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Abstract

This paper considers deep visual recognition on long-tailed
data. To make our method general, we tackle two applied
scenarios, i.e., deep classification and deep metric learning.
Under the long-tailed data distribution, the most classes (i.e.,
tail classes) only occupy relatively few samples and are prone
to lack of within-class diversity. A radical solution is to
augment the tail classes with higher diversity. To this end,
we introduce a simple and reliable method named Memory-
based Jitter (MBJ). We observe that during training, the deep
model constantly changes its parameters after every itera-
tion, yielding the phenomenon of weight jitters. Consequen-
tially, given a same image as the input, two historical editions
of the model generate two different features in the deeply-
embedded space, resulting in feature jitters. Using a memory
bank, we collect these (model or feature) jitters across mul-
tiple training iterations and get the so-called Memory-based
Jitter. The accumulated jitters enhance the within-class diver-
sity for the tail classes and consequentially improves long-
tailed visual recognition. With slight modifications, MBJ is
applicable for two fundamental visual recognition tasks, i.e.,
deep image classification and deep metric learning (on long-
tailed data). Extensive experiments on five long-tailed clas-
sification benchmarks and two deep metric learning bench-
marks demonstrate significant improvement. Moreover, the
achieved performance are on par with the state of the art on
both tasks.

Introduction
In visual recognition tasks, the long-tailed distribution of the
data is a common and natural problem under realistic scenar-
ios (Van Horn and Perona 2017; Lin et al. 2014; Everingham
et al. 2010; Guo et al. 2016). A few categories (i.e., the head
classes) occupy most of the data while the most categories
(i.e., the tail classes) only occupy relatively few data. Such
long-tailed distribution significantly challenges deep visual
recognition, including both deep image classification (Zhou
et al. 2019; Kang et al. 2019; Cao et al. 2019; Van Horn
and Perona 2017; Buda, Maki, and Mazurowski 2018a; Cui
et al. 2019; Zhu and Yang 2020) and deep metric learning
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(Liu et al. 2020; Yin et al. 2019; Guo et al. 2016; Thomee
et al. 2016). To make our method general, this paper con-
siders long-tailed visual recognition on these two elemental
tasks with a uniform motivation.

We recognize the insufficient within-class diversity of the
tail classes as the most prominent reason that hinders long-
tailed deep visual recognition. In the deeply-embedded fea-
ture space, a tail class is under-represented and thus hard to
be recognized. To validate this point, we visualize the deep
embedding of CIFAR-10 dataset in Fig. 1. When a specified
class (“ID-10”) degrades from head (Fig.1 (a)) to tail (Fig.1
(b)), its visual concept collapses into a very limited scope in
the deep embedding. Consequentially, when we employ the
model for inference, samples from “ID-10” may exceed the
already-learned scope and are thus easily mis-classified. In-
tuitively, a radical solution is to augment the tail classes with
higher diversity.

We notice two phenomena which are potential for enhanc-
ing the tail data diversity, i.e., the weight jitter and the feature
jitter. During training, the deep model constantly changes its
parameters after every iteration, yielding the phenomenon
of weight jitter. Consequentially, given a same image as the
input, the models at two different iterations generate two dif-
ferent feature representations in the deeply-embedded space,
resulting in the phenomenon of feature jitter.

Since these jitters are distributed among historical mod-
els, we need to accumulate them across multiple training
iterations for diversity enhancement. To this end, we em-
ploy a memory bank to store the desired jitters, and get the
so-called Memory-based Jitter (MBJ). With slight modifica-
tions, MBJ is capable to accommodate two elemental visual
recognition tasks, i.e., deep image classification and deep
metric learning. On deep image classification, MBJ col-
lects the historical features (i.e., feature jitters). Consequen-
tially, the feature memory bank accumulates abundant tail-
feature jitters, and improves the classification accuracy on
tail classes, as shown in Fig. 1(c)). On deep metric learning,
MBJ collects the weight vectors of the classifier layer in-
stead of the features. Each weight vector is typically viewed
as the prototype of a training class, so we name the corre-
sponding memory bank as the prototype memory bank.

Besides the accumulated jitter, MBJ is benefited from a
novel re-sampling effect between head and tail classes. On
both the classification and the deep metric learning task,
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Figure 1: The proposed Memory-based Jitter (MBJ) enhances the tail feature diversity by accumulating historical features into a
memory bank. We visualize the feature distribution of CIFAR-10 with t-SNE (Van Der Maaten 2014). We focus on a specified
class ID-10. In (a), ID-10 has abundant training samples and is a head class. Its top-1 accuracy is 94.6%. In (b), we reduce the
training samples of ID-10, so it becomes a tail class. Due to the lack of within-class diversity, its feature distribution collapses
into a very limited scope and the top-1 accuracy dramatically decreases to 50.6%. In (c), MBJ collects historical features
distributed among multiple training iterations into a memory bank. The historical features are scattered around the up-to-date
features in the deeply-embedded space, yielding the so-called Memory-based Jitter (MBJ). Consequentially, MBJ enhances the
tail data diversity and increases the classification accuracy of ID-10 from 50.6% to 88.6%.

MBJ assigns larger sampling rate to the tail classes (than to
the head classes). Correspondingly, the tail classes occupy
more memory-based jitters than the head classes, which
compensates for the imbalanced distribution of the raw data.
We note that some recent works (Zhou et al. 2019; Kang
et al. 2019) evidence that directly over-sampling the raw im-
ages, though alleviates the data imbalance problem to some
extent, actually compromises deep embedding learning. In
contrast, MBJ maintains the natural sampling frequency on
the raw images and re-balances the head and tail classes in
the memory bank.

The main contributions of this paper are summarized as
follows:

• We find that the weight jitters and the feature jitters are
informative clues to gain extra diversity for tail data aug-
mentation.

• We propose Memory-based Jitter to accumulate the jit-
ters within a memory bank and improve deep visual recogni-
tion on long-tailed data. MBJ is compatible to two elemental
visual tasks, i.e., deep image classification and deep metric
learning, with slight modifications.

• MBJ is featured for the memory-based feature space
augmentation. It can be treated as a plug-in module and be
unified with previous methods.

• We conduct extensive experiments on five classification
benchmarks and two metric learning benchmarks (person re-
identification, in particular) under long-tailed scenario. On
all these benchmarks, we demonstrate the superiority of our
methods, which significantly improves the baseline and is on
par with the state-of-the-art methods.

Related Work
Re-balancing Strategy
MBJ has a novel re-balancing strategy, compared with
prior works on long-tailed visual recognition. Generally, re-
balancing aims to highlight the tail classes during train-
ing. In prior works, there are two major re-balancing types,
i.e., re-weighting(Huang et al. 2016; Wang, Ramanan, and
Hebert 2017; Cui et al. 2019) and re-sampling(Shen, Lin,
and Huang 2016; Zhong et al. 2016; Buda, Maki, and
Mazurowski 2018b; Byrd and Lipton 2019). Re-weighting
strategy allocates larger weights to tail classes in loss func-
tion. Re-sampling over-samples the raw images of the tail
classes for training.

Different from these prior works, MBJ re-samples the
features / prototypes to highlight the tail classes. It thus
avoids directly re-sampling the raw data. Since directly re-
sampling the raw data actually compromises the deep em-
bedding learning (Zhou et al. 2019; Kang et al. 2019), avoid-
ing such operation substantially benefits MBJ. An ablation
study carried out on the long-tailed CIFAR-10 dataset shows
that when we remove the jitter augmentation, this novel re-
sampling strategy still brings +2.1% improvement over the
baseline. The details are to be accessed in Section .

Memory-based Learning
The memory bank plays a critical role in MBJ. Both the
weight jitters and the feature jitters are scattered among
sequential training iterations. To accumulate these jitters
for tail data augmentation, we employ a memory bank.
Since memory-based learning has been explored in several
computer vision domains, including unsupervised learning,
semi-supervised learning and supervised learning (He et al.
2019; Tarvainen and Valpola 2017; Laine and Aila 2016;
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Wang et al. 2019; Santoro et al. 2016; Zhu and Yang 2018),
we make a detailed comparison as follows.

In unsupervised learning, (He et al. 2019) employs mem-
ory to include more data in the dictionary. It shows that
larger optimization scope within a optimization step is ben-
eficial for unsupervised learning (He et al. 2019). In semi-
supervised learning, (Laine and Aila 2016; Tarvainen and
Valpola 2017) enforce consistency between historical pre-
dictions. Such consistency offers auxiliary supervision for
the unlabeled data. In supervised deep metric learning,
(Wang et al. 2019) uses memory to enhance the hard min-
ing effect. Regardless of their objectives of using memory,
they all hold a negative attitude towards the jitters. (He et al.
2019) and (Laine and Aila 2016; Tarvainen and Valpola
2017) suppress the jitters with momentum and consistency
constraint, respectively. (Wang et al. 2019) tries to avoid the
jitters by delaying the injection of memory.

In contrast to their negative attitude towards jitters, we
find that the jitters are informative for long-tailed visual
recognition. As a major contribution of this work, we ana-
lyze the mechanism in Section and experimentally validate
its effectiveness in Section .

Moreover, we notice a recent work IEM (Zhu and Yang
2020) also employs memory for long-tailed image classifi-
cation. We compare MBJ against IEM in details for clarity.
Our method significantly differs from IEM in three aspects,
i.e., the applied task, the mechanism and the achieved per-
formance. First, IEM is specified for image classification,
while MBJ improves both image classification and deep
metric learning with a uniform motivation. Second, IEM
considers tail classes are harder to recognize, and thus em-
ploy more prototypes from the memory for higher redun-
dancy, while MBJ employs the jitters in memory to augment
the diversity of tail data. Finally, on image classification
task, MBJ maintains competitive performance with signif-
icantly higher computing efficiency. IEM requires extraor-
dinary large amount of memory (up to 50, 000 per class),
and achieves Top-1 accuracy of 67% on iNaturalist18. In
contrast, MBJ is more memory-efficient and more accuracy.
For example, on iNaturalist18 (Van Horn et al. 2018), MBJ
only stores 40, 000 memorized features in total and achieves
Top-1 accuracy of 66.9% and 70.0% at 90 and 200 epochs,
respectively.

With these comparison, we find that MBJ is featured for
the memory-based feature augmentation. It is orthogonal to
many prior works. Specifically, we note a very recent work
RIDE (Wang et al. 2020) using multiple classifiers (experts)
ensemble to improve the accuracy of head and tail classes,
simultaneously. MBJ can be integrated into RIDE (Wang
et al. 2020) for better performance gains.

Proposed Method
Basically, MBJ accumulates historical jitters within a mem-
ory bank to enhance the diversity of the tail classes. Under
this framework, MBJ adopts slight modifications to accom-
modate two fundamental visual recognition tasks, i.e. fea-
ture jitters for image classification and prototype jitters for
deep metric learning. Explicitly, deep image classification
and deep metric learning have the fundamental differences.
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Figure 2: Quantitative statistics on feature jitters and weight
jitters. We use a long-tailed CIFAR-10 as the toy dataset
and focus on the tail class / image. As the accumulated fea-
tures / prototypes increase, the angular variance gradually
increases.

Specifically, there are two aspects. On one hand, the defini-
tions of two tasks are different. The classification task aims
to recognize the already-seen classes. The categories of the
training set and testing set are completely overlapped. The
deep metric learning task aims to discriminate the unseen
classes. The identities of training set and the testing set have
no overlap. On the other hand, the optimized objectives of
two tasks are also different. In classification task, the model
aims to learn an accurate and unbiased classifier that outputs
the correct label to the specified instance as much as possi-
ble. In metric learning task, the model aims to learn a dis-
criminative feature extractor that encourages the instances
from the same class to be closer than those from different
classes. In this section, we first analyze the weight jitters
and the feature jitters. Then we introduce the MBJ for deep
image classification and deep metric learning.

Weight Jitters and Feature Jitters
To illustrate the phenomena of weight jitters and feature jit-
ters, we conduct a toy experiment on CIFAR-10. We set a
specified class to contain very limited samples (i.e., 50 sam-
ples) so that it turns into a tail class. We train a deep classifi-
cation model to convergence and then continue the training
for observation purpose. Within the following iterations, we
record two objects, i.e., 1) the prototype (i.e., the weight vec-
tor in the classification layer) of the tail class and 2) the fea-
ture of a single tail sample. As the training iterates, both the
prototypes and the features accumulate, allowing a quantita-
tive statistic on their variances. We visualize the geometrical
angular variance of the accumulated features / prototypes in
Fig. 2, from which we draw two observations.

First, we observe considerable variance among the accu-
mulated weight vectors (i.e., prototypes), as well as the accu-
mulated features. It indicates that among multiple iterations,
both the prototype of a single class and the feature of a sin-
gle image keep on changing itself, yielding the phenomena
of weight jitters and feature jitters, respectively.

Second, we observe that the above-described jitters re-
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Figure 3: MBJ for deep image classification collects historical features into memory with higher concentration on tail classes.
MBJ randomly samples the raw images and transforms them into a batch of features with a convolutional neural network. Given
current batch features, MBJ uses a class-specific sampling strategy to collect the features from different classes. Head classes
have smaller sampling probability and tail classes have larger sampling probability. These features are stored into a memory
bank, i.e., feature memory. MBJ combines the feature memory and the batch features to learn the classifier. The feature memory
compensates the tail classes with higher diversity.

quire certain training iterations to accumulate before they
reach stable status. When there is only one single feature /
prototype, the corresponding variance is naturally 0. As the
number of accumulated features / prototypes increases, the
variance gradually grows until reaching a stable level.

Based on the above observation, we device MBJ. MBJ
uses a memory bank to collect the historical features / proto-
types, so as to accumulate the feature / weight jitters for tail
augmentation.

MBJ for Deep Image Classification
The pipeline of MBJ for deep image classification is il-
lustrated in Fig.3. In the raw image space, MBJ randomly
samples the images without re-balancing the head and tail
classes. In each training iteration, the deep model transforms
the raw images into a batch of features (from second last
layer). Given the features in current mini-batch, MBJ stores
them into a memory bank. The memory bank has a larger
size than the mini-batch, so it is capable to accumulate his-
torical features across multiple training iterations.

When collecting the features, MBJ lays emphasis on the
tail classes, so that the tail and head data will be re-balanced.
Specifically, MBJ assigns small sampling probabilities to
head classes, as well as relatively large sampling probabili-
ties to tail classes, which is formulated as:

Pi =
(1/Ni)

β∑C
j (1/Nj)β

(1)

where Pi is the corresponding sampling probability of class
i, Ni is the sample number of the i-th class, C is the total
number of classes, and β is a hyper-parameter to control the
strength of re-balancing. A larger β results in higher priority
on accumulating the tail features. We use β = 1.5 in all of
our experiments.

To control the memory size, we use a queue strategy for
updating the memory bank. After the memory bank reaches

its size limitation, we enqueue the newest features (i.e., the
features in current mini-batch), and dequeue the oldest ones.

Given the feature memory and the batch features, MBJ
combines both of them to learn the classifier in a joint op-
timization manner. Specifically, MBJ uses the features in
current mini-batch and the weight vectors in the classifi-
cation layer to deduce a cross-entropy loss, i.e., the loss
Lbatch. Meanwhile, MBJ uses the memorized features and
the weight vectors in the classification layer to deduce an-
other cross-entropy loss, i.e., the loss Lmemory . MBJ sums
up those two losses by:

Ltotal = Lmemory × η + Lbatch, (2)

in which η is a weighting factor. The pseudo-code of MBJ
for deep image classification task is provided in supplemen-
tary material.

MBJ for Deep Metric Learning
A popular baseline (Qian et al. 2019; Liu et al. 2020; Sun
et al. 2020; Sohn 2016; Liu et al. 2017; Sun et al. 2017,
2018a) for deep metric learning is as follows: during train-
ing, we learn a classification model on the training set. The
weight vectors in the classification layer are typically recog-
nized as prototypes for each class. During testing, the dis-
tance between two images are measured under the learned
deep embedding. Based on this baseline, MBJ collects the
historical prototypes into a prototype memory with empha-
sis on the tail classes.

The sampling strategy is exactly the same as in Eq.1, so
we omit the detailed description. Given the historical proto-
types in memory and the up-to-date prototypes, MBJ com-
bines both to learn the features. For clarity, we illustrate the
learning process with focus on a single feature x under opti-
mization.

To learn with the up-to-date prototypes W =
{w1, w2, · · · , wC} (C is the total number of training
classes), MBJ adopts a popular deep metric learning method,
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i.e., CosFace (Wang et al. 2018a), which is formulated as:

Lbatch = −log
exp

(
α(wT

y x− δ)
)

exp (α(wT
y x− δ)) +

∑C

k ̸=y
exp (αwT

k x)
(3)

in which C is the number of classes, wy is the prototype
of the target class, α is a scale factor and δ is a margin for
better similarity separation.

To learn with the prototype memory, MBJ needs to deal
with multiple positive prototypes associated with feature x.
It is because the weight vector of the target class in the clas-
sifier may be sampled at several training iterations. Let us as-
sume there are K positive prototypes {u1, u2, · · · , uK}(i.e.,
weight vectors of the target class), and L negative proto-
types {v1, v2, · · · , vL} (i.e., weight vectors of the non-target
class). We find that a recent deep metric learning method,
i.e., Circle Loss(Sun et al. 2020), allows multiple similari-
ties associated with a single sample feature. Accordingly to
Circle Loss, we define the loss function associated with the
prototype memory by:

Lmemory = log

[
1 +

L∑
j=1

K∑
i=1

exp(α(vTj x− uT
i x+ δ))

]
(4)

Similar to Eq.2, MBJ sums the above two losses (i.e.,
Lbatch and Lmemory) to optimize the feature x. We note that
two editions of MBJ share a unified framework, except for
the jitter type. To improve the classification accuracy, MBJ
memorizes the feature jitters; To improve the retrieval accu-
racy, MBJ memorizes the prototype jitters. They have a dual
pattern against each other. The pseudo-code of MBJ for deep
metric learning task is provided in supplementary material.

Discussions
MBJ is featured for its re-balancing strategy and its aug-
mentation manner. Although re-balancing the features / pro-
totypes (instead of re-balancing the raw data) considerably
benefits MBJ (as introduced in Section ), we note that the
improvement is mainly because the accumulated jitters in-
crease the tail data diversity. Removing the jitters or using
other augmentation method significantly compromise MBJ.
The details are to be accessed in Section .

Experiments
Datasets and Setup
Deep Classification. Under long-tailed image classification
scenario, we evaluate MBJ on 5 datasets, i.e., CIFAR-10,
CIFAR-100, ImageNet-LT, Places-LT and iNaturalist18.

For CIFAR datasets, we synthesize several long-tailed
version, following (Cao et al. 2019). We use an imbalance
ratio to denote the ratio between sample size of the most fre-
quent and least frequent class. Imbalanced ratio (IR) in our
experiments are set to 10, 50 and 100, respectively.

ImageNet-LT, Places-LT and iNaturalist18 are publicly
available long-tailed dataset. In ImageNet-LT, the maximum
of images per class is 1280 and the minimum of images per
class is 5. In Places-LT, the largest class has 4980 images
while the smallest ones have 5 images. Their test set is bal-
anced. The iNaturalist18 dataset is a large-scale dataset with

extremely imbalanced label distribution. It has 437, 513 im-
ages from 8, 142 classes. We adopt the official training and
validation splits for our experiments.
Deep Metric Learning. We employ the person re-
identification (re-ID) (Zhong et al. 2018; Sun et al. 2018b;
Zheng et al. 2019) task to evaluate MBJ on deep metric
learning. Given a query person, re-ID aims to spot the ap-
pearance of the same person in the gallery. The keynote of
re-ID is to learn accurate metric that measures the similarity
between query and gallery images. We adopt two dataset,
i.e., Market-1501(Zheng et al. 2015) and DukeMTMC-
reID(Ristani et al. 2016; Zheng, Zheng, and Yang 2017).
Following the settings in feature cloud (Liu et al. 2020), we
synthesize several long-tailed editions based on the original
datasets. For comprehensive evaluation, we vary the number
of head classes as 20, 50 and 100, respectively. All the tail
classes contain only 5 images per class.

Implementation Details
Parameter Settings. For both task, the re-balancing factor
β (Eq. 1) is set to 1.5 and the memory size is set to 5 ∗ C
(C is the total number of training classes). Please refer to
supplementary material for more details.

Experiments on Image Classification
Evaluation on Long-tailed CIFAR-10 / 100 Table 1
compares MBJ with the baseline and several state-of-the-
art methods on the long-tailed CIFAR-10 and CIFAR-100.
Comparing MBJ with “Basel. (CE)”, we find that MBJ sig-
nificantly improves the baseline. Under the setting of IR
100, for instance, MBJ surpasses the baseline by +10.6%
and +7.5% top-1 accuracy on CIFAR-10 and CIFAR-100,
respectively. Comparing MBJ with several state-of-the-art
methods, we find that MBJ is on par with them. For exam-
ple, comparing MBJ with Hybrid-PSC (Wang et al. 2021),
under IR 10, MBJ is slightly lower than it. While, under
the more imbalanced case (IR 100 and 50), MBJ is signif-
icantly better than it. Especially under the setting of IR 50,
MBJ marginally surpasses it by +2.7% and +3.7% top-1
accuracy on CIFAR-10 and CIFAR-100, respectively. When
we compare MBJ against the recent work RIDE (Wang
et al. 2020) and ACE (Cai, Wang, and Hwang 2021), MBJ
is lower than RIDE (Wang et al. 2020) and ACE (Cai,
Wang, and Hwang 2021) in some cases. It is because they
use the multiple experts ensemble. MBJ is featured of the
memory-based feature augmentation, and thus it can be in-
tegrated into them, achieving the better performance. Specif-
ically, we combine MBJ with RIDE (Wang et al. 2020).
“MBJ + RIDE” achieves the further improvement against
RIDE (Wang et al. 2020), and is better than ACE (Cai,
Wang, and Hwang 2021). More methods combined with
MBJ are provided in supplementary material.

Evaluation on ImageNet-LT and Places-LT The exper-
iment results on ImageNet-LT and Places-LT are shown in
Table 2. These two datasets offer separate evaluations un-
der Many-shot (more than 100 training images per class),
Medium-shot (20 to 100 training images per class), Few-
shot (less than 20 images per class) and the Overall per-
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Dataset Long-tailed CIFAR-10 Long-tailed CIFAR-100
Imbalanced ratio (IR) 100 50 10 100 50 10

Basel. (CE) 70.4 74.8 86.4 38.3 43.9 55.7
LDAM-DRW (Cao et al. 2019) 77.0 81.0 88.2 42.0 46.6 58.7
BBN (Zhou et al. 2019) 79.8 82.2 88.3 43.7 47.0 59.1
SSP (Yang and Xu 2020) 77.8 82.1 88.5 43.4 47.1 58.9
De-confound-TDE (Tang, Huang, and Zhang 2020) 80.6 83.6 88.5 44.1 50.3 59.6
Hybrid-PSC (Wang et al. 2021) 78.8 83.9 90.1 45.0 48.9 62.7
MetaSAug (Li et al. 2021) 80.5 80.0 89.4 46.9 51.9 61.7
LADE (Hong et al. 2021) - - - 45.4 50.5 61.7
DiVE (He, Wu, and Wei 2021) - - - 45.4 51.1 62.0
RIDE (4 experts)† (Wang et al. 2020) 81.1 87.0 88.3 48.7 59.0 58.4
ACE (3 experts) (Cai, Wang, and Hwang 2021) 81.2 84.3 - 49.4 50.7 -
MBJ 81.0 86.6 88.8 45.8 52.6 60.7
MBJ + RIDE (4 experts) 82.2 87.3 89.4 49.9 59.8 62.1

Table 1: Comparison with baseline and the state-of-the-art methods on long-tailed CIFAR-10 and CIFAR-100. We report top-1
accuracy rates. The best results are in bold. † denotes our reproduced results with released code.

Methods ImageNet-LT Places-LT
Many Medium Few Overall Many Medium Few Overall

Basel.(CE) 65.9 37.5 7.7 44.4 45.7 27.3 8.2 30.2
Decouple-LWS (Kang et al. 2019) 60.2 47.2 30.3 49.9 40.6 39.1 28.6 37.6
FSA (Chu et al. 2020) - - - - 42.8 37.5 22.7 36.4
De-confound-TDE (Tang, Huang, and Zhang 2020) 62.7 48.8 31.6 51.8 - - - -
DisAlign (Zhang et al. 2021) 61.5 50.7 33.1 52.6 40.4 42.4 30.1 39.3
LADE (Hong et al. 2021) 62.3 49.3 31.2 51.9 42.8 39.0 31.2 38.8
DiVE (He, Wu, and Wei 2021) 64.1 50.5 31.5 53.1 42.8 39.0 31.2 38.8
RIDE (4 experts)† (Wang et al. 2020) 67.8 53.4 36.2 56.6 46.1 43.3 32.3 41.2
MBJ 61.6 48.4 39.0 52.1 39.5 38.2 35.5 38.1
MBJ + RIDE (4 experts) 68.4 54.1 37.7 57.7 46.6 44.8 37.2 42.5

Table 2: Comparison with baseline and the state-of-the-art methods on long-tailed CIFAR-10 and CIFAR-100. We report top-1
accuracy rates. The best results are in bold. † denotes our reproduced results with released code.

Methods 90 E 200 E
Basel.(CE) 61.1 65.3
IEM* (Zhu and Yang 2020) 67.0 -
LDAM-DRW † (Cao et al. 2019) 64.6 66.1
BBN (Zhou et al. 2019) 66.3 69.7
Decouple-LWS (Kang et al. 2019) 65.9 69.5
MetaSAug (Li et al. 2021) - 68.9
Hybrid-PSC (Wang et al. 2021) 68.1 70.4
DisAlign (Zhang et al. 2021) 67.8 70.6
LADE (Hong et al. 2021) - 70.0
DiVE (He, Wu, and Wei 2021) 69.1 71.7
RIDE (4 experts)† (Wang et al. 2020) - 72.6
ACE (3 experts) (Cai, Wang, and Hwang 2021) - 72.6
MBJ 66.9 70.0
MBJ + RIDE (4 experts) - 73.2

Table 3: Top-1 accuracy on iNaturalist18. All models use
the ResNet-50 (He et al. 2016) backbone. IEM* denotes the
IEM (Zhu and Yang 2020) using global feature for fair com-
parison. † denotes our reproduced results with released code.
The best results are in bold.

formance, respectively. From Table 2, We draw three ob-
servations as follows: First, under Many-shot and Medium-
shot, MBJ achieves comparable accuracy. For example, on
ImageNet-LT, MBJ is slightly lower than LADE (Hong
et al. 2021) by −0.7% (Many-shot) and −0.9% (Medium-
shot). Second, under Few-shot, MBJ exhibits significant su-

periority against all the competing methods. On Places-LT,
MBJ surpasses the second best method RIDE (Wang et al.
2020) by +3.2% top-1 accuracy. Third, due to significant
superiority under the Few-shot, as well as the comparable
performance under Many-shot and Medium-shot, the Over-
all performance of MBJ is on par with the state of the art.

Moreover, we notice that most the methods (including
MBJ) actually lose some accuracy under the Many-shot,
compared with the baseline. Only RIDE (Wang et al. 2020)
improves the accuracy of Many-shot, Medium-shot and
Few-shot, simultaneously, because RIDE (Wang et al. 2020)
uses the multiple experts ensemble. We combine MBJ with
RIDE, then we further improve the performance.

Evaluation on INaturalist18 We further evaluate MBJ on
the large-scale long-tailed dataset i.e. iNaturalist18. The re-
sults are shown in Table 3. For fair comparison, we report
performance achieved at 90 and 200 training epochs, fol-
lowing the common practice of previous works. Under both
settings, MBJ achieves competitive accuracy. When MBJ is
combined with RIDE (Wang et al. 2020), “MBJ + RIDE”
achieves the best performance.

Experiments on Deep Metric Learning
We evaluate MBJ under a popular deep metric learning task
(i.e., re-ID). We note that the long-tail problem on this task
has been noticed recently, and the competing methods are
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Method
Market-1501 DukeMTMC-reID

H100 H50 H20 H100 H50 H20
mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1

Baseline 62.8 83.8 60.5 80.7 55.6 78.6 52.6 70.3 48.0 67.7 47.0 66.0
Feature cloud (Liu et al. 2020) 68.7 86.5 67.3 84.9 64.1 83.2 55.6 74.8 53.1 73.0 52.4 72.7

MBJ 72.6 88.4 68.8 86.2 66.7 84.8 60.8 78.6 56.7 74.4 57.9 75.5

Table 4: Evaluation of MBJ on long-tailed re-ID task. Under each dataset, there are three different long-tailed conditions, i.e.,
“H100”: 100 head classes. “H50”: 50 head classes. “H20”: 20 head classes. All the tail classes contain only 5 images per class.
We report Rank-1 accuracy (R-1) and mAP on Market-1501 and DukeMTMC-reID. Best performance are in bold.

relatively few. Table 4 compares MBJ with re-ID baseline
(CosFace (Wang et al. 2018b)) and a state-of-the-art method
(Feature Cloud (Liu et al. 2020)), from which we draw two
observations:

First, under typical long-tailed distribution, MBJ signifi-
cantly improves the re-ID baseline. When there are only 20
head classes (“H20”), MBJ achieves +11.1% and +10.9%
mAP on Market-1501 and DukeMTMC-reID, respectively.

Second, MBJ marginally surpasses the recent state-of-the-
art, i.e., Feature Cloud (Liu et al. 2020). For example, under
three long-tailed condition on Market-1501, MBJ achieves
72.6%, 68.8% and 66.7% mAP, which are higher than Fea-
ture Cloud by +3.9%, +1.5% and +2.6%, respectively.
MBJ obtain the new state-of-the-art performance.

Ablation Study
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Figure 4: Ablation study on the effect of re-balancing strat-
egy and jitters. “Basel.” is the baseline without any re-
balancing or tail augmentation. “RR” re-balances the raw
images. “FR” adopts the feature re-balancing in MBJ and
removes the feature jitters. “FR+RJ” replaces the feature jit-
ters with Gaussian-distributed disturbance (for tail augmen-
tation). The proposed MBJ marginally surpasses the base-
line and all the other counterparts. It indicates that the jitter
effect is the major reason for the superiority of MBJ.

Decoupling Re-balancing and Jitters When MBJ col-
lects jitters into the memory bank, it has two coupling ef-
fects, i.e., a) re-balancing the head and tail distribution and
b) accumulating the jitters. On the long-tailed CIFAR-10
(IR 100), we design an ablation study to decouple those
two effects. Specifically, we train three different models as
follows: 1) Model RR re-balances the raw images by over-
sampling the tail classes. 2) Model FR re-balances the fea-
ture by over-sampling the tail features in current mini-batch.

However, it does NOT collect historical features into the
memory bank. In another word, Variant A maintains the re-
balancing strategy of MBJ and removes the jitters. 3) Model
FR+RJ over-samples the tail features and augments them
with Gaussian-distributed disturbance. The three models are
built upon on a same converged model and have the same
loss items and re-sampling factor β as MBJ.

Fig. 4 compares these three models with the baseline and
MBJ, from which we draw two observations:First, com-
paring “FR” against “RR” and “Basel.”, we find that re-
balancing the features considerably benefits MBJ. Specifi-
cally, directly re-balancing the raw data actually brings no
obvious improvement over the baseline. It is consistent with
the observation in LDAM (Cao et al. 2019). According to
(Cao et al. 2019; Zhou et al. 2019), it is because directly
re-sampling the raw data compromises the deep embedding
learning. In contrast, re-balancing the features avoids dete-
rioration on the deep embedding and considerably increases
the top-1 accuracy by +2.1%. Second, comparing “MBJ”
against “FR” and “FR+RJ”, we find that the accumulated
jitters is the dominating reason for the superiority of MBJ.
While re-balancing the feature (FR) improves the baseline
by +2.1% top-1 accuracy, accumulating jitters (MBJ) fur-
ther brings a much larger improvement of +8.5% accuracy.
Moreover, though adding random disturbance (“FR+RJ”)
does obtain some degree of feature augmentation as well,
its improvement is very limited and is much inferior to the
proposed MBJ.

Conclusion

This paper proposes Memory-based Jitter (MBJ) to improve
long-tailed visual recognition under both deep classification
and deep metric learning tasks. The insights behind MBJ are
two-fold. First, during training a deep model, the weight vec-
tors and the features keep on changing after each iteration,
resulting in the phenomena of (weight and feature) jitters.
Second, accumulating these jitters provides extra augmenta-
tion for the tail data. Experimental results confirm MBJ the
effectiveness of MBJ. MBJ can be treated as a plug-in mod-
ule and be unified with the previous achieving the state-of-
the-art performance on both deep image classification and
deep metric learning.

An interesting observation is that MBJ favors different
types of memory, depending on the specified task. For deep
image classification, it favors the feature memory, while for
deep metric learning, it favors the prototype memory.
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