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Abstract
Generalizable person re-identification aims to learn a model
with only several labeled source domains that can perform
well on unseen domains. Without access to the unseen do-
main, the feature statistics of the batch normalization (BN)
layer learned from a limited number of source domains is
doubtlessly biased for unseen domain. This would mislead
the feature representation learning for unseen domain and de-
teriorate the generalizaiton ability of the model. In this paper,
we propose a novel Debiased Batch Normalization via Gaus-
sian Process approach (GDNorm) for generalizable person re-
identification, which models the feature statistic estimation
from BN layers as a dynamically self-refining Gaussian pro-
cess to alleviate the bias to unseen domain for improving the
generalization. Specifically, we establish a lightweight model
with multiple set of domain-specific BN layers to capture the
discriminability of individual source domain, and learn the
corresponding parameters of the domain-specific BN layers.
These parameters of different source domains are employed
to deduce a Gaussian process. We randomly sample several
paths from this Gaussian process served as the BN estima-
tions of potential new domains outside of existing source do-
mains, which can further optimize these learned parameters
from source domains, and estimate more accurate Gaussian
process by them in return, tending to real data distribution.
Even without a large number of source domains, GDNorm
can still provide debiased BN estimation by using the mean
path of the Gaussian process, while maintaining low com-
putational cost during testing. Extensive experiments demon-
strate that our GDNorm effectively improves the generaliza-
tion ability of the model on unseen domain.

Introduction
Person re-identification (Re-ID) (Ye et al. 2021; Luo et al.
2019; Liu et al. 2016, 2019) aims to identify a person-of-
interest across non-overlapping camera networks under dif-
ferent times and locations. It has drawn extensive research
attention in recent years, due to its significant role in various
practice scenarios, such as object tracking, activity analysis
and smart retail etc (Wang 2013; Caba Heilbron et al. 2015;
Martini, Paolanti, and Frontoni 2020). Along with the suc-
cess of deep learning, large amount of sophisticated person
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Re-ID methods have been proposed and achieved promising
performances in a fully supervised manner.

However, when applying these trained models to previ-
ously unseen domains, supervised approaches suffer from
significant performance degradation due to style discrepan-
cies across domains. To this end, unsupervised domain adap-
tation (UDA) has been introduced in person Re-ID. UDA
approaches employ unlabeled samples from target domain
to adapt the pre-trained model on the labeled source domain
to target domain (Bak, Carr, and Lalonde 2018). Although
UDA approaches are more practical than the full supervised
approaches, they still require data collection and model up-
date for the target domain, resulting in additional compu-
tational cost. Moreover, samples from a target domain are
usually not unavailable in advance.

Compared to UDA, domain generalization (DG) is a
promising solution for real-world applications. Domain gen-
eralization aims at learning models that are generalizable to
unseen target domain, without requiring access to the data
and annotations from target domain as well as model up-
dating, i.e., fine-tune or adaptation. Most existing DG meth-
ods (Chattopadhyay, Balaji, and Hoffman 2020; Huang et al.
2020) assume that the source and target domains share the
same label space with a fixed of classes, which are designed
for a classification task. In contrast, domain generalization
for person Re-ID is an open-set retrieval task, having dif-
ferent and variable number of identities between source and
target domains. Therefore, it is difficult to achieve satisfying
generalization capability when the existing DG approaches
are directly applied to person Re-ID.

Existing generalizable person Re-ID approaches can be
divided into two categories: single model methods (Zhao
et al. 2021; Choi et al. 2021; Song et al. 2019) and ensem-
ble learning based methods (Dai et al. 2021; Seo et al. 2020;
Zhuang et al. 2020; Mancini et al. 2018). The former col-
lects all source domain data and trains a single model on
them to extract the shared domain-invariant representations.
They mainly design customized loss functions (e.g., Maxi-
mum Mean Discrepancy regularization to align the distribu-
tions among different domain), specific architectures (e.g.
integrating Batch Normalization and Instance Normaliza-
tion in the models to alleviate the domain discrepancy due
to appearance style variations), or ad-hoc training policies
(e.g., model-agnostic meta learning to mimic real train-test
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domain shift). However, these methods discard the specific
characteristics of individual source domains and neglect the
inherent relevance of unseen target domain with respect to
source domains, result in unsatisfying generalization capa-
bility. Such domain-specific characteristics can provide ade-
quately discriminative and meaningful information and infer
the distribution of unseen target domain, thus greatly im-
proving the model’s generalizability.

Ensemble learning based methods attempt to train
domain-specific models for each source domain by exploit-
ing domain specific characteristics, and combine multiple
domain-specific models (e.g., branches, classifiers or ex-
perts) to enhance the generalization ability. These methods
assume that any sample can be considered as a comprehen-
sive sample from multi-source domains, such that the overall
prediction result can be seen as the superposition of multi-
domain networks. Nevertheless, these works have two main
drawbacks: (1) The number of source domains in DG person
Re-ID task is extremely limited, directly ensembling them
results in a high bias to the underlying hyper-distribution
(real data distribution) on domains. The biased issue in-
jury the generalization ability of the model; (2) Ensemble
learning significantly increases the computational cost due
to training and testing multiple neural networks. When there
exists a large amount of source domains, the computational
cost of the ensemble learning based method is unacceptable.
Thus, how to efficiently utilize the limited number of source
domains to improve the generalization is the major issue for
generalizable person re-identification.

In this work, we propose a novel Debiased Batch Normal-
ization via Gaussian Process approach (GDNorm) for DG
person Re-ID, which models the feature statistic estimation
from BN layers as a dynamically self-refining Gaussian pro-
cess to alleviate the bias issue on unseen domain for improv-
ing the generalization. GDNorm establishes a lightweight
model with multiple set of domain-specific BN layers for
source domains to learn the corresponding population statis-
tics and rescaling parameters of the domain-specific BN lay-
ers. The parameters of the domain-specific BN layers from
different source domains are assumed to fit a Gaussian pro-
cess, and act as an approximate distribution of the domain-
specific model for each source domain. We randomly sam-
ple paths (the parameters of the BN layers) from the deduced
Gaussian process as the BN estimations of potential new do-
mains, which can further optimize these parameters, and es-
timate more accurate Gaussian process by them in return,
tending to the underlying hyper-distribution (real data dis-
tribution) on domains. Such self-refining mechanism guar-
antees that even with a limited number of source domains,
GDNorm can still provide debiased BN estimation on un-
seen domain. In the testing phase, GDNorm directly exploits
the mean path of the Gaussian process as the optimal BN
estimating for target domain, greatly reducing the compu-
tational cost as compared to ensemble learning. Extensive
experiments have demonstrated the effectiveness of the pro-
posed GDNorm when testing on the unseen domain.

The main contributions of this paper are three-fold: (1) We
propose a novel Debiased Batch Normalization via Gaus-
sian Process approach (GDNorm) for generalizable person

Re-ID. (2) We design a novel debiased Batch Normaliza-
tion, which models the feature statistic estimation of BN as
a dynamically self-refining Gaussian process, alleviating the
bias issue of the BN estimation on unseen domain. (3) We
propose a lightweight model for generalizable person Re-
ID, which exploits the mean path of the Gaussian process as
the optimal debiased BN parameters, without requiring extra
computational cost as compared to ensemble learning.

Related Work
DG Person Re-identification
Existing DG person Re-ID methods (Zhao et al. 2021; Choi
et al. 2021; Song et al. 2019; Lin, Li, and Kot 2020; Chen
et al. 2021; Jin et al. 2020; Tamura and Murakami 2019)
can be divided into two categories: single model meth-
ods and ensemble learning based methods. For the single
model methods, Chen et al. (Chen et al. 2021) proposed a
Dual Distribution Alignment Network with dual-level con-
straints, i.e., a domainwise adversarial feature learning and
an identity-wise similarity enhancement, which maps pedes-
trian images into a domain-invariant feature space. Choi et
al. (Choi et al. 2021) designed learnable batch-instance nor-
malization layers, which prevents the model from overfit-
ting to the source domains by the simulation of unsuccessful
generalization scenarios in meta-learning pipeline. Lin et al.
(Lin, Cheng, and Wang 2020) present an episodic learning
scheme, which advances meta-learning algorithm to exploit
the labeled data from source domain and learns domain-
invariant features without observing target domain data.

Ensemble Learning Based DG
Ensemble learning based methods ensemble multiple do-
main specific models like experts or classifiers to enhance
the generalization ability of the overall network, which
are applied to general DG and GD person Re-ID tasks.
Mancini et al. (Mancini et al. 2018) proposed to fuse
the predictions from different domain-specific classifiers
with learnable weight and a domain predictor. D’Innocente
et al. (D’Innocente and Caputo 2018) proposed domain-
specific layers of different source domains and learned the
linear aggregation of these layers to represent a test sample.
Zhou et al. (Zhou et al. 2020) proposed a domain adaptive
ensemble learning method, which improves the generaliza-
tion of a multi-expert network by explicitly training the en-
semble to solve the target task. Dai et al. (Dai et al. 2021)
proposed a method called the relevance-aware mixture of
experts (RaMoE), by using an effective voting-based mix-
ture mechanism to dynamically leverage source domains’
diverse characteristics to improve the generalization.

Normalization in DA and DG
Normalization techniques in deep neural networks are de-
signed for regularizing trained models and improving their
generalization performance. Recently, several methods on
domain adaptation (DA) and domain generalization (DG)
discovered the relationship between domain gap and nor-
malization operation. For example, Jin et al. (Jin et al. 2021)
proposed a Style Normalization and Restitution module,
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Figure 1: The overall architecture of the proposed GDNorm. It contains a lightweight model with multiple set of domain-
specific BN layers for capturing the specific feature statistics information, and a dynamically self-refining Gaussian process
estimation for learning debiased BN parameters on unseen domain.

which utilizes the Instance Normalization (IN) layers to fil-
ter out style variations and compensates for the identity-
relevant features discarded by IN layers. Seo et al. (Seo et al.
2020) proposed to leverage instance normalization to opti-
mize the trade-off between cross-category variance and do-
main invariance, which is desirable for domain generaliza-
tion in unseen domains. Zhuang et al. (Zhuang et al. 2020)
proposed camera-based batch normalization (CBN) to force
the images of all cameras to fall onto the same subspace and
to shrink the distribution gap between any camera pair.

Method
Bias in Generalizable Person Re-ID
For DG person Re-ID, we assume that we have K source
domains (datasets) DS = {d1s, d2s, ..., dKs } in the training
stage. Each domain dks = {(xk

i , y
k
i )}

Nk
i=1 has its own la-

bel space (person IDs among different datasets are non-
overlapping), where Nk is the total number of pedestrian
images in the source domain dks , each image xk

i is associ-
ated with an identity label yki . During the testing stage, the
trained model is frozen and directly deployed to a previ-
ously unseen dataset (target domain dt) without additional
model updating. More formally, we denote X as the input
pedestrian images space, and denote Y as the label space.
A domain (dataset) in DG person Re-ID can be denotes as
the aggregation of data sampled from a specific joint dis-
tribution dk = (xi, yi)

Nk

i=1 ∼ P dk

xy . Their joint distributions
of source and target domains are completely different. DG
person Re-ID aims to learn a generalizable model P (Y |X)

which achieves the smallest prediction error on unknown tar-
get domain without fine-tuning:

min
P

E
(x,y)∼Pdt

xy
[`(P (Y |X = x), y)] (1)

where ` denotes a loss function on Y . Due to the fact that
the target domain is totally unknown (not even unsupervised
data), it is required to measure the average risk over all pos-
sible target domains. Assuming both source and target do-
main distributions follow an underlying hyper-distribution
H: Pxy ∼ H. Then the target prediction error (risk) is refor-
mulated as the following:

E := EPxy∼HE(x,y)∼Pxy

[
`
(
P (Y |X = x), y

)]
(2)

Existing ensemble learning based DG methods (Mancini
et al. 2018; Segu, Tonioni, and Tombari 2020; D’Innocente
and Caputo 2018; Zhou et al. 2020) simply regard the hyper-
distribution H as a static and discrete distribution with re-
spect to the limited source domains: {PH(Pxy = P

dk
s

xy ) =

πdk
s }Kk=1. Under this approximate hypothesis, they exploit

the relationship between multiple source domains by design-
ing specific network architecture and training strategies to
improve generalization. They assume that any sample can
be regarded as an integrated sample of the multiple source
domains, such that the overall prediction result can be seen
as the superposition of the multiple domain networks. Thus,
the approximate optimal solution for Eq. 2 is then computed
as the following:

P (Y |X) =
K∑

k=1

πdk
sP (Y |X,P dk

s
xy ) (3)

1731



where P (Y |X,P dk
s

xy ) represents the k-th source domain-
specific model, and πk denotes the mixture ratio. Never-
theless, these methods employ such simple discrete, static
distribution to represent the complex hyper-distribution H,
leading to high bias. First, the discrete distribution consid-
ers all possible domains under H as a mixture of a limited
number of source domains. Only using a small number of
domains could definitely not express the complex unknown
H. Second, the static distribution is not able to reduce and
adjust the deviation to the real hyper-distribution H. In ad-
dition, ensemble model leads to a heavy increasing of com-
putational cost, due to maintaining multiple domain specific
networks in the testing stage.

Unlike these methods, we rethink the hyper-distribution
H as a dynamically self-refining Gaussian process. In the-
ory, a linear combination of multiple Gaussian distributions
or Gaussian process can fit any type of distribution (Bond,
Hoeffler, and Temple 2001; Yu, Yang, and Li 2019), which
is a better choice to serve as the hyper-distributionH. Based
on this, we design a self-refining mechanism to refine and
debias the estimated gaussian process, towards obtaining the
ideal unbiased optimal solution of Eq. 2:

Punbiased(Y |X) =

∫
Pxy∼H

P (Pxy|X)P (Y |X,Pxy)

= EH|xP (Y |X,Pxy)

(4)

Specifically, we propose a novel Debiased Batch Normal-
ization via Gaussian Process approach (GDNorm) for gen-
eralizable person Re-ID, as illustrated in Fig. 1. GDNorm
establishes a lightweight model P (Y |X,Pxy) with differ-
ent set of domain-specific BN layers, which is based on the
popular ResNet-50 model (He et al. 2016). The expected do-
main specific models for each source domain share all the
training parameters of the lightweight model apart from the
learned parameters θds from the domain-specific BN layers.
GDNorm utilizes these parameters to serve as the distribu-
tion of the domain-specific model, P (Y |X = x, P ds

xy ) s.t.
P ds
xy ∼ H, which follows a Gaussian process. It then ran-

domly samples paths (the parameters of domains-specific
BN layers) from this Gaussian process to obtain the BN
estimations of potential new domains outside of the train-
ing source domains. The sampled paths can in return, fa-
cilitate the Gaussian process close to (debias to) the distri-
bution of the hyper-distribution by end-to-end optimizing.
In the testing phase, unlike the previous ensemble learning
based methods, GDNorm directly employs the mean path
of the learned debiased Gaussian process as optimal batch
normalization layers’ parameters on unseen target domain
for model inference, without requiring extra computational
cost.

Domain-Specific Batch Normalization
BN is a widely-used training technique in deep networks,
which normalizes the activations from each domain to the
same reference distribution by domain-specific normaliza-
tion statistics (Chang et al. 2019). To capture the specific
characteristics of individual domain, a lightweight model

with different set of domain-specific BN layers is designed,
which can capture the source domain distribution P ds

xy .
Concretely, given a batch size of pedestrian images from

a certain source domain ds at the training stage, a domain-
specific BN layer normalizes the activations by matching
their first and second order moments (µds ,σ

2
ds
) to a refer-

ence Gaussian distribution with zero mean and unitary vari-
ance N (0, 1). And then transforms channel-wise whitened
activations by using rescaling parameters. The formulation
of a BN layer is defined as the following:

BN(x; ds) = γds

x− µds√
σ2
ds

+ ε
+ βds (5)

where x refers to an input activation from the domain ds,
ε > 0 is a small constant to avoid numerical problem. γds

and βds are the learnable rescaling parameters, which are
optimized by samples from the specific source domain. µds

and σ2
ds

are the domain-specific batch statistics for the do-
main ds, which are calculated as the following:

µds =

∑
b,i,j x[b, i, j]

B ·H ·W

σ2
ds

=

∑
b,i,j (x[b, i, j]− µds

)
2

B ·H ·W

(6)

where B denotes the batch size, H and W is the height
and width size of the input activations. The domain-specific
batch statistics are updated by using moving average strat-
egy as the following:

µds
= mµds

+ (1−m)µds

σ2
ds

= mσ2
ds

+ (1−m)σ2
ds

(7)

where µds
, σ2

ds
reflect domain-specific population statis-

tics of this source domain across all batch data. The ex-
pected domain-specific model with the parameters θds

of the
domain-specific BN layers for each source domain is then
learned as the following:

θds
= {(γl

ds
,βl

ds
,µl

ds
,σl2

ds
)}Ll=1

P (Y |X,P ds
xy ) = P (Y |X, θds)

(8)

where L is the number of batch normalization layers in our
lightweight model for each source domain.

Debias Gaussian Process
The learned parameters θds

of the domain-specific BN lay-
ers contain specific feature statistics information of the cor-
responding domain ds. Therefore, the distribution of the pa-
rameters θds can be represented as the hyper-distribution H
on domains. We assume that the distributions of the param-
eters θds in the model follow a Gaussian process (A col-
lection of Gaussian distributions along different depth posi-
tion BN layers in the model). GDNorm deduces a dynam-
ical Gaussian process from the learned parameters θds of
the domain-specific BN layers to fit the hyper-distribution
H. To reduce the bias between the Gaussian process and the
hyper-distribution, it designs a self-refining mechanism to
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randomly sample several paths from the estimated Gaussian
process to serve as the BN estimations of potential new do-
mains outside of source domains, which can further optimize
these parameters, and infer more accurate Gaussian process
by them in return, tending to real hyper-distribution.

For simplicity, we reformulate the BN operation into a
linear transformation as the following:

BN(x; ds) = ads
x+ bds

ads
=

γds√
σ2

ds
+ ε

bds
= βds

− γds

µds√
σ2

ds
+ ε

(9)

GDNorm calculates the mean M and variance Σ2 of the
learned parameters in each domain-specific BN layer for all
source domains to obtain a collection of Gaussian distribu-
tions along different depth position BN layers in the model.

M(al) =

∑K
k=1 a

l
dk
s

K
M(bl) =

∑K
k=1 b

l
dk
s

K

Σ2(al) =

∑K
k=1(a

l
dk
s
−M(al))2

K

Σ2(bl) =

∑K
k=1(b

l
dk
s
−M(bl))2

K

(10)

These Gaussian distributions constitute a Gaussian process
whose random variables are indexed by the different depth
position: GP = {(M l,Σl2)}Ll=1.

To refine the estimated Gaussian process unbiased to the
real hyper-distribution, GDNorm randomly samples several
paths from the Gaussian process as the BN estimations of
potential domains for further training and updating these
learned parameters. It then employs a reparameterization
trick (Blundell et al. 2015) to bypass the discrete sampling
process, which allows end-to-end optimizing:

al
s′ , b

l
s′ =M

l + λΣl2 � ε (11)

where {al
s′ , b

l
s′}Ll=1 is a randomly sample path from the

Gaussian process, corresponding to a potential new domain
ds′ . ε ∼ N (0, I) and λ is the sampling ratio. The randomly
sampled path is used as the BN parameters for the poten-
tial new domain. A batch of images sampled equally from
all existing source domains as the samples of the potential
new domain to train the model, which is supervised by a
identity loss and a triplet loss (Schroff, Kalenichenko, and
Philbin 2015). The parameters of the domain-specific BN
layer for the existing source domains will be updated by this
optimizing process, which can be used to deduce more ac-
curate Gaussian process by them in return, tending to real
hyper-distribution. In the testing phase, GDNorm directly
utilizes the mean path of the final debiased Gaussian pro-
cess {(M(al),M(bl))}Ll=1 to serve as every BN layers in
the model, runs the trained model only once for inference,
without requiring extra computational cost as compared to
ensemble learning.

Experiments
Datasets and Evaluation Settings
Protocol-1: Following the previous methods (Song et al.
2019; Jia, Ruan, and Hospedales 2019; Tamura and Mu-
rakami 2019), we employ the existing Re-ID benchmarks
to evaluate the Re-ID model’s generalization ability, where
the existing large-scale Re-ID datasets are viewed as mul-
tiple source domains, and the small-scale Re-ID datasets
are used as unseen target domains. As shown in Tab. 2,
source domains include CUHK02 (Li and Wang 2013),
CUHK03 (Li et al. 2014), Market-1501 (Zheng et al.
2015), DukeMTMC (Zheng, Zheng, and Yang 2017) and
CUHK-SYSU (Xiao et al. 2017). Target domains contain
VIPeR (Gray and Tao 2008), PRID (Hirzer et al. 2011),
GRID (Loy, Xiang, and Gong 2009) and iLIDS (Zheng,
Gong, and Xiang 2009). All training sets and testing sets
in the source domains are used for model training. The four
small-scale Re-ID datasets are tested respectively, where the
final performances are obtained by the average of 10 re-
peated random splits of testing sets.

Protocol-2: Considering that the image quality of the
small-scale Re-ID datasets is quite poor, the performances
on these datasets can not precisely reflect the generaliza-
tion ability of a model in real scenarios. The previous meth-
ods (Zhao et al. 2021; Dai et al. 2021) thus set a new pro-
tocol (i.e., leave-one-out setting) for four large-scale Re-
ID datasets. Specifically, four large-scale Re-ID datasets
(Market-1501 (Zheng et al. 2015), DukeMTMC (Zheng,
Zheng, and Yang 2017), CUHK03 (Li et al. 2014) and
MSMT17 (Wei et al. 2018)) are divided into two parts: three
datasets as the source domains for training and the remaining
one as the target domain for testing. For simplicity, in the fol-
lowing sections, we denote Market1501 as M, DukeMTMC
as D, CUHK02 as C2, CUHK03 as C3, MSMT17 as MT and
CUHK-SYSU as CS. The two different evaluation settings
are shown in Tab. 2.

Evaluation metrics: We follow the common evaluation
metrics person Re-ID, i.e., mean Average Precision (mAP)
and Cumulative Matching Characteristic (CMC) at Rank-k.

Implementation Details
We adopt ResNet50 (He et al. 2016) pretrained on Ima-
genet as our backbone. Following previous method (Luo
et al. 2019), the last residual layer’s stride size is set to 1. A
generalized mean Poolineg (GeM) (Radenović, Tolias, and
Chum 2018) with a batch normalization layer is used after
the backbone to obtain the Re-ID features. Images are re-
sized to 384 × 128, and the training batch size is set to
128, including 8 identities and 16 images per identity. For
data augmentation, we use random flipping, random crop-
ping and color jittering. We train the model for 60 epochs.
The learning rate is initialized as 3.5× 10−4 and divided by
10 at 40th epochs, weight dacay is 5 × 10−4. λ in Eq. 11 is
set to 0.6. For our Baseline, we combine all the source do-
mains into a hybrid dataset, and employ the same settings for
the loss function, data augmentation strategy and the back-
bone, and then train the model without GDNorm. To speed
up the training process and increase memory efficiency, we
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Method Type/Source VIPeR (V) PRID (P) GRID (G) iLIDS (I) Mean
R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP

ImpTrpLoss (Cheng et al. 2016) S/Target 47.8 - 22.0 - - - 60.4 - - -
JLML (Li, Zhu, and Gong 2017) S/Target 50.2 - - - 37.5 - - - - -
SSM (Bai, Bai, and Tian 2017) S/Target 53.7 - - - 27.2 - - - - -

TJ-AIDL (Wang et al. 2018) UDA/M 38.5 - 26.8 - - - - - - -
MMFA (Lin et al. 2018) UDA/M 39.1 - 35.1 - - - - - - -

UDML (Peng et al. 2016) UDA/Comb1 31.5 - 24.2 - - - 49.3 - - -
SyRI (Bak, Carr, and Lalonde 2018) UDA/Comb2 43.0 - 43.0 - - - 56.5 - - -
CDEL (Lin, Cheng, and Wang 2020) DG/MS 38.5 - 57.6 - 33.0 - 62.3 - 47.9 -

DIMN (Song et al. 2019) DG/MS 51.2 60.1 39.2 52.0 29.3 41.1 70.2 78.4 47.5 57.9
AugMining (Tamura et al. 2019) DG/MS 49.8 - 34.3 - 46.6 - 76.3 - 51.8 -

DualNorm (Jia et al. 2019) DG/MS 53.9 58.0 60.4 64.9 41.4 45.7 74.8 78.5 57.6 61.8
DDAN (Chen et al. 2021) DG/MS 56.5 60.8 62.9 67.5 46.2 50.9 78.0 81.2 60.9 65.1
RaMoE (Dai et al. 2021) DG/MS 56.6 64.6 57.7 67.3 46.8 54.2 85.0 90.2 61.5 69.1

DIR-ReID (Zhang et al. 2021) DG/MS 58.3 62.9 71.1 75.6 47.8 52.1 74.4 78.6 62.9 67.3
GDNorm (Ours) DG/MS 66.1 74.1 72.6 79.9 55.4 63.8 81.3 87.2 68.9 76.3

Table 1: Performance (%) comparison with the state-of-the-art methods under Protocol-1.

Setting Training Data Testing Data
Protocol-1 M+D+C2+C3+CS PRID, GRID, VIPeR, iLIDs

Protocol-2

D+C3+MT M
M++C3+MT D

M+D+MT C3
M+D+C3 MT

Table 2: Different evaluation settings of Protocol-1 and
Protocol-2.

D+MT+C3→M R1 R5 R10 mAP
QAConv50* (Liao et al. 2020) 65.7 - - 35.6

M3L (Zhao et al. 2021) 75.9 - - 50.2
RaMoE (Dai et al. 2021) 82.0 91.4 94.4 56.5

GDNorm (Ours) 86.5 95.2 96.9 68.2
M+MT+C3→D R1 R5 R10 mAP

QAConv50* (Liao et al. 2020) 66.1 - - 47.1
M3L (Zhao et al. 2021) 69.2 - - 51.1
RaMoE (Dai et al. 2021) 73.6 85.3 88.4 56.9

GDNorm (Ours) 78.2 87.8 90.4 63.8
D+MT+M→C3 R1 R5 R10 mAP

QAConv50* (Liao et al. 2020) 23.5 - - 21.0
M3L (Zhao et al. 2021) 33.1 - - 32.1
RaMoE (Dai et al. 2021) 34.6 54.3 64.6 33.5

GDNorm (Ours) 48.6 70.3 79.3 47.9
D+M+C3→MT R1 R5 R10 mAP

QAConv50* (Liao et al. 2020) 24.3 - - 7.5
M3L (Zhao et al. 2021) 33.0 - - 12.9
RaMoE (Dai et al. 2021) 34.1 46.0 51.8 13.5

GDNorm (Ours) 48.1 63.1 68.5 20.4

Table 3: Performance (%) comparison with the state-of-the-
art methods under Protocol-2.

use automatic mixed-precision training (Micikevicius et al.
2017) in the entire process. All experiments are conducted
on a single NVIDIA Titan XP GPU.

E S D+MT+C3→M
R1 R5 R10 mAP

× × 78.5 91.4 94.5 55.2
X × 83.2 92.9 95.3 62.5
X X 86.5 95.2 96.9 68.2

Table 4: Ablation studies on the effectiveness of each com-
ponent of GDNorm under Protocol-2.

Comparison to state-of-the-art Methods
Comparison under the Protocol-1. As shown in Tab. 1,
‘MS’ is the multiple source datasets under Protocol-1 (M,
D, C2, C3 and CS). ‘Comb1’ is the leave-one-out setting
for VIPeR, PRID, CUHK01, iLIDS and CAVIAR datasets.
‘Comb2’ is the combination of C3, D and synthetic datasets.

The comparison methods are mainly divided into three
groups: supervised learning (S), unsupervised domain adap-
tation (UDA), and domain generalization (DG). Supervised
methods suffer from the over-fitting issue due to the ex-
tremely small scale of training set. In contrast, our GDNorm
method achieves better performance than all the supervised
methods without access to labeled target data. Furthermore,
we can observe that even if unlabeled target samples can
be utilized for UDA methods, our GDNorm is still supe-
rior to these UDA methods without using any target data.
Moreover, the mean performance on four target domains of
our GDNorm method improves RaMoE (Dai et al. 2021) by
7.4% R-1 accuracy and 7.2% mAP, and DIR-ReID (Zhang
et al. 2021) 6.0% R-1 accuracy and 6.0% mAP, respec-
tively. Previous DG person Re-ID methods directly adopt
the model trained on the source domains to unseen target
domain without considering the biased issue. Compared to
these methods, our proposed method finds the debiased fea-
ture statistics from an accurate estimated Gaussian process
and significantly enhances the generalization ability.

Comparison under the Protocol-2. As shown in Tab. 3,
we compare the proposed GDNorm with QAConv50 (Liao
and Shao 2020), M3L (Zhao et al. 2021) and RaMoE (Dai
et al. 2021) under Protocol-2. GDNorm outperforms the per-
formances of these methods by a large margin. Specifically,
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Testing Paths D+MT+C3→M
R1 R5 R10 mAP Time

Single Path (D) 75.5 89.3 92.1 48.0 0.09s / batch
Single Path (MT) 80.8 90.8 92.2 56.4 0.09s / batch
Single Path (C3) 78.9 91.4 93.7 54.2 0.09s / batch

Mean Path 86.5 95.2 96.9 68.2 0.09s / batch

Table 5: Evaluation of the influence of different paths as well
as the inference time under Protocol-2.

λ
D+MT+C3→M

R1 R5 R10 mAP
0.1 83.9 93.6 95.5 63.2
0.5 86.3 94.4 96.2 67.7
0.6 86.5 95.2 96.9 68.2
0.7 85.8 94.2 95.9 67.3
1 84.3 92.8 93.2 64.4

Table 6: Ablation study on sample ratio λ under Protocol-2.

our method improves the second best RaMoE by 4.5% R1
accuracy and 11.7% mAP on Market-1501. When testing on
DukeMTMC, GDNorm improves the second best RaMoE
by 4.6% and 6.9% in terms of R1 accuracy and mAP.
When testing on CUHK03, GDNorm outperforms RaMoE
by 10.0% R1 accuracy and 10.4% mAP. GDNorm also im-
proves RaMoE by 14.0% R-1 accuracy and 6.9% mAP on
MSMT17. The performances on these four large-scale Re-
ID datasets have demonstrated the strong domain general-
ization of our GDNorm through debiased BN estimation
from the accurate Gaussian process.

Ablation Study
Effectiveness of components in GDNorm. To investigate
the effectiveness of each component in DGNorm, we con-
duct ablation studies in Tab. 4. ‘E’ denotes the model di-
rectly trained with domain-specific BN layers and tested
with the mean parameters of the domain specific BN lay-
ers across all source domains. ‘S’ means employing the
mean path from the learned Gaussian process as the debi-
ased BN parameters. As shown in Tab. 4, the performance
of ‘E’ outperforms the baseline by 5.2% R1 accuracy and
8.3% mAP. It indicates that the domain-specific BN layers
can effectively capture the specific feature statistics infor-
mation from the corresponding domains, which can be inte-
grated to make full use of all the effective information of
source domains for enhancing the generalization. On this
basis, the model with the dynamically self-refining Gaus-
sian process improves the performance by 2.8% R1 accuracy
and 4.7% mAP, which demonstrates the effectiveness of the
learned debiased feature statistics of BN layers, tending to
real hyper-distribution.

Analysis of the influence of different paths. We analyze
the performance of using different paths from the estimated
Gaussian process as the optimal debias parameters of BN
layers for the target domain. As shown in Fig. 2, we ran-
domly sample paths from the learned Gaussian process to
serve as BN layers in the model and test their performance.
We change λ in Eq. 11 from 0.1 to 1, and randomly sam-
ple 100 paths at each λ as 100 different models. Their re-
sults are marked with black dots. The grey region is the area

Figure 2: Performance comparison between the mean path
and other sampled paths under Protocol-2.

between the best sampled path’s model and the worst sam-
pled path’s model at each λ. The horizontal line in red rep-
resents the performance of the “Mean Path”. From the re-
sults in the Fig. 2, few number of models generated by ran-
domly sampled paths perform slightly better than the “Mean
Path”, which indicates that these models more closely match
the target domain. But from the perspective of average risk,
“Mean Path” achieves the best performance. Moreover, as
shown in Tab. 5, “Single Path (D)/(MT)/(C3)” means in-
ference with the parameters of domain-specific BN layers
learned from D/MT/C3 domain-specific model, respectively.
“Mean Path” means to directly use the mean path of the
Gaussian process to serve as every BN layer in the model.
“Single Path (D)/(MT)/(C3)” are inferior to “Mean Path”.
It indicates that our GDNorm makes use of all the domain-
specific models’ features to improve the generalization abil-
ity. GDNorm only takes 0.09 seconds per query batch im-
ages to inference, which is just one-third time cost of the en-
semble model with three domain-specific networks, showing
the high efficiency of our GDNorm.

Effectiveness of the sampling ratio λ. The results in
Tab. 6 show the influence of different sampling ratio λ in
Eq. 11 during the training stage. As shown in Tab. 6, we can
observe that when λ increases from 0.1 to 0.6, the proposed
method obtains 2.4% and 5.0% improvements in terms of R-
1 accuracy and mAP, respectively. When nd increases from
0.6 to 1, the performance decreases by 2.2% and 3.8% R-1 in
terms of accuracy and mAP, respectively. GDNorm obtains
the best performance when λ is set to 0.6.

Conclusion

In this paper, we propose a novel Debiased Batch Normal-
ization via Gaussian Process approach (GDNorm) for gen-
eralizable person re-identification. GDNorm models the fea-
ture statistic estimation (the parameters) from the domain-
specific BN layers as a dynamically self-refining Gaussian
process to fit the real hyper-distribution of domains for im-
proving the generalization ability on unseen target domain.
It employs the self-refining mechanism to further optimize
these learned parameters of domain-specific BN layers for
source domains, and estimates more accurate Gaussian pro-
cess by them in return, tending to real data distribution. In
addition, GDNorm directly exploits the mean path of the
Gaussian process as the optimal BN estimating for unseen
target domain, without requiring no extra computational cost
as compared to ensemble learning. Extensive experiments
show the proposed GDNorm achieves the state-of-the-art
performance on multiple standard benchmarks.
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