the left part of Fig. 1),
which takes the encoded features of a given sample as input,
and output the shape coefficients α̂ for combining the shape
priors according to the sample features. Specifically, the pre-
extracted shape priors in D are linearly combined according
to the shape coefficients α̂ to generate a reference mask:

M =
K∑
j=1

djα̂ij (2)
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which is then concatenated with network features before the
last convolutional block of decoder for further refinement
and generate the final segmentation mask. We did not choose
to insert the reference mask at early layers since this requires
downsampling the reference mask, which would destroy the
shape prior information to some extent. With the help of the
embedded regression branch, the model predictions can be
derived by jointly exploring the sample features as well as
the shape priors extracted from single-domain data to im-
prove model generalization.

To provide direct supervision for the regression branch to
improve the quality of reference mask, we fetch the coeffi-
cients α optimized from Eq. 1 (obtained during dictionary
learning) as the ground truth of α̂. Since α is regularized
to be sparse during dictionary learning, we adopt the cosine
similarity to minimize the distance between α̂ and α instead
of the L1 or L2 loss, which is expressed as:

Lregress(xi) = 1− α̂i ·αi

max(||α̂i||2 · ||αi||2, ϵ)
, (3)

where ϵ is a small value set as 1e-8 to avoid division by zero.

Dual-consistency Regularized Test-time Update
With embedding an regression branch onto the network, the
shape priors have been integrated to assist the segmentation
problem. However, a potential issue is that the model’s abil-
ity to utilize these prior information (i.e., parameters of the
regression branch and original network) are learned under
the narrow single-domain data distributions. When general-
izing to unseen domains with distribution shifts, the relia-
bility of generated shape coefficients cannot be guaranteed,
which would limit the shape priors to be effectively utilized.
Given the observation that the inference sample presented at
test time can give us a hint about its distribution informa-
tion, we expect to dynamically adapt the model parameters
at test time by exploring this hint, so that the shape priors can
be effectively utilized under any unseen data distributions to
improve generalization performance.

Crucially, the test-time update in our case should be
tightly-coupled with the regression branch to ensure the cor-
rectness of shape coefficients under domain shifts. To this
end, we formulate the adaptation as a consistency regular-
ization mechanism, which can be flexibly imposed on both
original network as well as the embedded regression branch.
Specifically, as shown in the right part of Fig. 1, given an
inference data xt at test time, we first add different per-
turbations η and η′ (e.g., adding Gaussian noise to input
or dropout to network parameters) onto this sample, and
then regularize the model to generate consistent predictions
for the two perturbed samples to explore the inherent in-
formation of this testing data. Importantly, to fully adapt
the parameters of regression branch apart from the origi-
nal network, we impose the consistency regularization on
both segmentation predictions and shape coefficients predic-
tions. The intuition behind is that different input perturba-
tions should not change the semantic anatomies contained
in a medical image, hence the final segmentation mask of
an inference sample as well as how our model leverages the

pre-collected shape priors (i.e., shape coefficients) to com-
pose the mask should not be changed. Formally, these two
consistency regularization terms can be formulated as:

Lseg
cons(x

t) = ||f(xt, η′)− f(xt, η)||22,

Lcoef
cons(x

t) = 1− α̂t(η′) · α̂t(η)

max(||α̂t(η′)||2 · ||α̂t(η)||2, ϵ)
,

(4)

where Lseg
cons(x

t) is the consistency regularization on seg-
mentation results with mean square error loss, in which f(·)
denotes the network, η and η′ are different perturbations ap-
plied to the same testing data xt; and Lcoef

cons(x
t) denotes the

consistency regularization on shape coefficients with cosine
distance loss, in which α̂t(·) is the shape coefficient pre-
dictions for xt under perturbation (·). Our dual-consistency
regularization objective can then be expressed as:

Ldual
cons(x

t) = Lseg
cons(x

t) + Lcoef
cons(x

t), (5)

At test time, we only perform one step of gradient de-
scent by optimizing Eq. 5 to adapt the parameters of source
model given each inference data. Based on our experiments,
such adaptation strategy only requires in average 56ms to
process a 2D medical image and 0.91s for a medical vol-
ume data, hence can be performed efficiently. Meanwhile,
we only adapt the feature normalization parameters, i.e., the
parameters of the batch normalization layers in the source
model, which enables the model to adaptively normalize
the features according to the data distributions of each un-
seen domain. This yields more stable results in our ex-
periments compared with adapting all network parameters,
which could be explained by that the deep network is overly
parameterized hence adapting the whole model is prone to
affect its original discriminability. It is worthy to note that
the adaptation strategy in our method is performed in an
online manner, i.e., when receiving test sample xt

j at time
point j, the model state is initialized with the parameters
updated from the previous sample xt

j−1 instead of the origi-
nal source model. This enables the model to fully utilize the
distribution information from all previous samples to boost
generalization, and is also consistent with the clinical sce-
nario where testing samples usually arrive sequentially.

Training Objectives and Strategies
In our framework, we first learned the shape dictionary from
single-domain data by solving Eq. 1 with online dictionary
learning algorithm (Mairal et al. 2009). Then, we integrated
the shape dictionary that contains the shape prior informa-
tion into segmentation network, and the overall objective to
train the network at single source domain is expressed as:

L(xi) = Lseg(xi) + βLregress(xi), (6)

which is composed of the segmentation loss and the shape
coefficient regression loss with a weighting parameter β.
We empirically set β as 5 to balance the scale of the two
loss terms. Once the training is done, we can generalize
the model to unseen domains by dynamically adapting the
model parameters as described above.
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Experiment
Datasets and Evaluation Metrics
Prostate MRI segmentation: We collect prostate T2-
weighted MRIs from six different clinical centers out of
three public datasets, including NCI-ISBI13 (Bloch et al.
2015), I2CVB (Lemaı̂tre et al. 2015) and PROMISE12 (Lit-
jens et al. 2014) datasets. These data are uniformly resized to
384×384 in axial plane, and each data volume is normalized
to have zero mean and unit variance in intensity values. Due
to the large variance on the slice thickness of data from dif-
ferent clinical sites, we employ a 2D network as backbone.

Fundus image segmentation: We employ retinal fundus
images from four medical institutions out of three public
datasets, including REFUGE (Orlando et al. 2020), Drishti-
GS (Sivaswamy et al. 2015) and RIM-ONE-r3 (Fumero et al.
2011) datasets. For this task, we follow the fundus image
pre-processing pipeline of (Wang et al. 2020) to first train
a simple U-Net to detect and crop ROIs around optic disc
with the size of 800×800, which are then resize to 384×384
as network inputs. Since the ROI size of 800×800 is about
twice of the optic disc region, the location deviation is re-
laxed and we found that all optic disc and cup regions are
covered by the cropped ROI even under data distribution
shifts. We average the performance of optic disc and cup
segmentation as the task performance.

In both tasks, data acquired from different clinical cen-
ters present discrepancies due to different imaging condi-
tions. The representative cases and sample numbers of each
dataset are shown in Fig. 2. For the evaluation, we employ
two commonly-used metrics to quantitatively evaluate the
segmentation results, including the Dice coefficient [%] (the
higher the better) and Hausdorff Distance (HD) [pixel] (the
lower the better), which evaluate the segmentation results in
terms of the whole object and surface region, respectively.

Implementation Details
In our implementation, the element number K in the shape
dictionary is set as 48, and we will investigate its effect in
the ablation study. For input perturbations, two dropout lay-
ers with dropout rate 0.5 are added before the bottleneck
layer and the last convolution layer respectively, and Gaus-
sian noise with magnitude 0.1 is added onto the input im-
ages. The step size for test-time update is 1e-3. We employ
an adapted Mix-residual-UNet (Liu et al. 2020) as segmen-
tation backbone. The standard data augmentation techniques
are used to avoid overfitting, including random rotation and
flipping (horizontal and vertical). The model is trained us-
ing Adam optimizer with momentum of 0.9 and 0.99, and
the learning rate is initialized as 1e-3. We totally train 100
epochs on the single source domain as the network has con-
verged, with batch size set as 5. The framework is imple-
mented with Pytorch using one NVIDIA TitanXp GPU.

Results of Single Domain Generalization
Experimental settings: To fulfill SDG setting, for prostate
MRI segmentation, we follow (Karani et al. 2021) to use
a single domain dataset NCI-ISBI13 as the source domain

(a) Prostate MRIs from six clinical sites (b) Retinal fundus image from four clinical sites

Site A
381 slices

Site C
449 slices

Site D
162 slices

Site E
249 slices

Site F
145 slices

Site B
354 slices

Site D
159 cases

Site A
400 cases

SiteB
400 cases

Site C
101 cases

Figure 2: Representative cases and case number of each data
source for prostate MRI and retinal fundus images.

(Site A) and take the other five data sources as different un-
seen target sites (Site B-F). For fundus image segmentation,
we adopt the popular benchmark that is the training set of
REFUGE as the single source domain (Site A), and the other
three data sources as different target sites (Site B-D).

We compare our TASD with recent state-of-the-art meth-
ods in SDG and test-time learning, as well as popular
DG methods that are not completely restricted to multi-
ple source domains and can be applied in the SDG sce-
nario, including: M-ADA (CVPR 2020) (Qiao, Zhao, and
Peng 2020): a SDG method with adversarial domain aug-
mentation, which develops Wasserstein auto-encoder to cre-
ate virtual data. TTT (ICML 2020) (Sun et al. 2020) a
test-time learning method for generalization under distri-
bution shifts with self-supervision of rotation prediction.
TTST (MIA 2021) (Karani et al. 2021) a test-time learn-
ing method for generalization in medical image segmenta-
tion with self-training from a denoising autoencoder. Tent
(ICLR 2021) (Wang et al. 2021a): a test-time adaptation
method by minimizing the entropy of model predictions.
BigAug (TMI 2020) (Zhang et al. 2020): a DG method
on medical image segmentation that adopts extensive data
transformations to promote general representation learning.
JiGen (CVPR 2019) (Carlucci et al. 2019): a DG method
with self-supervised learning that learns general represen-
tations by solving jigsaw puzzles. In SDG scenario, the
Baseline setting denotes learning a model on the single
source domain without using any generalization technique,
which is different from general DG scenario where the base-
line model is obtained by training with multiple source
datasets (Liu, Dou, and Heng 2020; Wang et al. 2020).

Comparison results: Table 1 shows the results on
prostate MRI segmentation. We see that different meth-
ods can generally improve the generalization performance
over baseline. The M-ADA approach dedicatedly designed
for the SDG setting performs better than the DG methods
with self supervision (JiGen) or traditional data augmenta-
tion (BigAug). Compared with M-ADA, our TASD presents
clear Dice increase on all unseen sites, with improvement of
2.9% and 8.7 on the average performance of Dice and HD
respectively. This can be attributed to our explicit integration
of shape priors and effective utilization of the prior knowl-
edge at test time to improve generalization. For the test-
time learning methods, TTST outperforms TTT and Tent in
our segmentation problem, owing to their self-training strat-
egy to gradually refine the segmentation masks. Our TASD
performs clearly better than TTST in the average perfor-
mance on both two metrics. This endorses the benefits of
the general shape priors integrated to the task model, which
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Unseen Site B C D E F Avg. B C D E F Avg.
Dice Coefficient (Dice, mean±std) ↑ Hausdorff Distance (HD, mean±std) ↓

Baseline 83.8±5.3 73.3±11.1 72.6±7.0 65.5±29.5 78.7±7.8 74.8 40.9±34.9 59.0±29.4 59.5±21.2 61.2±42.6 37.2±20.9 51.6
M-ADA (Qiao et al. 2020) 86.2±4.4 74.7±9.1 80.9±4.9 69.7±12.2 79.5±9.3 78.2 19.1±21.1 46.1±28.1 53.9±19.3 54.2±19.6 31.9±26.7 41.0

TTT (Sun et al. 2020) 83.5±5.9 73.1±17.5 75.3±7.8 67.5±11.1 81.5±5.9 76.2 26.4±22.1 55.4±22.3 54.8±25.5 53.0±22.2 21.8±19.2 42.3
TTST (Karani et al. 2021) 86.0±3.7 74.8±10.5 81.0±3.9 74.0±8.4 80.9±9.2 79.3 20.5±20.7 47.5±28.1 41.4±19.7 51.4±26.1 34.5±25.5 39.1
Tent (Wang et al. 2021a) 84.5±4.7 74.2±13.9 76.4±8.1 67.1±10.1 80.1±9.6 76.5 27.2±24.7 50.3±22.7 45.7±23.5 49.6±30.9 29.8±20.1 40.5

BigAug (Zhang et al. 2020) 84.2±5.0 73.9±14.1 73.3±7.7 74.7±9.7 79.0±6.8 77.0 35.9±26.3 49.1±20.7 53.8±22.0 44.5±18.7 28.9±14.4 42.4
JiGen (Carlucci et al. 2019) 83.2±6.1 70.8±14.7 74.0±7.9 71.5±10.2 80.3±6.2 75.9 29.3±23.2 64.5±23.3 50.4±25.9 50.6±26.0 24.3±10.7 43.8

Baseline + ISD 85.4±5.1 74.0±13.0 79.0±4.4 72.7±9.2 80.8±10.0 78.4 19.4±21.3 54.8±24.8 44.2±21.7 48.9±23.6 34.9±26.4 40.4
Baseline + TTA 84.7±8.2 75.2±8.2 74.8±8.2 67.2±8.2 79.7±8.2 76.3 25.7±23.4 42.0±20.2 46.1±21.9 47.9±37.4 30.3±20.6 38.4
TASD (Ours) 87.1±2.5 76.4±6.1 82.5±5.2 76.0±6.6 83.2±6.7 81.1 19.3±21.3 39.1±17.5 38.7±12.2 43.4±14.2 21.0±17.5 32.3

Table 1: Quantitative comparison of single domain generalization results on prostate MRI segmentation between different methods.

Unseen Site B C D Avg. B C D Avg.
Dice Coefficient (Dice, mean±std) ↑ Hausdorff Distance (HD, mean±std) ↓

Baseline 83.2±8.2 76.0±14.8 88.8±5.7 82.7 27.4±15.3 36.8±23.8 21.5±10.3 28.6
M-ADA (Qiao et al. 2020) 85.9±9.3 77.4±13.7 90.6±4.8 84.6 22.7±11.2 30.4±17.1 13.8±7.5 22.3

TTT (Sun et al. 2020) 84.6±5.7 77.3±11.9 89.0±4.1 83.7 22.2±8.6 31.4±19.1 17.4±7.1 23.7
TTST (Karani et al. 2021) 85.5±9.0 76.5±13.4 91.0±4.7 84.3 22.0±10.2 33.6±19.3 12.1±8.1 22.6
Tent (Wang et al. 2021a) 85.1±8.1 77.1±13.0 89.2±4.9 83.8 23.1±11.7 35.2±20.9 17.8±8.5 25.4

BigAug (Zhang et al. 2020) 84.7±7.5 78.0±13.5 90.7±4.6 84.5 27.1±13.2 30.3±21.6 14.8±7.9 24.1
JiGen (Carlucci et al. 2019) 84.5±5.8 77.5±12.0 88.5±4.1 83.5 23.4±9.2 34.3±19.4 20.4±10.6 26.0

Baseline + ISD 85.7±8.0 78.1±12.9 89.5±5.9 84.4 22.7±10.0 29.6±17.9 15.2±9.2 22.5
Baseline + TTA 83.6±7.6 77.2±13.8 89.6±5.6 83.5 26.0±13.9 34.1±22.6 15.8±10.6 25.3
TASD (Ours) 87.6±8.0 78.5±12.6 91.3±4.2 85.8 19.8±9.5 29.4±18.0 12.3±6.2 20.5

Table 2: Quantitative comparison of single domain generalization results on fundus image segmentation between different methods.

provides strong reference for the test-time update to facil-
itate the segmentation at unseen domains. Overall, TASD
achieves the best average performance and consistently out-
performs the baseline on all unseen sites by a large margin.

Table 2 shows the results on fundus image segmentation.
Similarly, all comparison methods can more or less improve
the average generalization performance, and the other ob-
servations drawn in prostate MRI segmentation also hold
here. Our TASD beats all comparison methods in the av-
erage performance, with clear improvements over baseline
on all three unseen sites. This again confirms the superiority
of our method to address SDG for medical image segmenta-
tion. Fig. 3 further shows the segmentation results with two
example unseen cases for each task. It is observed that TASD
can accurately preserve the anatomy shapes at unknown dis-
tributions, whereas other methods sometimes fail to do so.

Ablation Study
We conduct experiments to investigate several key points in
our method: 1) the contribution of the two components of
integration of shape dictionary (ISD) and test-time adapta-
tion (TTA) in our method; 2) the representation power of the
shape dictionary; 3) the effect of dictionary size and number
of masks to learn the shape dictionary; 4) the effect of the
two consistency regularization terms at test-time adaptation.

Contribution of the two components. As shown in Ta-
ble 1 and Table 2, integrating the shape dictionary over base-
line (Baseline + ISD) yields consistent improvements on
different unseen sites, which demonstrates the benefits of

Baseline M-ADA TTT Karani et al. BigAug JiGen TASD (Ours) Ground truth

Figure 3: Qualitative comparison for different methods un-
der SDG scenario, with first two rows for prostate MRI seg-
mentation and last two rows for fundus image segmentation.

utilizing the general shape information to enhance model
generalization under the worst single domain training sce-
nario. Further adapting the model at test time completes our
TASD method, which increases the average Dice over Base-
line + ISD by 2.7% and 1.4% for the two tasks. Notably,
such improvements are higher than the performance gains
when deploying test-time adaptation on the baseline model
(i.e., Baseline + TTA vs. Baseline), which is 1.5% and 0.8%
for the two tasks. This observation reflect that our test-time
adaptation mechanism gains additional capacity when de-
ployed over the network with integrated shape dictionary,
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Unseen Site A Unseen Site B Unseen Site C Unseen Site D Unseen Site E

Ground 
truth

Generated 
mask

Shape dictionary learned from single source domain in prostate MRI segmentation

Figure 4: Visualization of the shape dictionary learned from
single source domain with K=48, as well as the mask de-
rived from the dictionary for a representative sample at each
unseen site (with ground truth displayed for reference).
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Figure 5: Effect of different dictionary size K on the gener-
alization performance.

and enables the model to adaptively utilize the shape priors
from single-domain data to improve model generalizability.

Representation power of the learned shape dictionary.
Fig. 4 displays the learned shape dictionary from single-
domain data with dictionary size K=48 and the mask de-
rived from the dictionary for representative samples of each
unseen site. We can see that the masks derived from pre-
collected shape priors for different unseen-site samples are
highly consistent with their ground truth masks with var-
ious sizes. We also directly compute the accuracy of ref-
erence mask M (cf. Eq. 2) generated from shape dictio-
nary, observing that it attains 77.1% and 83.9% Dice for
the averaged generalization performance in prostate and fun-
dus tasks, which is clearly higher than the baseline model.
These results indicate that the shape dictionary learned from
single-domain data is capable of representing the diverse
masks at each unseen site, and affirm our motivation to uti-
lize the general shape priors information to address the chal-
lenging single domain generalization problem.

Effect of dictionary size K and number of ground
truth masks N . The choice of element number K in dic-
tionary is important in our method, which affects the rep-
resentation power of the extracted shape priors. Intuitively,
less elements in the shape dictionary (i.e., smaller K) might
be incapable to represent the diverse segmentation masks,
while too more elements (i.e., larger K) could lead to over-
fitting of the dictionary and make each shape template less
representative to generalize to unseen domains. To investi-
gate the suitable choice of K, we repeat the experiment of
TASD by varying K∈{16, 32, 48, 64}. As shown in Fig. 5,

(a) Prostate MRI segmentation
Site B Site C Site D Site E Site F

(b) Fundus image segmentation
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Figure 6: Ablation analysis of the dual-consistency regular-
ization mechanism at test-time adaptation.

the models with middle-level dictionary size (K=32 or 48)
perform better than the model with smaller (K=16) or larger
dictionary (K=64) on both tasks. These results confirm our
analysis above, and we finally adopt K=48 in our method.
Furthermore, we analyze the effect of N which is the num-
ber of ground truth masks used to learn the shape dictionary.
Specifically, we randomly sample a certain proportion from
all masks of single-domain data, observing that the Dice per-
formances decrease by 0.7% and 1.6% in prostate segmen-
tation, 0.4% and 0.9% in fundus image segmentation tasks
when sampling 50% and 25% from the total ground truth
masks. This reflects that a larger N is helpful to learn more
general shape priors and therefore can better improve the
generalization performance under data distribution shifts.

Effect of two consistency regularization terms. To let
the model adaptively exploit the integrated shape priors, we
have designed a dual-consistency regularization mechanism
which imposes the consistency of both segmentation and
shape coefficient predictions under input perturbations. As
listed in Fig. 6, removing the regularization from either place
(w/o Lcoef

cons or w/o Lseg
cons) can lead to performance drop

compared with the full TASD model. This demonstrates the
indispensable roles of the two regularization terms in our
method. Specifically, the Lcoef

cons allows the model to bet-
ter utilize the shape prior knowledge at test time, while the
Lseg
cons helps to better adapt the network parameters and re-

fine the generated reference masks.

Conclusion

We present a new method with promising performance
achieved on the challenging SDG problem in medical im-
age segmentation. The idea is to integrate the semantic shape
priors that are generalizable across domains and can be well
captured from single-domain data to assist segmentation,
and further effectively exploit these prior information via
test-time adaptation driven by dual-consistency regulariza-
tion to promote the model generalization at any unseen data
distributions. The integration of shape priors extracted with
dictionary learning is extendable to address other segmenta-
tion problems such as multi-modality learning, and evaluat-
ing its benefit is appealing as our future work. Besides, the
proposed test-time learning method with consistency regu-
larization mechanism is applicable to other scenarios.
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