
SpikeConverter: An Efficient Conversion Framework Zipping the Gap between
Artificial Neural Networks and Spiking Neural Networks

Fangxin Liu1,2, Wenbo Zhao1,2*, Yongbiao Chen1, Zongwu Wang1, Li Jiang1,2,3†

1. Shanghai Jiao Tong University, 2. Shanghai Qi Zhi Institute
3. MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University

{liufangxin, zhaowenbo, ljiang cs}@sjtu.edu.cn

Abstract

Spiking Neural Networks (SNNs) have recently attracted
enormous research interest since their event-driven and brain-
inspired structure enables low-power computation. In im-
age recognition tasks, the best results achieved by SNN so
far utilize ANN-SNN conversion methods that replace ac-
tivation functions in artificial neural networks (ANNs) with
integrate-and-fire neurons. Compared to source ANNs, con-
verted SNNs usually suffer from accuracy loss and require
a considerable number of time steps to achieve competitive
accuracy. We find that the performance degradation of con-
verted SNN stems from the fact that the information capacity
of spike trains in transferred networks is smaller than that of
activation values in source ANN, resulting in less information
being passed during SNN inference.
To better correlate ANN and SNN for better performance,
we propose a conversion framework to mitigate the gap be-
tween the activation value of source ANN and the gener-
ated spike train of target SNN. The conversion framework
originates from exploring an identical relation in the conver-
sion and exploits temporal separation scheme and novel neu-
ron model for the relation to hold. We demonstrate almost
lossless ANN-SNN conversion using SpikeConverter for a
wide variety of networks on challenging datasets including
CIFAR-10, CIFAR-100, and ImageNet. Our results also show
that SpikeConverter achieves the abovementioned accuracy
across different network architectures and datasets using 32X
- 512X fewer inference time-steps than state-of-the-art ANN-
SNN conversion methods.

Introduction
Artificial Neural Networks (ANNs) have achieved phenom-
enal success in multiple domains (Srinivasan and Roy 2019;
Deng et al. 2020). However, rapid evolution of this field
shows a momentum of dramatic growth in computation.
State-of-the-art ANN models with billions of parameters
consume such a huge amount of computation that renders
performing on-device inference challenging (Brown et al.
2020; Liu et al. 2021b). Such situation stimulates the de-
mand for deploying more power-efficient neural networks
in real-world applications (Rathi et al. 2021).

*Co-primary author
†Corresponding author

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Recently, extensive efforts have been attracted by spiking
neural networks (SNNs) due to their low-power and biolog-
ically plausible nature. Different from ANNs, SNNs trans-
mit information with spike trains, which extends in the addi-
tional time dimension and contains only sparse binary spike
events. This leads to more power-efficient computation by
substituting expensive multiplication with addition in spe-
cialized neuromorphic hardware (Lee et al. 2021).

One way to obtain the parameters in SNN is through
SNN training. Divided by the availability of training la-
bels, SNN training methods can be categorized into unsu-
pervised and supervised training. Unsupervised methods uti-
lize spike-timing-dependent plasticity rule (STDP), but they
are limited to the shallow SNN structure with a few lay-
ers and yield much lower accuracy than ANNs on complex
datasets (e.g., only 66.23% on CIFAR-10 (Srinivasan and
Roy 2019)). On the other hand, supervised methods rep-
resented by error backpropagation with surrogate functions
can achieve better performance than the unsupervised ones,
but they still can not provide compatible results with ANNs
in large-scale datasets (Liu et al. 2021a).

Another way to obtain parameters is by directly adapting
the parameters of ANNs into SNNs, known as ANN-SNN
conversion methods (Han and Roy 2020; Han, Srinivasan,
and Roy 2020; Woźniak et al. 2020; Deng and Gu 2021; Li,
Zeng, and Zhao 2021). These methods are devoted to find-
ing an equivalent representation between activation values
in ANN and a certain property of the spike trains. Its net-
work structure is usually the same as the source ANN, and
network parameters are transformed from source ANNs by
simple operations such as scaling. The conversion methods
can utilize state-of-the-art methods for training ANN to con-
struct ANN-converted SNNs and achieve competitive accu-
racy and the widest applicability, even on large datasets such
as ImageNet (Sengupta et al. 2019; Kim et al. 2021).

However, existing ANN-converted SNN methods are still
far from applicable due to the following reasons. 1) Con-
verted SNN still suffers from accuracy drop compared
to the source ANN. ANN-converted SNNs typically ex-
ploit the firing rate of the spike train to serve as the equiva-
lence of the activation value. However, the firing rate has far
worse resolution than the activation values in ANN, leading
to accuracy drop. 2) The converted SNNs need an enor-
mous number of time steps for better information rep-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

1692

resentation, which directly deteriorate the energy effi-
ciency of SNNs. Although SNN is supposed to perform the
event-driven asynchronous calculation that spikes happen at
any time in the time window, the practical hardware operates
on a clock-driven synchronous pattern that segment the time
window into time steps and process the spikes in batches,
resulting in the inference latency and energy consumption
directly proportional to the number of time steps. In fact,
converted ResNet on ImageNet requires up to 4096 time
steps (Han, Srinivasan, and Roy 2020) while the energy con-
sumption of AlexNet-converted SNN with 500 time steps is
nearly 5 ∼ 10× higher than that of the source ANN (Singh
et al. 2020). This leads to a significant performance decrease
in terms of energy consumption and latency of the ANN-
converted SNN (Rathi et al. 2021).

In such case, we make a deeper rethinking about ANN-
SNN conversion methods via systematical modeling and ex-
perimental analysis. By designing a conversion framework
called SpikeConverter, which includes the ANN-SNN iden-
tical relation exploration, novel neuron design, and work-
flow optimization, we zip the gap between the performance
of ANN and SNN with the minimum number of time steps.

For clarity, we summarize our contributions as follows:

• We propose an identical relation between ANN activation
values and the SNN spike trains, which concludes the va-
lidity of previous works and provides the cornerstone to
precisely convert ANN into SNN.

• We put forward a temporal separation scheme to enable
the identical relation and propose inverse-leaky integrate-
and-fire (iLIF) neuron and layer-wise pipelining to im-
plement temporal separation.

• We demonstrate the performance of SpikeConverter on
deep network architectures on CIFAR10, CIFAR100, and
ImageNet datasets. Our method provides better accuracy
using 16 time steps, which is 32× ∼ 512× fewer than
state-of-the-art ANN-converted SNNs across all network
architectures and datasets we tested.

Background and Related Work
ANN-converted SNN. Converting ANNs directly into
SNNs has been proven to be a promising approach to con-
struct deep SNNs that can obtain sufficiently high accu-
racy on various tasks (Wu et al. 2019; Sengupta et al. 2019;
Zhang et al. 2019; Kim et al. 2021; Han and Roy 2020; Han,
Srinivasan, and Roy 2020). It combines the mature learn-
ing methods of ANN with the lower-power advantage of
event-driven SNN, avoiding drastic accuracy drop caused
by directly training SNN. As illustrated in Fig. 1, the ba-
sic idea of the ANN-converted SNN is to approximate the
continuous activations in the ANN with the ReLU function
(denoted as 2) by the mean frequency of fired spikes un-
der rate encoding (1) from the SNN. On the one hand,
the training of the ANN-converted SNN relies on the back-
propagation algorithm performed in the ANN, and thus it
avoids the difficulties faced by the directly trained SNN.
This ANN-converted SNN receives and processes the spike
events in the inference phase (3). On the other hand, the

ANN

Image

BP Process

Inference
ANN

Image

SNN

Spike
Train

Inference

Conversion

In
fo

rm
at

io
n

En
co

di
ng

Training

BP Process
Training

1

2

3

(a) ANN workload (b) ANN-Converted SNN workload

Figure 1: The workload of (a) natural ANN with ANN train-
ing and ANN inference; (b) ANN-converted SNN with ANN
training and SNN inference.

ANN-converted SNN maintains a minimal gap with ANN
development and can be achieved on deep network struc-
tures and large-scale datasets. To facilitate this conversion
process, most of the previous works impose certain con-
straints on the source ANN model, such as limiting the bias
to zero, eliminating batch normalization methods among the
network layers, and adopting the average pooling to replace
the max pooling, etc. This usually suffers from the accuracy
loss compared to the original. Several techniques (Han and
Roy 2020; Roy, Jaiswal, and Panda 2019; Kim et al. 2021)
are used to mitigate the accuracy loss incurred in this con-
version (e.g., introducing additional constraints on the fire
frequency of neurons or synaptic, scaling synaptic, adding
noise, etc.), but this also complicates the conversion process.

Limitations of previous works. Overall, ANN-converted
SNNs (Roy, Jaiswal, and Panda 2019; Lobo et al. 2020)
can convert and apply the latest research outcome from the
ANN domain to the SNN domain relatively quickly, but
this approach also has its inherent limitations. Through this
direct method, ANN-converted SNNs typically need thou-
sands of time steps to represent the information encoded in
the spike train for completing a single inference, in addition
to the drop in accuracy caused by imposing constraints on
the source ANN (Rathi et al. 2020; Lee et al. 2020a). This
is quite a large breakdown from the other SNNs, leading to
significant latency and energy consumption opposite to the
original purpose (Singh et al. 2020; Deng, Tang, and Roy
2021; Lee et al. 2020b; Zhang et al. 2020).

Why we need a conversion methodology. The funda-
mental difference between ANN and SNN is the notion of
time. In the ANN, the inputs and outputs of neurons in each
layer are real-valued (e.g., the inputs of the first layer are
pixel values), and inference is performed through a single
feed-forward pass of the network. The inputs and outputs
of the neurons in SNN represent the spatio-temporal infor-
mation using sparse spike events over time steps. Thus, the
inference in SNNs is multiple feed-forward passes occurring
at different time steps, where each pass requires the compu-
tation based on sparse spikes. This leads to latency and en-

1693

t2N=2

Y(t)

t2 time

1

0
t1 t3 time

Y(t)
1

0
t1

Reset Potential

Vm(t)

time

Vth

Vreset

0
time

Vm(t)

Vth
Vth

Vth

0
Reset Potential

N=3
(a) LIF Neuron with

hard reset mechanism
(b) LIF Neuron with

soft reset mechanism

Output spike Output spike

Vth

Figure 2: The membrane potential Vm(t) of the LIF neuron
varies as the received spikes with the “hard reset” mecha-
nism (a) or “soft reset” mechanism (b).

ergy consumption of the whole SNN directly proportional to
the number of time steps. To obtain an accuracy close to the
ANNs with minimal time steps of SNNs is the key to reach-
ing a desirable tradeoff between accuracy and computation
efficiency (i.e., latency and energy consumption).

Approach
In this section, we present a novel conversion framework
called SpikeConverter to closely link the ANN and SNN
by respecting the accuracy of ANN-converted SNN and en-
abling higher implementation performance. The proposed
method finds the entire process of a desirable conversion
between ANN and SNN, including the identical relation in
conversion, the neuron function, and the forward process. In
this way, the ANN-converted SNN can use as few time steps
as possible to carry the information transferred among neu-
rons and transmit the spatio-temporal information to deeper
layers in the network without impacting accuracy.

Soft-Reset Neuron
In SNN, neurons are basic processing units and the in-
formation transmitted between neurons is carried by spike
trains (Rashvand, Ahmadzadeh, and Shayegh 2021; He et al.
2020). Specifically, at each time step, the neuron collects all
the input spikes Xi into the accumulated input I (Eq. 1) and
integrates it into the membrane potential Ṽ (Eq. 2). After
that, if Ṽ exceeds a pre-defined threshold Vth, the neuron
emits an output spike (Eq. 3) and reset the membrane po-
tential (Eq. 4). One of the most widely adopted model is the
leaky integrate-and-fire neuron that leaks a part of the mem-
brane potential at a rate of 1/τ per time step with hard mem-
brane potential that reset the membrane potential to Vreset:

I(t) =
∑
i

wiXi(t−1) (1)

Ṽ (t) = (1− 1/τ)V (t−1) + I(t) (2)

Y (t) =

{
1, Ṽ (t) ⩾ Vth

0, Ṽ (t) < Vth
(3)

V (t) = (1− Y (t))Ṽ (t) + Y (t)Vreset (4)

In previous works, the hard reset mechanism is usually
used to reset the membrane potential of the neuron to a fixed
value Vreset when it fires a spike, as shown in Eq. (4). How-
ever, such a method degrades the real-valued information
contained in the membrane potential into a boolean value
when the voltage exceeds the threshold (Rueckauer et al.
2017; Han, Srinivasan, and Roy 2020). To eliminate such
information degradation, we adopt the soft reset scheme, as
is shown in Eq. (4′), which only subtracts the threshold from
the membrane potential rather than reset it directly.

V (t) = Ṽ (t)−X(t)Vreset (4′)

In Fig. 2(b), we can see that the membrane potential is
different after each output spike, which maintains more in-
formation than the hard reset method. The soft reset mecha-
nism (Han and Roy 2020; Deng et al. 2020) gives us a possi-
bility to build the equivalence between ANN and SNN coun-
terparts, as is illustrated in the next subsection.

Identical Relation in Conversion
Thanks to the soft reset scheme, we can build precise re-
lationship between the inputs spike trains Xi, output spike
train Y and the membrane potential V of a leaky integrate-
and-fire neuron. In Eq. (2), we denote

k = 1− 1

τ
(5)

as the damping coefficient that decides the proportion of
membrane potential that counts towards the next time step.
Then, at the last time step T , the total input voltage incre-
ment can written as

Uin =

T∑
t=1

(∑
i

wi ·Xi[t]

)
· kT−t

=
∑
i

wi ·

(
T∑

t=1

Xi[t] · kT−t

) (6)

At the same time, the output voltage decrement can be
represented as

Uout = Vth ·
T∑

t=1

Y [t] · kT−t (7)

Thus, the membrane potential at the time step T can be
calculated as V (T) = Uin−Uout. In ideal circumstances, the
membrane potential vanishes in the last time step, leading to
the equation Uin = Uout. Combined with Eq. (6) and Eq. (7),
we have the ideal conversion identical relation∑

i

wi ·

(
T∑

t=1

Xi[t] · kT−t

)
= Vth ·

T∑
t=1

Y [t] · kT−t (8)

Compared with the ANN multiply-and-accumulation op-
eration

∑
i wixi = y, we can see that

T∑
t=1

Xi[t] · kT−t (9)

1694

Algorithm 1: Two-phase forward propagation
Input : Input spike trains Xi and weight wi

Output : Output spike train Y
Params: Vth - the threshold voltage

Phase I: Membrane Potential Accumulation
for time step t = 1 to T1 do
{Stage 1: Integrate input spikes into current}
I(t)← Integrate(wi, Xi(t)) ▷ Eq. (1)
// Integrate input spikes into current.
{Stage 2: Accumulate potential from input current}
Vm(t)← Accumulate(Vm(t− 1), I(t)) ▷ Eq. (2)
// Accumulate input current into potential.

end
Phase II: Output Spike Train Generation
for time step t = T1 + 1 to T1 + T2 do
{Stage 3: Fire the output spike}
Y (t)← Threshold(Vm(t)− Vth) ▷ Eq. (3)
// Determine whether fire the output spike.
{Stage 4: Reset the potential}
Vm(t+ 1)← Vm(t)− Y (t) · Vth ▷ Eq. (4′)
// Soft reset the potential if it fires a spike.

end

serves as an excellent counterpart of the activation value in
ANN for both input and output with an multiplying factor of
Vth. Such equivalence ensures the homogeneous represen-
tation of both input and output, which means that the infor-
mation can be transmitted totally in the form of spike trains
without transforming to other modalities.

Previous works (Han, Srinivasan, and Roy 2020; Han and
Roy 2020; Kim et al. 2021) that uses frequency coding can
be generalized in such identical relation. For example, the
SNN uses non-leaky integrate-and-fire neuron, whose time
constant τ = ∞ and k = 1. Then,

∑
t Xi[t] · kT−t =∑

t Xi[t] represents the total firing time of the neuron, which
is proportional to the firing frequency.

Temporal Separation
In the previous section, Eq. (8) holds under the assumption
that the remaining membrane potential is 0 at the last time
step. However, spiking neural networks lack the ability to re-
spond to negative membrane potentials, making the assump-
tion fails frequently. For example, for a non-leaky integrate-
and-fire neuron whose threshold voltage is 1, if the input
voltage is {1, 1,−1,−1}, the output spike train Y will be
{1, 1, 0, 0}, leaving the membrane potential to be -2 even-
tually. Then, the total input voltage Uin = 0 and the total
output voltage Uout = 2. The main reason is the synchro-
nized processing mechanism of spiking neural network that
fires the output spikes in the the process of input spike train.
The input voltage can be negative due to negative weights,
but the output spike will not respond to it until the membrane
potential is accumulate to positive values again.

Therefore, we propose the temporal separation scheme
that separates the neural calculation into two phases, as is
shown in Algorithm 1. The accumulating phase collects in-
put spikes without firing spikes and the generating phase
fires the output spike according to the accumulated mem-

time
0

T 2T

Output spike

Less than Vth

Vm(t)

Nj0

Nj1 Ni

wj0

wj1 out

Nj2 wj2

N=4
Input1

tN=3
input2

N=2
input3

t

t

T

time

Y(t)
1

0

Y(t)

1 2 3 4 5 6

Spike Train: 1 1 1 1 0 1
T

Phase Ⅰ
Accumulation

Phase Ⅱ
Generation

Vth

Figure 3: The illustration of inverse-leaky integrate-and-fire
neuron that implements temporal separation scheme.

brane potential. Such scheme still follows Eq. (8) by scaling
the threshold voltage V ′

th = kT1 · Vth. Suppose the length of
two phases are T1 and T2 respectively, the left-hand side of
Eq. (8) remains the same by substituting T with T1 and the
right-hand side of becomes

(
kT1 · Vth

)
·
T1+T2∑
t=T1+1

Y [t] · kT1−t = V ′
th ·

T1+T2∑
t=T1+1

Y [t] · kT1−t

(10)
There are several benefits that come along with such tem-

poral separating scheme. Firstly, in the last time step of the
accumulating phase, the membrane potential will reach ex-
actly Vth, giving us a better chance to match Uin and Uout.
Specifically, if Vth < 0 at the last time step of accumulating
phase, there will no output spike, naturally implemented the
function of ReLU activation function. In addition, the sep-
aration decouples the output spike train from the input one.
The length of the output spike train can be different from
that of the input but decided according to the precision re-
quirement of each layer in the network.

To implement temporal separation, we propose the
inverse-leaky integrate-and-fire neuron to realize the calcu-
lation and the pipeline mechanism to minimize the delay.

Inverse-Leaky Integrate-and-Fire Neuron
In Eq. (5), since the τ represents the decaying time coef-
ficient, it is always a positive value larger than 1, leading
to k ∈ (0, 1). However, such configuration can not imple-
ment the temporal separation. In the generating phase, since
there is no input spikes, the membrane potential will only
be decreased by leaking or firing, making it always non-
increasing. Therefore, the output spike train will only con-
tain consecutive spikes. If the neuron fails to fire a spike
in a certain spike, it will never spike any more since the
membrane potential is already below the threshold and non-
increasing.

In such context, we propose our inverse-leaky integrate-
and-fire (iLIF) neuron whose damping coefficient k is larger
than 1. Unlike the LIF neuron that reduces the membrane
potential in each time step, as shown in Fig. 3, iLIF aug-
ments it by the factor k > 1 so that it can output infor-
mative spike train continuously. The most important benefit

1695

TimeLine

Layers

Li+1

Li

Li+2

T 2T 3T 4T 6T5T

t=T

Image1 Image2

Image1
Phase I

Image2

Image1 Image2

Layers

Li+1

Li

Li+2

T 2T 3T 4T 6T5T

Image1
Phase I

Image2

Image2Image1
Phase I Phase II

Image1 Image2

Layers

Li+1

Li

Li+2

T 2T 3T 4T 6T5T

Image1
Phase I Phase II

Image2

Image1
Phase IIPhase I

Image2
Phase I

Image1
Phase I

Image2

t=2T

t=3T

waiting
Phase I
Phase II running Phase I

Phase II finished

Figure 4: An example of the pipeline in our converted SNN.

brought by utilizing iLIF neurons is that the conversion pre-
cision increases with the extension of output spike train. As
shown in Eq. (10), even if the remaining membrane potential
reaches its least upper bound V ′

th at t = T1 + T2, its repre-
senting value is V ′

th ·kT1−t = V ′
th ·k−T2 , which shrinks with

increasing T2 when k > 1.
Meanwhile, there are some restrictions when iLIF neu-

rons are utilized. Specifically, in order to avoid the situation
that the membrane potential grows exponentially, the soft re-
set should always be able to reduce the membrane potential,
i.e.

k · V − Vth ⩽ V, ∀ 0 ≤ V < Vth (11)

This gives

k ≤ inf
0≤V <Vth

V + Vth

V
= 2 (12)

Pipelining of SNN
The converted SNN adopting temporal separation inevitably
needs more time steps to perform a single inference since the
generating phase (Phase I) must be stalled until the accumu-
lating phase (Phase II) is finished. Inspired by the fact that
different processing units are allocated to work on differ-
ent layers to minimize memory accessing costs, we propose
the inter-layer direct delivery and inter-sample pipelining to
minimize the time delay of a single sample and maximize
the productivity for multiple samples.

Fig. 4 illustrates the inference pipeline of 3 layers in the
SNN. Here x-axis is the inference timeline, the y-axis is the
ordered layers and the charts show the working condition of

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.1 0.2 0.2 0.3 0.4 0.5 0.6 0.6 0.7 0.8 0.9 1.0

T = 6, k = 1.6

0.00

0.02

0.04

0.06

0.08

0.10

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

T = 2 T = 3 T = 4
T = 5 T = 6 T = 7

k

co
n

ve
rs

io
n

 e
rr

o
r

Vth/Uin,max

co
n

ve
rs

io
n

 e
rr

o
r

(a) (b)

0.00

0.01

0.02

0.03

0.22 0.27 0.32 0.37 0.42 0.47 0.53

 * Sweet spot

 * Turning spot

Figure 5: Conversion error varying the parameters T , k, Vth.

processing units for each layer in different time. For sim-
plicity, we set the lengths of two phases for each layer to be
the same value T . In time T to 2T , we can see that from
the middle chart that layer i is executing Phase II while the
output is directly send to layer i + 1 for accumulation. The
inter-layer direct delivery saves inference time for a single
sample and also exempts the need to save output spike trains
into registers and then read from them. In addition, sample
2 begins the accumulating phase for layer i from 2T to fully
utilize the resource for layer i. The average inference time
for fully pipelined samples is 2T , which compensates the
longer time for single sample.

Parameter Optimization
In Eq. (6) and Eq. (10), we can see that difference between
Uin and Uout is related to T , Vth and k. While T is usually
determined by accuracy and delay requirements, we look for
the optimal threshold voltage and k by minimizing the con-
version error

E(Vth, k;T) = EUin
|Uin − Uout| (13)

which is an expected error under the distribution of Uin.
Since the layers share the same threshold, we represent the
threshold voltage in proportion to the maximum Uin in the
layers, which is denoted as Uin,max. As shown in Fig. 5(b),
we calculate the expected conversion error E for a given
set of T = 6 and k = 1.6, where we can see that the er-
ror reaches its minimum when Vth/Uin,max = 0.396. After
obtaining the minimum error for multiple sets of T and k,
Fig. 5(a) shows that k = 2 always generates the least error
for every selection of T . Therefore, we draw the conclusion
that k = 2 gives us the optimal conversion.

Results
In this work, all experiments are performed on a 4-
way NVIDIA Tesla V100 under the framework of Py-
torch (Paszke et al. 2019). The performance of our ANN-
SNN conversion methodology is examined using standard
visual object recognition benchmarks, namely the CIFAR-
10, CIFAR-100 (Krizhevsky, Nair, and Hinton 2014) and
ImageNet datasets (Deng et al. 2009). We use VGG-16 (Si-
monyan and Zisserman 2015) for all three datasets, ResNet-
20 configuration outlined in (He et al. 2016) for the CIFAR-
10 and CIFAR-100 dataset and ResNet-34 for the Ima-
geNet dataset. It is worth noting that we use the compact
MobileNet-v2 (Sandler et al. 2018) on the ImageNet dataset
as we think it will be helpful to demonstrate the effectiveness

1696

Network Architecture Spiking Neuron
Model

ANN
(Top-1 Acc)

Time
Steps

SNN
(Top-1 Acc)

Accuracy
Loss

ResNet-20 (Sengupta et al. 2019) IF (hard-reset) 89.1% 2048 87.46% 1.64%
ResNet-20 (Han, Srinivasan, and Roy 2020) RMP (soft-reset) 91.47% 2048 87.46% 1.64%
ResNet-20 (Han and Roy 2020) TSC (soft-reset) 91.47% 2048 91.42% 0.05%
ResNet-20 (Deng and Gu 2021) ReLU+threshold (soft-reset) 92.14% 128 90.89% 1.25%
ResNet-20 [This work] SpikeConverter (soft-reset) 91.47% 16 91.47% <0.01%
VGG-16 (Sengupta et al. 2019) IF (hard-reset) 91.7% 2048 91.55% 0.15%
VGG-16 (Han, Srinivasan, and Roy 2020) RMP (soft-reset) 93.63% 2048 93.63% <0.01%
VGG-16 (Han and Roy 2020) TSC (soft-reset) 93.63% 2048 93.63% <0.01%
VGG-16 [This work] SpikeConverter (soft-reset) 93.63% 16 93.71% ↑ 0.08%

Table 1: Accuracy loss and time steps due to ANN-SNN conversion of the state-of-the-art SNNs on CIFAR-10 dataset.

Network Architecture Spiking Neuron
Model

ANN
(Top-1 Acc)

Time
Steps

SNN
(Top-1 Acc)

Accuracy
Loss

ResNet-20 (Sengupta et al. 2019) IF (hard-reset) 68.72% 2048 64.09% 4.63%
ResNet-20 (Han, Srinivasan, and Roy 2020) RMP (soft-reset) 68.72% 2048 67.82% 0.9%
ResNet-20 (Han and Roy 2020) TSC (soft-reset) 68.72% 2048 68.18% 0.54%
ResNet-20 [This work] SpikeConverter (soft-reset) 68.72% 16 68.69% 0.03%
VGG-16 (Sengupta et al. 2019) IF (hard-reset) 71.22% 2048 70.77% 0.45%
VGG-16 (Han, Srinivasan, and Roy 2020) RMP (soft-reset) 71.22% 2048 70.93% 0.29%
VGG-16 (Han and Roy 2020) TSC (soft-reset) 71.22% 2048 70.97% 0.25%
VGG-16 [This work] SpikeConverter (soft-reset) 71.22% 16 71.22% <0.01%

Table 2: Accuracy loss and time steps due to ANN-SNN conversion of the state-of-the-art SNNs on CIFAR-100 dataset

of the conversion methodology with a more challenging net-
work. Proper weight initialization is crucial to achieve con-
vergence in such deep networks without batch normaliza-
tion. We adopt the identical weights initialization as (Hardt
and Ma 2016). Data augmentations applied to the training
images can be sequentially enumerated as: 4-pixel padding,
224×224 randomly resized crop and horizontal flip. All the
reported accuracy on validation dataset is single-crop result.
The mini-batchsize is set to 256. For post-conversion train-
ing, we use SGD with a learning rate of 0.01, momentum of
0.9 and weight decay of 5e− 4.

Inference Accuracy
The recent state-of-the-art ANN-SNN conversion works are
provided for comparison as shown in Tables 1 to 3. To
the best of our knowledge, our proposed SpikeConverter
not only achieves the best SNN inference accuracy across
all network structures and datasets we evaluated but also
achieves the lowest conversion loss that allows information
to be transmitted with the minimum number of time steps.
Specifically, we achieve lossless and even better inference
accuracy than ANN with the same network structure on the
CIFAR-10 dataset. Our scheme also outperforms other ex-
isting works on the CIFAR-100 dataset, providing an al-
most lossless converted network compared to baseline ANN
implementation on VGG-16 and only 0.03% less accuracy
than ANN on the compact ResNet-20. For a more exten-
sive comparison, we compare with the previous best ANN-
SNN conversion on the ImageNet dataset. For the ResNet-
34 network, previous conversion schemes provide inference
accuracy loss within 0.71 − 5.2% of baseline ANN imple-

mentation. However, our proposed SpikeConverter achieves
inference accuracy loss that is within ∼ 0.07% of baseline
ANN implementation. In the case of VGG-16, our proposed
SpikeConverter shows that converted VGG-16 degrades ac-
curacy by about 0.05% less than the converted ResNet-34.
Overall, our proposed SpikeConverter achieves inference ac-
curacy for both ResNet and VGG networks exceeding the
existing ANN-SNN conversion methods and is nearly loss-
less compared to the baseline ANN. Note that all reported
accuracy is the average of the maximum inference accuracy
for 3 independent runs with different seeds.

Essentially, SNNs need to compute the spatio-temporal
spike images over multiple time steps. We also report and
compare the number of time steps in the fourth column
of Tables 1 to 3. We observed that the time steps for CIFAR-
10, CIFAR-100, and ImageNet network in our proposed
SpikeConverter are 16, which is much shorter than the infer-
ence time step of other conversion methods (e.g., 4096 time
steps for the converted SNN using ResNet-34 architecture
with SNN (IF), RMP-SNN and TSC-SNN).

Inference Performance
Based on these, we estimate the inference accuracy and
spike sparsity varies as the number of time steps with the
best performing SNNs to date as shown in Fig. 6.

In each figure, the x-axis is the SNN inference latency.
The y-axis on the left indicates the SNN Top-1 inference
accuracy, and the y-axis on the right indicates the average
spike fired rate. We find that for the CIFAR-10 datasets
in Fig. 6(a), when the inference time steps changes from
64 to 2048, the accuracy of TSC-SNN and RMP-SNN has

1697

Network Architecture Spiking Neuron
Model

ANN
(Top-1 Acc)

Time
Steps

SNN
(Top-1 Acc)

Accuracy
Loss

ResNet-34 (Sengupta et al. 2019) IF (hard-reset) 70.69% 4096 65.47% 5.22%
ResNet-34 (Han, Srinivasan, and Roy 2020) RMP (soft-reset) 70.64% 4096 69.89% 0.75%
ResNet-34 (Han and Roy 2020) TSC (soft-reset) 70.64% 4096 69.93% 0.71%
ResNet-34 [This work] SpikeConverter (soft-reset) 70.64% 16 70.57% 0.07%
VGG-16 (Rueckauer et al. 2017) Converted-SNN (hard-reset) 63.89% 400 49.61% 14.28%
VGG-16 (Sengupta et al. 2019) IF (hard-reset) 70.52% 2560 69.96% 0.56%
VGG-16 (Han, Srinivasan, and Roy 2020) RMP (soft-reset) 73.49% 2560 73.09% 0.4%
VGG-16 (Han and Roy 2020) TSC (soft-reset) 73.49% 2560 73.46% 0.03%
VGG-16 (Deng and Gu 2021) ReLU+threshold (soft-reset) 73.47% 128 71.06% 2.41%
VGG-16 [This work] SpikeConverter (soft-reset) 73.49% 16 73.47% 0.02%
MobileNet-v2 [This work] SpikeConverter (soft-reset) 71.88% 16 71.71% 0.17%

Table 3: Accuracy loss and time steps due to ANN-SNN conversion of the state-of-the-art SNNs on ImageNet dataset

0%

5%

10%

15%

20%

25%

30%

35%

40%

0%

10%

20%

30%

40%

50%

60%

70%

80%

4 8 12 16 32 256 512 1024 2560

SN
N

 A
ve

ra
ge

 S
pi

ke
 R

at
e

(R
)

Cl
as

si
fic

at
io

n
A

cc
ur

ac
y

(T
op

-1
 A

cc
.)

Inference timesteps

this wok
TSC-SNN
RMP-SNN
SNN (IF)

0%

5%

10%

15%

20%

25%

30%

35%

40%

0%

10%

20%

30%

40%

50%

60%

70%

80%

4 8 12 16 32 256 512 1024 2560

SN
N

 A
ve

ra
ge

 S
pi

ke
 R

at
e

(S
R)

Cl
as

sif
ic

at
io

n
Ac

cu
ra

cy
 (T

op
-1

 A
cc

.)

Inference timesteps

this wok
TSC-SNN
RMP-SNN
SNN (IF)

0%

5%

10%

15%

20%

25%

30%

35%

40%

0%

10%

20%

30%

40%

50%

60%

70%

80%

4 8 12 16 32 128 512 1024 2048

SN
N

 A
ve

ra
ge

 S
pi

ke
 R

at
e

(R
)

Cl
as

si
fic

at
io

n
A

cc
ur

ac
y

(T
op

-1
 A

cc
.)

Inference timesteps

this work
TSC-SNN
RMP-SNN
SNN (IF)

0%

5%

10%

15%

20%

25%

30%

35%

40%

0%

10%

20%

30%

40%

50%

60%

70%

80%

4 8 12 16 32 128 512 1024 2048

SN
N

 A
ve

ra
ge

 S
pi

ke
 R

at
e

(S
R)

Cl
as

sif
ic

at
io

n
Ac

cu
ra

cy
 (T

op
-1

 A
cc

.)

Inference timesteps

this work
TSC-SNN
RMP-SNN
SNN (IF)

0%

5%

10%

15%

20%

25%

30%

35%

40%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 8 12 16 64 128 512 1024 2048

SN
N

 A
ve

ra
ge

 S
pi

ke
 R

at
e

(R
)

Cl
as

si
fic

at
io

n
A

cc
ur

ac
y

(T
op

-1
 A

cc
.)

Inference timesteps

this work
TSC-SNN
RMP-SNN
SNN (IF)

0%

5%

10%

15%

20%

25%

30%

35%

40%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 8 12 16 64 128 512 1024 2048

SN
N

 A
ve

ra
ge

 S
pi

ke
 R

at
e

(S
R)

Cl
as

sif
ic

at
io

n
Ac

cu
ra

cy
 (T

op
-1

 A
cc

.)

Inference timesteps

this work
TSC-SNN
RMP-SNN
SNN (IF)

(c)

 Accuracy vs Time steps
Converted VGG-16 on ImageNet Dataset

(b)

 Accuracy vs Time steps
Converted VGG-16 on CIFAR-100 Dataset

(a)

 Accuracy vs Time steps
Converted VGG-16 on CIFAR-10 Dataset

 * ANN Top-1
 Acc.= 73.49%

 * ANN Top-1
 Acc.= 71.22%

 * ANN Top-1
 Acc.= 93.63%

93.71%
92.79%

90.35%

93.63%

93.63%

93.50%

93.15%

14.75%

11.38%

0.03%

1.99%
0.61%

0.03%

1.13%
0.56%

0.04%

1.04%
0.58%

73.46%

72.88%
69.96%

73.49%
70.27%

71.22%71.06%

14.23%

11.07%

14.35%

11.17%

70.97%

70.93
70.77%

69.86%

63.76%

69.71%

48.32%

73.33% 73.43%73.47% 73.33%72.59%

68.93%
72.05%

Figure 6: Inference accuracy and spiking activity between
converted SNN with SpikeConverter and the three state-
of-the-art converted-SNNs using VGG-16 architecture on
CIFAR-10 (a), CIFAR-100 (b) and ImageNet (c).

little change (nearly 2%), just from 92.79% to 93.63% and
90.35% to 93.63%. In contrast, our SpikeConverter achieves
stable accuracy, only ≤ 0.6% accuracy change for VGG-
16 network structure on CIFAR-10 when the inference time
steps change from 4 to 16. Converted VGGNet by our Spike-
Converter with 16 time steps exceeds the state-of-art SNN
conversion methods with 2048 time steps.

The VGG-16 with SpikeConverter inference on the
CIFAR-100 dataset is shown in Fig. 6(b), which reaches
the accuracy of 71.22% using only 16 time steps, whereas
the SNN with IF neurons, RMP-SNN, TSC-SNN reaches
70.77%, 70.93%, and 70.97%, respectively, at the end of
2048 time steps. Here, both SpikeConverter and other SNN
conversion methods were converted from our trained VGG-
16 with top-1 inference accuracy of 71.22%. The SpikeCon-
verter has reduced best inference accuracy (blue, orange,
and black curve) using only 16 time steps, which is 128×
faster than the compared baseline SNNs (i.e., the SNN with
IF neuron, RMP-SNN, and TSC-SNN) that use about 2048
time steps. Note, the SpikeConverter with 8 time steps, even
with the 4 time steps, can achieve better accuracy (71.06%
accuracy) and faster inference (512×) over the 70.97% ac-
curacy of TSC-SNN, 70.93% accuracy of RMP-SNN, and
70.77% accuracy of SNN (IF) using 2048 time steps. Mean-
while, the SpikeConverter attains a higher spike fired rate
(from 11.07% to 14.23%) than others throughout the infer-
ence time steps, which means that the spike train is conveyed
in SpikeConverter carries more spatio-temporal information
than others.

The VGG-16 with SpikeConverter inference on the Ima-
geNet dataset is shown in Fig. 6(c). SpikeConverter (green
curve) achieved a better accuracy of 73.49% converted
with the trained ANN, whereas the SNN with IF neurons
(black curve) achieved 69.96%, RMP-SNN (orange curve)
achieved 72.88%, and TSC-SNN (blue curve) achieved
73.46% using 2560 time steps. SpikeConverter (green
curve) reaches an accuracy of 73.33% with only 8 time steps
obtain 320× faster than the SNN with IF neurons (black
curve) with the best accuracy and 128× times faster than the
RMP-SNN (orange curve) with 72.05% inference accuracy
that uses about 1024 time steps. SpikeConverter reaches the
same accuracy of 73.33% using only 8 time steps, which is

1698

Operation ANN SNN
Addition (M − 1)×N (M − 1)×N × T

Multiplication M ×N 0

Table 4: The comparison of computation cost between ANN
and SNN deployed in hardware theoretically.

0.0E+00

1.0E+08

2.0E+08

3.0E+08

4.0E+08

5.0E+08

6.0E+08

4 8 12 16 32 256 512 1024 2560

N
u

m
b

e
r

o
f A

d
d

it
io

n
s

p
e

r
In

fe
re

n
ce

Inference timesteps

this work
TSC-SNN
RMP-SNN
SNN (IF)

 Addition Operations vs Time steps
Converted VGG-16 on the ImageNet Dataset

Figure 7: The comparison of inference computational cost
between SpikeConverter and the three baseline SNNs using
VGG-16 on the ImageNet

128× times faster than the TSC-SNN (blue curve) that uses
about 1024 time steps.

Inference Computation Cost
In most ANN workloads, the key computational kernel is
general matrix-matrix multiplications, which frequently ap-
pear during the forward pass. For a more intuitive com-
parison, we use the vector-matrix multiplication (VMM) to
evaluate the computation cost, since vectors are a special
case of the matrix. The comparison of computation between
ANN and converted SNN with SpikeConverter is shown
in Table 4. The dimensions vector-matrix multiplications is
(1 × M) × (M × N). In the ANN, (M − 1) × N addi-
tions and M ×N multiplications are performed to compute
a VMM. In the converted SNN with SpikeConverter, how-
ever, it is unnecessary to perform multiplication anymore,
but only (M − 1) × N × T additions, where T indicates
the number of time steps. Since the activation is converted
into the spike train in the SNN, the length of the spike train
(i.e., the number of time steps) indicates that it requires T
times inferences to be performed to finish computing the
spike train.

Based on these, to further measure the efficiency of the
SNN in terms of the theoretical computation cost, we use the
spike activities (the number of addition operations required
in the event-driven SNN implementation) as follows:

Spike Activities =

L∑
i=1

#OPi × SRi (14)

where SR stands for spike fired rate (as shown in Fig. 6),
#OP represents the operations in the SNN, and L repre-
sents the total number of layers in the network. Note that,
the lower the value of spike activities, the higher the energy
efficiency of the SNN. As shown in Fig. 7, the number of

addition operations performed in SNNs inference are also
provided. We found computations do not greatly increase
for the SpikeConverter with significantly less delay and bet-
ter accuracy, and our method exceeds the SNN with IF neu-
rons (black bar) and RMP-SNN (blue bar). We can find that
the addition operation in SpikeConverter with the large time
steps (e.g., ≥ 16) is higher than TSC-SNN (orange bar).
This is because TSC-SNN is encoded by temporal coding,
which is significantly more sparse than other coding meth-
ods, such as the Time-To-First-Spike temporal coding repre-
senting the spike train with a single spike. However, with the
fewer time steps (e.g., ≤ 12), our SpikeConverter achieves
close to the addition operations required in TSC-SNN. Con-
sidering the existing SNN simulation methodologies or im-
plementations are time-driven execution mechanisms (Lee
et al. 2021; Khodamoradi, Denolf, and Kastner 2021; Singh
et al. 2020), SpikeConverter is a more suitable alternative
with significantly better inference accuracy and performance
over the three baseline SNNs.

Conclusion
In this paper, we propose SpikeConverter, an ANN to SNN
conversion technique. It consists of a novel coding scheme,
spiking neuron model, and inference process, which allevi-
ates the ANN-SNN conversion information loss to signifi-
cantly improve the latency and scalability of SpikeConvert-
ers to deep architectures with negligible accuracy loss. The
experimental results show that the proposed SpikeConverter
achieves better results than the three state-of-art ANN-SNN
conversion techniques in terms of inference performance
and inference accuracy.

Acknowledgments
This work was partially supported by the National Natu-
ral Science Foundation of China (grant no. 61834006 and
U19B2035) and the National Key Research and Devel-
opment Program of China (2018YFB1403400). We thank
Wu Wen Jun Honorary Doctoral Scholarship, AI Institute,
Shanghai Jiao Tong University.

References
Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan,
T.; Child, R.; Ramesh, A.; Ziegler, D.; Wu, J.; Winter,
C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.;
Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford,
A.; Sutskever, I.; and Amodei, D. 2020. Language Mod-
els are Few-Shot Learners. In Larochelle, H.; Ranzato, M.;
Hadsell, R.; Balcan, M. F.; and Lin, H., eds., Advances in
Neural Information Processing Systems, volume 33, 1877–
1901. Curran Associates, Inc.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, 248–255. Ieee.
Deng, L.; Tang, H.; and Roy, K. 2021. Understanding
and Bridging the Gap Between Neuromorphic Computing

1699

and Machine Learning. Frontiers in Computational Neuro-
science, 15.
Deng, L.; Wu, Y.; Hu, X.; Liang, L.; Ding, Y.; Li, G.; Zhao,
G.; Li, P.; and Xie, Y. 2020. Rethinking the performance
comparison between SNNS and ANNS. Neural Networks,
121: 294–307.
Deng, S.; and Gu, S. 2021. Optimal Conversion of Con-
ventional Artificial Neural Networks to Spiking Neural Net-
works. In International Conference on Learning Represen-
tations (ICLR).
Han, B.; and Roy, K. 2020. Deep Spiking Neural Network:
Energy Efficiency Through Time based Coding. In Proc.
IEEE Eur. Conf. Comput. Vis.(ECCV), 388–404.
Han, B.; Srinivasan, G.; and Roy, K. 2020. Rmp-snn: Resid-
ual membrane potential neuron for enabling deeper high-
accuracy and low-latency spiking neural network. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 13558–13567.
Hardt, M.; and Ma, T. 2016. Identity matters in deep learn-
ing. arXiv preprint arXiv:1611.04231.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
He, W.; Wu, Y.; Deng, L.; Li, G.; Wang, H.; Tian, Y.; Ding,
W.; Wang, W.; and Xie, Y. 2020. Comparing SNNs and
RNNs on neuromorphic vision datasets: Similarities and dif-
ferences. Neural Networks, 132: 108–120.
Khodamoradi, A.; Denolf, K.; and Kastner, R. 2021. S2N2:
A FPGA Accelerator for Streaming Spiking Neural Net-
works. In The 2021 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, 194–205.
Kim, S.; Park, S.; Na, B.; and Yoon, S. 2021. Spiking-
YOLO: spiking neural network for energy-efficient object
detection. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 34, 11270–11277.
Krizhevsky, A.; Nair, V.; and Hinton, G. 2014. The cifar-10
dataset. online: http://www. cs. toronto. edu/kriz/cifar. html,
55: 5.
Lee, C.; Kosta, A. K.; Zhu, A. Z.; Chaney, K.; Daniilidis,
K.; and Roy, K. 2020a. Spike-FlowNet: event-based opti-
cal flow estimation with energy-efficient hybrid neural net-
works. In European Conference on Computer Vision, 366–
382. Springer.
Lee, C.; Sarwar, S. S.; Panda, P.; Srinivasan, G.; and Roy,
K. 2020b. Enabling spike-based backpropagation for train-
ing deep neural network architectures. Frontiers in neuro-
science, 14: 119.
Lee, H.; Kim, C.; Chung, Y.; and Kim, J. 2021. Neuro-
Engine: A Hardware-Based Event-Driven Simulation Sys-
tem for Advanced Brain-Inspired Computing. In Pro-
ceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2021, 975–989. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450383172.

Li, Y.; Zeng, Y.; and Zhao, D. 2021. BSNN: Towards
Faster and Better Conversion of Artificial Neural Networks
to Spiking Neural Networks with Bistable Neurons. arXiv
preprint arXiv:2105.12917.
Liu, F.; Zhao, W.; Chen, Y.; Wang, Z.; Yang, T.; and Jiang, L.
2021a. SSTDP: Supervised Spike Timing Dependent Plas-
ticity for Efficient Spiking Neural Network Training. Fron-
tiers in Neuroscience, 15.
Liu, F.; Zhao, W.; He, Z.; Wang, Y.; Wang, Z.; Dai, C.;
Liang, X.; and Jiang, L. 2021b. Improving Neural Net-
work Efficiency via Post-Training Quantization With Adap-
tive Floating-Point. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, 5281–5290.
Lobo, J. L.; Del Ser, J.; Bifet, A.; and Kasabov, N. 2020.
Spiking neural networks and online learning: An overview
and perspectives. Neural Networks, 121: 88–100.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga,
L.; Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison,
M.; Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai,
J.; and Chintala, S. 2019. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In Wallach, H.;
Larochelle, H.; Beygelzimer, A.; d'Alché-Buc, F.; Fox, E.;
and Garnett, R., eds., Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates, Inc.
Rashvand, P.; Ahmadzadeh, M. R.; and Shayegh, F. 2021.
Design and Implementation of a Spiking Neural Network
with Integrate-and-Fire Neuron Model for Pattern Recog-
nition. International Journal of Neural Systems, 31(03):
2050073.
Rathi, N.; Agrawal, A.; Lee, C.; Kosta, A. K.; and Roy,
K. 2021. Exploring Spike-Based Learning for Neuromor-
phic Computing: Prospects and Perspectives. In 2021 De-
sign, Automation & Test in Europe Conference & Exhibition
(DATE), 902–907. IEEE.
Rathi, N.; Srinivasan, G.; Panda, P.; and Roy, K. 2020. En-
abling deep spiking neural networks with hybrid conversion
and spike timing dependent backpropagation. In 8th Inter-
national Conference on Learning Representations (ICLR).
Roy, K.; Jaiswal, A.; and Panda, P. 2019. Towards spike-
based machine intelligence with neuromorphic computing.
Nature, 575(7784): 607–617.
Rueckauer, B.; Lungu, I.-A.; Hu, Y.; Pfeiffer, M.; and Liu,
S.-C. 2017. Conversion of continuous-valued deep networks
to efficient event-driven networks for image classification.
Frontiers in neuroscience, 11: 682.
Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and
Chen, L.-C. 2018. Mobilenetv2: Inverted residuals and lin-
ear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 4510–4520.
Sengupta, A.; Ye, Y.; Wang, R.; Liu, C.; and Roy, K. 2019.
Going deeper in spiking neural networks: VGG and residual
architectures. Frontiers in neuroscience, 13: 95.
Simonyan, K.; and Zisserman, A. 2015. Very deep convolu-
tional networks for large-scale image recognition. Interna-
tional Conference on Learning Representations (ICLR).

1700

Singh, S.; Sarma, A.; Jao, N.; Pattnaik, A.; Lu, S.; Yang, K.;
Sengupta, A.; Narayanan, V.; and Das, C. R. 2020. NEB-
ULA: a neuromorphic spin-based ultra-low power architec-
ture for SNNs and ANNs. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA),
363–376. IEEE.
Srinivasan, G.; and Roy, K. 2019. Restocnet: Residual
stochastic binary convolutional spiking neural network for
memory-efficient neuromorphic computing. Frontiers in
neuroscience, 13: 189.
Woźniak, S.; Pantazi, A.; Bohnstingl, T.; and Eleftheriou,
E. 2020. Deep learning incorporating biologically inspired
neural dynamics and in-memory computing. Nature Ma-
chine Intelligence, 2(6): 325–336.
Wu, Y.; Deng, L.; Li, G.; Zhu, J.; Xie, Y.; and Shi, L. 2019.
Direct training for spiking neural networks: Faster, larger,
better. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, 1311–1318.
Zhang, G.; Li, B.; Wu, J.; Wang, R.; Lan, Y.; Sun, L.; Lei,
S.; Li, H.; and Chen, Y. 2020. A low-cost and high-speed
hardware implementation of spiking neural network. Neu-
rocomputing, 382: 106–115.
Zhang, L.; Zhou, S.; Zhi, T.; Du, Z.; and Chen, Y. 2019.
Tdsnn: From deep neural networks to deep spike neural net-
works with temporal-coding. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, 1319–
1326.

1701

