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Abstract

We introduce Perceiving Stroke-Semantic Context (PerSec),
a new approach to self-supervised representation learning tai-
lored for Scene Text Recognition (STR) task. Considering
scene text images carry both visual and semantic proper-
ties, we equip our PerSec with dual context perceivers which
can contrast and learn latent representations from low-level
stroke and high-level semantic contextual spaces simultane-
ously via hierarchical contrastive learning on unlabeled text
image data. Experiments in un- and semi-supervised learn-
ing settings on STR benchmarks demonstrate our proposed
framework can yield a more robust representation for both
CTC-based and attention-based decoders than other con-
trastive learning methods. To fully investigate the potential
of our method, we also collect a dataset of 100 million unla-
beled text images, named UTI-100M, covering 5 scenes and
4 languages. By leveraging hundred-million-level unlabeled
data, our PerSec shows significant performance improvement
when fine-tuning the learned representation on the labeled
data. Furthermore, we observe that the representation learned
by PerSec presents great generalization, especially under few
labeled data scenes.

Introduction
Scene Text Recognition (STR) aims at reading text from
the cropped text region detected by text detector, which has
wide applications, ranging from translation by recognizing
foreign languages to street sign recognition for autonomous.
However, it is still an intractable problem as scene text im-
age can carry both visual and semantic information, which
is demonstrated in Fig. 1(a).

From visual perspective, the difficulty lies in the internal
appearance property of scene text image presented, e.g., text
font, text color and writing style (handwritten or printed), as
well as various external factors such as illumination, occlu-
sion and low-resolution. Several previous works (Shi et al.
2016; Jaderberg et al. 2015; Yang et al. 2017; Cheng et al.
2018) focus on designing discriminative feature extractors
or rectification algorithms on irregular-shape text line.

As for the semantics contained in scene text image, its
content could be from any scenario with great diversity.
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Figure 1: Demonstration of scene text examples and con-
trastive learning processes. (a) Examples of scene text. (b)
The contrastive learning process of the previous methods.
The methods greedily contrast instances merely from high-
level sequential features across different text images (c) The
contrastive learning process of our proposed PerSec. Our
method drives each element of features at high and low lev-
els to distinguish itself from its context within one same im-
age via hierarchical contrastive learning.

Many researches (Li et al. 2019; Sheng, Chen, and Xu 2019;
Wang et al. 2020; Yu et al. 2020; Qiao et al. 2020) attempt to
enhance the semantic ability of algorithm by incorporating
language model into it. Nevertheless, most of previous meth-
ods are in the supervised learning paradigm, whose success
is largely attributable to the availability of large amounts of
annotated data. In many scenarios, the collection of data is
costly, and the annotation may require expert knowledge,
which hinders the applicability of such paradigm.

Recently, many self-supervised contrastive learning meth-
ods (He et al. 2020; Falcon and Cho 2020; Rao et al. 2021;
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Vincent et al. 2008; Chen et al. 2020; Baevski et al. 2020)
in the community have achieved considerable success. Most
of these methods follow the “pre-training and fine-tuning”
paradigm. However, this learning paradigm has been rarely
studied in the STR field and only a few methods (Aberdam
et al. 2021; Chen et al. 2020) have been proposed.

The pioneer work (Aberdam et al. 2021) (Fig. 1(b))
sliding-windowed every few consecutive frames in a high-
level sequence feature map output by encoder f(·) (e.g.,
CNN) as an instance and regarded instances from two aug-
mentations of one input image as anchors (a1, a2, a3) and
corresponding positive instances (p1, p2, p3). Otherwise, the
instances from another text images are constructed as nega-
tive ones (n1, n2, n3). The contrastive learning was then per-
formed on them. This pipeline conducting cross-sample con-
trastive task may have the following three drawbacks. The
first one lies in the positive pair from two augmentations at
the same location, which may suffer from the instance mis-
alignment problem. Secondly, the selection upon negative
pairs is cross different samples with uncontrollable discrep-
ancy in writing style or content. As a consequence, the se-
mantic continuity within one image could be corrupted and
the model could not yield sequential representations with
sufficiently discriminative semantics, which is vital for the
STR task. Last but not least, all contrasting operations are
conducted on high-level features, while low-level ones con-
taining partial pattern and stroke information of text are not
paid enough attention.

Based on the above intuition, we propose a novel hier-
archical contrastive learning strategy to learn robust repre-
sentation from unlabeled data for STR task, termed Perceiv-
ing Stroke-Semantic Context (PerSec). Compared with the
previous method greedily contrasting instances from high-
level sequential features of different text images, our Per-
Sec (Fig. 1(c)) aims to learn a series of sub-hyperspheres (il-
lustrated by circles) where each element of features at dif-
ferent levels to distinguish itself from its context within one
same image via hierarchical contrasting, which is more con-
sistent with the process of text recognition. For low-level
features extracted by fstroke(·), each element can be either
an anchor (in yellow color) or one of stroke context (in green
color). In a similar sense, contrast is performed between
each anchor (in red color) from high-level sequential fea-
tures extracted by fsemantic(·) and its semantic context (in
blue color). Through this way, the learned representation can
be discriminative in both low-level stroke space and high-
level semantic space.

To implement the above process, we randomly mask the
anchor element of features, which is similar to masked lan-
guage modeling in Bert (Devlin et al. 2018) to discern “slow
features” (Wiskott and Sejnowski 2002) from context. In the
scene text image, the“slow features” can be either the stroke
pattern (e.g., the radical of Chinese character) or content se-
mantics. However, unlike Bert leveraging pre-exist vocab-
ulary as input unit, the feature space in our case could be
extremely complex. If we directly perform contrast on the
raw features, the quality of learned representation would be
sensitive to various distractors (e.g., noise, blur and etc.). Al-
ternatively, we propose a context perceiver module to reduce

the difficulty of learning in high and low level feature space.
More concretely, context perceiver maps input features into
learnable discrete units as pseudo labels. Then, the contrast
is performed between each element of feature and pseudo
labels after the context information is aggregated to feature
elements. Benefiting from the hierarchical contrast mecha-
nism, our PerSec can achieve better performance than other
methods under both un- and semi-supervised learning set-
tings, as validated by experimental results.

To further explore the potential of the proposed learn-
ing paradigm, we collect a dataset of 100 million unlabeled
text images, named UTI-100M, covering 5 scenes and 4 lan-
guages. By leveraging hundred-million-level unlabeled data,
our PerSec shows inspiring transferability and significant
performance improvement on learned representation quality.
In summary, our contributions are:

• We present a new hierarchical self-supervised learn-
ing method, named Perceiving Stroke-Semantic Con-
text (PerSec), which can simultaneously learn robust rep-
resentation from stroke and semantic context.

• We coin a novel context perceiver module equipped with
learnable quantizer and context aggregator, which can
effectively make each element distinguishable from its
context. And it can also serve as a plug-and-play module
to augment most prevalent text recognizers.

• Experimental results on public benchmarks demonstrate
that our method can achieve state-of-the-art performance
in both un- and semi-supervised learning settings.

• We collect a large scale dataset (UTI-100M) with
hundred-million-level unlabeled real data, which can
substantially boost the performance of PerSec.

Method
Architecture Overview

Encoder

Te
xt
im
age

Stroke context perceiver

Low-level feature
Intermediate features

High-level feature sequence

Semantic context perceiver

Decoder

“Campus”
Prediction

Unused during
pre-training

Figure 2: Architecture of the proposed PerSec. For the
commonly used “encoder-decoder” STR pipeline, the en-
coder is first pretrained by the PerSec equipped with stroke
and semantic context perceivers through hierarchical self-
supervised learning. Afterward, the decoder is appended
upon the pretrained encoder to fine-tune the whole pipeline.

Scene text recognition (STR) often follows the “encoder-
decoder” pipeline. Given an input text image, the encoder
extracts features from it as image representations, and the
decoder is responsible for decoding text content from rep-
resentations. As shown in Fig. 2, the encoder is firstly
pre-trained on unlabeled data by our proposed Perceiving
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Layer Configuration Output sizek, c s p
conv 1 3×3, 128 (1,1) 1 H ×W

maxpool 1 2×2 (2,2) 0 H/2×W/2
conv 2 3×3, 128 (1,1) 1 H/2×W/2

maxpool 2 2×2 (2,2) 0 H/4×W/4
conv 3 3×3, 256 (1,1) 1 H/4×W/4
conv 4 3×3, 512 (1,1) 1 H/4×W/4

maxpool 3 2×1 (2,1) 0 H/8×W/4
conv 5 3×3, 512 (1,1) 1 H/8×W/4

maxpool 4 2×1 (2,1) 0 H/16×W/4
conv 6 2×2, 512 (1,1) 0 H/32×W/4

Table 1: CNN-based encoder taking input image with H
height and W width. k, c represent the k size convolution
kernel with c dimension, s and p represent the stride and
padding respectively, output size is in height × width.

Stroke-Semantic Context (PerSec) method. The PerSec is
equipped with stroke and semantic context perceivers, which
aims at learning robust text image representation through
hierarchical contrastive learning. For the downstream STR
task, we append the decoder module, which can be either
CTC-based or attention-based, upon pretrained encoder and
fine-tune the whole pipeline on the labeled data.

Base Encoder
CNN-based Encoder. In this work, we firstly adopt the
Convolutional Neural Network (CNN) as the base encoder,
of which the detailed architecture is given in Tab. 1. It con-
sists of 6 convolutional layers and 4 max-pooling layers
with a ReLU non-linearity layer interpolated after each con-
volutional layer. Considering the trade-off between perfor-
mance and computational complexity, low-level stroke en-
coder fstroke(·) is composed of “conv 1∼ conv 3” layers,
which is appended by stroke context perceiver. For the high-
level semantic encoder fsemantic(·) , it consists of “conv 4∼
conv 6” layers, of which the output feature is processed by
semantic context perceiver.

ViT-based Encoder. Compared with CNN introducing
strong inductive bias (e.g., local behavior), Vision Trans-
former (ViT) (Dosovitskiy et al. 2020) prefers to learn suit-
able inductive bias from data, which has shown its supe-
rior performance on computer vision tasks. Thus, we also
adopt ViT-based backbone as another base encoder alterna-
tive. More concretely, we introduce Pyramid Vision Trans-
former (PVT) (Wang et al. 2021) and adapt it to the STR
task. The details are given in Tab. 2. Correspondingly, layers
of “Stage1” construct the low-level stroke encoder fstroke(·)
while the high-level semantic encoder fsemantic(·) consists
of the rest “Stage2∼Stage4”.

Context Perceiver
In order to learn robust hierarchical text representation, we
design Context Perceiver (CP) module and apply it on the
output features of both low-level stroke encoder fstroke(·)
and high-level semantic encoder fsemantic(·). Compared

Layer Configuration Output Size

Stage1

PatchEmb 1 k = 7, c = 64
s = (4, 4), p = 3

H
4
× W

4
TrmEnc 1 x

R1 = 4
N1 = 1
E1 = 4

× 2

Stage2

PatchEmb 2 k = 3, c = 128,
s = (2, 1), p = 1

H
8
× W

4
TrmEnc 2 x

R2 = 4
N2 = 2
E2 = 4

× 2

Stage3

PatchEmb 3 k = 3, c = 320,
s = (2, 1), p = 1

H
16

× W
4

TrmEnc 3 x

R3 = 2
N3 = 4
E3 = 4

× 2

Stage4

PatchEmb 4 k = 3, c = 512
s = (2, 1), p = 1

H
32

× W
4

TrmEnc 4 x

R4 = 1
N4 = 8
E4 = 4

× 2

Table 2: ViT-based encoder (Wang et al. 2021) taking input
image with H height and W width. “PatchEmb” and “Tr-
mEnc” are short for “patch embedding” and “transformer
encoder” submodule. R∼, N∼ and E∼ represent the reduc-
tion ratio, head number and expansion ratio respectively. For
the patch embedding of stage, k and c are the kernel param-
eters while s and p represent the stride and padding respec-
tively, output size is in height × width.

with the previous work SeqCLR (Aberdam et al. 2021) per-
forming cross-sample contrasting, our proposed CP enables
each element of input features to distinguish itself from con-
text. That is, contrast operation merely happens within the
feature elements from one same sample. As illustrated in
Fig. 3, our CP has a dual-branch structure including “con-
text aggregator” (pink part) and “quantizer” (blue part).

Context Aggregator. To drive each element distinguish
from context, CP first conducts masking on a proportion
of features F ∈ Rw×h×d output by encoder f∼(·), in the
similar spirit with masked language model (Devlin et al.
2018). Afterwards, the masked features F

′ ∈ Rw×h×d ap-
plied by position encoding are fed into context aggregator
with N stacked transformer (Vaswani et al. 2017) blocks in-
volving Windowed Multi-Head Self-Attention (W-MHSA)
and Feed-Forward Networks (FFN) as de facto components.
Considering the CP should reconcile the context aggrega-
tion from both low-level feature maps and high-level fea-
ture sequences, we in this work adopt 2-D position encod-
ing (Zhang and Yang 2021) which is more flexible to handle
input features with arbitrary size. It can be denoted as:

F̂ = F ∗ σ(DWConv(F)), (1)
where σ(·) is sigmoid function and DWConv(·) is the 3× 3
depth-wise convolution.

In the features of a scene text image, the desired “slow
features” are often contained in the local context. In low-
level stroke feature space, the “slow features” represent
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Figure 3: Architecture of the proposed context perceiver.
The context perceiver has a dual-branch structure including
“context aggregator” and “quantizer”.

stroke patterns (e.g., radicals of Chinese) while they repre-
sent semantic segment information in high-level semantic
feature space. To better capture “slow features” from local
context, we design the W-MHSA, which is different from
vanilla MHSA: each element of the masked feature map is
only aggregated contextual ones within a controllable range
on it. Specifically, W-MHSA is defined as:

W-MHSA(Q,K,V) = softmax

(
QK>√

d
+Mwin

)
V.

(2)
Input features are first linear transformed to obtain queries
Q ∈ RT×d, keys K ∈ RT×d and values V ∈ RT×d, where
T = w · h. Mwin ∈ RT×T stands for window mask limit-
ing the aggregation scope of self-attention. In Mwin, value
is set to −∞ if the corresponding feature element locates
outside the window with size ω, where 1 ≤ ω ≤ T . As
for the FFN, we inherit the similar layer with vanilla trans-
former (Vaswani et al. 2017). Note, each transformer block
is also equipped with layer normalization and residual con-
nection. Finally, the features C ∈ RT×d with local context
aggregated are obtained.

Quantizer. Inspired by the success of product quanti-
zation (Jegou, Douze, and Schmid 2010) coding high-
dimensional visual features in fast image retrieval (Yu et al.
2018), we introduce it to map the input feature into dis-
crete units serving as pseudo labels. In detail, the quantizer
chooses representations from G codebooks where each of
them contains V entries e ∈ RV×d/G, and fuses them by
concatenation. We assign one Gumbel-Softmax (Jang, Gu,
and Poole 2016) operator to select the entries of each code-
book separately, and then concatenate them into a vector of
dimension d. For the j-th entry in one codebook, the proba-
bility for selecting it is:

pj =
exp (lj + vj) /τ∑V

k=1 exp (lk + vk) /τ
, (3)

where l is the mapped logit from the input features and v =
− log(− log(u)), u are uniform samples from U(0, 1), τ is a

non-negative temperature. Through this way, pseudo labels
P ∈ RT×d are yielded and the contrastive task is performed
between P and context aggregated feature C.

Pre-training Strategy
Masking Tricks. As introduced above, in context per-
ceiver, the elements of stroke feature maps and semantic
feature sequence are performed masking operation sepa-
rately in the pre-training phase. Considering the 2-D shape
of stroke feature maps, we also apply a 2-D mask in size of
mlow ×mlow, 1 ≤ mlow ≤ h on it, where h is the height of
the feature map. Note, there may exist multiple masks on one
feature map, and the number of them is in a certain propor-
tion plow to the feature map size w · h. As for the high-level
feature sequence with T time-steps, we set the mask tomhigh
consecutive time steps, where 1 ≤ mhigh ≤ T . Respectively,
the mask number is phigh · T . If the elements of feature are
masked, they would be replaced with a trainable feature vec-
tor shared between all masked ones. Note, we make sure
each mask never has overlap with each other.
Loss functions. During pre-training stage, our PerSec
learns representations of scene text images by solving
the contrastive tasks in stroke space and the semantic
space simultaneously. As defined in Eqn. (4), we intro-
duce the contrastive loss (L(con)

stroke,L
(con)
semantic) and diversity

loss (L(div)
semantic,L

(div)
semantic) (Baevski et al. 2020), which is

combined by weight parameters α and β, as our hierarchical
contrastive learning loss:

L =

stroke−level︷ ︸︸ ︷
L(con)
stroke + αL(div)

stroke +L
(con)
semantic + βL(div)

semantic︸ ︷︷ ︸
semantic−level

. (4)

Specifically, the contrastive loss is denoted as:

L(con)
∼ (i) = − log

exp (sim (ci,pi) /τ)∑
k∈Imask

exp (sim (ci,pk) /τ)
, (5)

where ci and pi are the i-th masked element from con-
text aggregated feature C and pseudo labels P respectively,
which construct the positive pair. pk represents the k-th el-
ement from other masked ones containing both positive and
negative samples and Imask are the index set of all masked
elements. sim is the cosine similarity which can be com-
puted as sim(a,b) = a>b/‖a‖‖b‖. This loss identifies i-th
element from its distractors falling in the same mask.

The diversity loss aims to utilize each entry in the code-
book as equally as possible. Given G codebooks in which
each of them contains V entries, the diversity loss maxmizes
the entropy of the averaged probability of selecting each en-
try of each codebook pg,v . It can be defined as:

L(div)
∼ =

1

GV

G∑
g=1

V∑
v=1

pg,v log pg,v. (6)

Experiments
Datasets and Metrics
In this work, we adopt STR public datasets to evaluate the
performance of the pre-trained model. The datasets cover
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three categories: 1) regular scene-text datasets including
IC13 (Karatzas et al. 2013), IIIT5K (Mishra, Alahari, and
Jawahar 2012) and SVT (Wang, Babenko, and Belongie
2011) ;2) irregular scene-text datasets: IC15 (Karatzas et al.
2015), SVTP (Phan et al. 2013) and CT80 (Risnumawan
et al. 2014); 3) handwritten text datasets: IAM (Marti and
Bunke 2002) and CVL (Kleber et al. 2013) . For regu-
lar and irregular scene-text recognition, we exploit the syn-
thetic dataset ST (Gupta, Vedaldi, and Zisserman 2016) and
MJ (Jaderberg et al. 2014) as training sets. As for the metric
for evaluation, we adopt word-level accuracy (Acc) for all
experiments, similar to work (Aberdam et al. 2021).

A New Dataset: UTI-100M

Street view
32%

Receipt
17%

Scene

Others
2%

Book
23%

Poster
16%

Product
package
10%

Language

Korean
13% Japanese

11%

Chinese
45%

English
29%

Others
2%

Book Street view Product packagePoster 

Figure 4: UTI-100M dataset.

As suggested in literature (Baek, Matsui, and Aizawa
2021), training model on real data can yield better results
than synthetic data. Therefore, we collect a large-scale real
dataset containing about 100 million unlabeled text line im-
ages, named Unlabeled Text Image 100M (UTI-100M), to
explore the potential of the proposed hierarchical contrastive
learning paradigm.

More concretely, the data collection and processing are
conducted as follows. First, we collect round 1 million real
scene images captured by mobile camera device, covering
5 scenes, i.e., street view, receipt, product package, book,
and poster, which are mainly written in Chinese, English,
Japanese and Korean. Then we utilize one of prevalent
text detectors, DBNet (Liao et al. 2020), to detect text in-
stances from scene images and warp them into rectangular
text line images. Considering the warped text lines have a
large variety in image scale, all the images are normalized
to (32× 384) through cropping and stitching. The data pro-
portion of each scene is shown in Fig. 4. In particular, the
text detector inevitably produces a small amount of noisy
samples, such as misaligned text or background with text-
like patterns, whereas their influence on the self-supervised
training is neglectable.

Training Configurations
Pre-training. In the pre-training stage, we normalize the
input images to 32×384. In both stroke and semantic context

perceivers, the head number of W-MHSA is set to 8 while
the dimensions of all linear layers are set to 128. As for the
window size ω in W-MHSA, we empirically set it to 1/2 of
input feature height for stroke context perceiver and set it to
10 for semantic context perceiver.

In the context perceivers, we set mask proportion plow to
0.2 and phigh to 0.15 at stroke and semantic levels, respec-
tively. Correspondingly, the size of low-level stroke feature
mask mlow and size of the high-level one mhigh are both set
to 1. For quantizers at stroke and semantic level, there are
2 codebooks with 256 entries in each. In the Eqn. (4), loss
weight parameter α is set to 0.2, while β is set to 0.1.

The proposed self-supervised learning framework is im-
plemented by Pytorch (Paszke et al. 2019). And the training
batch size is set to 2,048. All experiments are conducted on
a total of 32 NVIDIA A100 GPUs with 80 GB RAM each.
We train for 3.5 days on our proposed UTI-100M dataset and
for round 1.2 days on the public datasets. Image augmenta-
tions are also employed in the pre-training phase, including
brightness adjustment, noise disturbance, quality reduction,
image stretching, distortion, and perspective as described in
(Luo et al. 2020). We use Adam (Kingma and Ba 2014) opti-
mizer and warm-up strategy with 1e-4 as the initial learning
rate. Note, we scale the backpropagated gradient at stroke
context perceiver by 0.2 to stabilize the model training.

Fine-tuning. We inherit the configurations of CTC-based
and attention-based decoders from SeqCLR (Aberdam et al.
2021), which are separately appended upon the pre-trained
encoder. Afterwards, we fine-tune the whole pipeline on the
labeled data under un- and semi-supervised settings. More
concretely, we remove the “quantizer” in context perceiver
and reserve the “context aggregator” as a part of encoder for
fine-tuning. At this stage, all input images are normalized to
32×128 and the irregular text images are performed the sim-
ilar transformation in SeqCLR (Aberdam et al. 2021) before
fed into the model. We use SGD optimizer with the 5e-3
initial learning rate. The pipeline with CTC-based decoder
is optimized by CTC loss (Shi, Bai, and Yao 2016) while
the one with attention-based decoder utilizes cross-entropy
loss (Gehring et al. 2017) for optimization. The training
batch size is 2,048 and fine-tuning is also implemented by
Pytorch, which is conducted on the same platform with pre-
training.

Representation Quality Evaluation
To evaluate the quality of text representation learned on un-
labeled data by our PerSec framework, we fine-tune the de-
coder (either CTC-based or attention-based) on top of en-
coder under both un- and semi-supervised learning settings.
Note, in this fine-tuning stage, the trained context aggrega-
tors in context perceivers are reserved as parts of base en-
coder while the quantizers are removed.

Unsupervised Learning. Under this setting, the base
encoder is unsupervised pre-trained, in which all parameters
are then frozen, and we only train a decoder with labeled
data on top of it. The comparison results between our Per-
Sec and other state-of-the-art methods are shown in Tab. 4.
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Method Decoder
Regular Irregular Handwritten

IC13 IIIT5K SVT IC15 SVTP CT80 IAM CVL

Supervised baseline (Random init.)

CTC

83.3 75.8 76.4 57.4 66.0 57.3 74.6 75.2
SimCLR (Chen et al. 2020) 79.4 69.1 - - - - 65.0 74.1
SeqCLR (Aberdam et al. 2021) 86.3 80.9 - - - - 76.7 76.9
PerSec-CNN 87.9 82.2 83.1 62.3 70.4 63.5 77.9 78.1
PerSec-CNN + UTI-100M 90.1 83.9 83.7 66.7 72.9 66.7 78.3 79.2
PerSec-ViT 89.7 83.7 83.0 64.6 71.4 65.2 78.0 78.8
PerSec-ViT + UTI-100M 92.8 85.4 86.1 70.3 73.9 69.2 79.9 80.5
Supervised baseline (Random init.)

Attention

85.4 83.1 80.8 64.7 69.2 64.9 77.8 77.3
SimCLR (Chen et al. 2020) 86.3 80.9 - - - - 70.7 75.7
SeqCLR (Aberdam et al. 2021) 87.9 82.9 - - - - 79.9 77.8
PerSec-CNN 88.9 84.2 82.4 68.2 73.6 68.4 80.8 80.2
PerSec-CNN + UTI-100M 89.7 85.5 85.4 71.7 76.2 70.1 82.3 81.4
PerSec-ViT 89.2 85.2 84.9 70.9 75.9 69.1 81.8 80.8
PerSec-ViT + UTI-100M 94.2 88.1 86.8 73.6 77.7 72.7 83.7 82.9

Table 3: Word accuracy (in %) comparison between PerSec and state-of-the-art methods under semi-supervised setting.

Method Dec.
Scene-Text Dataset

IIIT5K IC03 IC13

SimCLR (Chen et al. 2020)

CTC

0.3 0.0 0.3
SeqCLR (Aberdam et al. 2021) 35.7 43.6 43.5
PerSec-CNN 37.9 45.7 46.4
PerSec-CNN + UTI-100M 39.2 47.8 48.2
PerSec-ViT 38.4 46.2 46.7
PerSec-ViT + UTI-100M 43.4 50.6 51.2
SimCLR (Chen et al. 2020)

Attn.

2.4 3.7 3.1
SeqCLR (Aberdam et al. 2021) 49.2 63.9 59.3
PerSec-CNN 50.7 65.7 61.1
PerSec-CNN + UTI-100M 53.6 67.7 63.2
PerSec-ViT 52.3 66.6 62.3
PerSec-ViT + UTI-100M 55.4 70.9 66.2

Table 4: Word accuracy (in %) comparison between
PerSec and state-of-the-art methods under unsupervised
setting.“Dec.”and “Attn.” are short for “Decoder” and
“Attention”.“-CNN” and “-ViT” represent “CNN-based en-
coder” and “ViT-based encoder”. “+UTI-100M” means in-
troducing UTI-100M as extra pre-training dataset.

We can observe that our method can achieve round 2% aver-
age accuracy improvement than the second best method Seq-
CLR (Aberdam et al. 2021) when adopting both CTC-based
and attention-based decoders on all three datasets. We at-
tribute the improvement to the hierarchical contrastive learn-
ing mechanism in our PerSec. Besides, the Tab. 4 also veri-
fies that ViT base encoder in PerSec can yield better results
than CNN base encoder, which is reasonable on account of
more flexible inductive bias in ViT. Especially when the un-
supervised pre-training dataset is extended by introducing
large-scale UTI-100M dataset, the results in Tab. 4 witness
more than 4% average accuracy increase on all datasets by
using PerSec-ViT, which surpass other methods by a large
margin.

Semi-supervised Learning. We further unfreeze the pa-
rameters of base encoder and fine-tune it together with de-
coder. Tab. 3 shows the performance comparison between
our PerSec and other methods. “Superived baseline” adopts

CNN as encoder with context aggregator inserted, in which
parameters are randomly initialized. On the regular and ir-
regular scene-text datasets as well as handwritten dataset,
the comparison results between “PerSec-CNN” and “Su-
pervised baseline” demonstrate the effectiveness and gen-
eralization ability of our hierarchical contrastive learning
paradigm. Compared with the SeqCLR, PerSec-CNN can
outperform it by round 2%. By pre-training on a larger scale
dataset UTI-100M, the performance of PerSec can be further
improved under the semi-supervised learning setting, espe-
cially using ViT as base encoder. Additionally, we also con-
duct more exploratory experiments to study the performance
of our PerSec when the whole network is only fine-tuned on
a small amount of labeled data.

Method STCP SECP
Decoder

CTC Attention

PerSec-CNN
% %

83.3 85.4
PerSec-ViT 84.2 86.2

PerSec-CNN
% "

86.3 87.1
PerSec-ViT 87.5 88.0

PerSec-CNN
" %

86.0 86.7
PerSec-ViT 87.2 87.9

PerSec-CNN
" "

87.9 88.9
PerSec-ViT 89.7 89.2

Table 5: Ablation studies of context perceivers on IC13
dataset. “STCP” and “SECP” represent stroke and seman-
tic context perceivers respectively.

Analysis on PerSec
Ablation Studies on Context Perceivers. Context per-
ceiver is the core module of our PerSec, we thus ablate either
stroke context perceiver (STCP) or semantic context per-
ceiver (SECP) or both of them in the PerSec and fine-tune
the whole network on IC13 dataset to investigate the effect
of each context perceiver to the semi-supervised learning.
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The results are summarized in Tab. 5. From the results, we
can find that solely removing STCP or SECP can be detri-
mental to the PerSec, but still can achieve better results than
the one with both perceivers removed. We also remove the
quantizer and only contrast the input feature with output of
context aggregator. Unfortunately, the model can not con-
verge in this configuration.

Pre-training Losses. As shown in Fig. 5, we observe
that contrastive loss at semantic-level presents faster con-
vergence and lower values than that of stroke-level. The
diversity loss of semantic-level is slightly higher than that
of stroke-level, indicating that stroke context perceiver has
higher codebook usage than semantic one in pre-training.

Figure 5: Training losses of context perceivers.

What does PerSec Learn from Stroke-Semantic Con-
text? Context aggregator and quantizer are two crucial
components of PerSec. In Fig. 6(a) and (b), we separately
visualize the attention maps from W-MHSA in context ag-
gregator pre-trained on UTI-100M at stroke and semantic
levels. For brevity, we selectively visualize attention maps
from 2 heads and the non-overlapped windows. Each box
represents a local region performed W-MHSA, where the
window size equals to the box size. The attention map (af-
ter softmax) in terms of the box center is resized by bilin-
ear interpolation and projected on the raw image. It can be
observed that, through our PerSec self-supervised learning,
stroke-level attention can spontaneously focus on the stroke
of characters while the semantic-level attention is often ac-
tive at each whole character region.

The learnable codebooks in the quantizer have a maxi-
mum capacity of 256× 256 = 65, 536 codes. We also visu-
alize their t-SNE (Van der Maaten and Hinton 2008) plot in
Fig. 6(d) and (e) showing the clusters formed by the learned
codes. Both stroke and semantic level codebooks show the
desirable diversity. Moreover, the semantic-level codebook
has more inter-cluster overlap than the stroke-level one,
which means the storke-level quantizer has higher codebook
usage. This is consistent with the behavior of diversity loss
in pre-training phase. We attribute this phenomenon to that
the stroke feature space is more complicated but extracted
by model with shallow depth.

From Fig. 6(f), we find if the stroke context per-
ceiver (STCP) is removed in our method, the stroke features
of test data from IC13 become less discriminative, which
demonstrates the indispensability of STCP. Besides, in
Fig. 6(c), we visualize the locations of some stroke features
corresponding to index (3, 135)(red) and (69, 23)(green) in
the stroke codebook on the raw image, which locate at the
stroke joints and endpoints separately. This phenomenon

Method Regular Irregular

IC13 IIIT5K SVT IC15 SVTP CT80

RobustScanner 92.8 94.6 88.1 76.9 79.5 89.7
RobustScanner† 95.1 95.2 91.2 78.1 81.2 91.3

SATRN 94.2 94.7 92.1 82.1 86.4 87.6
SATRN† 97.2 96.3 94.6 84.4 89.5 90.2

SAR 91.2 91.3 84.7 70.7 76.9 83.0
SAR† 93.7 95.6 90.1 76.3 81.1 88.2

NRTR 93.6 93.7 90.2 74.5 78.3 86.1
NRTR† 96.1 95.1 91.5 77.3 80.4 89.1

Table 6: Performance improvements on the state-of-the-arts
including RobustScanner (Yue et al. 2020), SATRN (Lee
et al. 2020), SAR (Li et al. 2019) and NRTR (Sheng, Chen,
and Xu 2019). † indicates that the corresponding encoder is
pre-trained on UTI-100M by our PerSec and fine-tuned on
MJ and ST datasets.

vividly demonstrates our model can well capture the stroke
patterns of text cases through pre-training on unlabeled data.

Improvements on SOTA Methods. As the context per-
ceiver in our PerSec is a plug-and-play module, we also
employ PerSec to pre-train the encoders of many preva-
lent text recognizers, including RobustScanner (Yue et al.
2020), SATRN (Lee et al. 2020), SAR (Li et al. 2019) and
NRTR (Sheng, Chen, and Xu 2019). The results in Tab. 6
witness an obvious performance boosting, which verifies the
adaptability of PerSec.

Head 1

Head 2

(d) (e) (f)

(b)(a) (c)

Figure 6: (a) Stroke-level attention. (b) Semantic-level atten-
tion. (c) Samples with different indexes in stroke codebook.
(d) Stroke codebook. (e) Semantic codebook. (f) Stroke fea-
tures w/o STCP. Best viewed in color and zoomed in.

Conclusions
In this work, we propose a novel Perceiving Stroke-
Semantic (PerSec) to learn robust scene text representations
via hierarchical contrastive learning on unlabeled text image
data. The effectiveness of this learning paradigm has been
verified by the experimental results on STR benchmarks. We
also contribute a hundred-million-level UTI-100M dataset
for pre-training, which can further boost the performance of
PerSec. Moreover, our PerSec presents great generalization,
especially under few labeled data scenes.
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