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Abstract

Occlusion is common in the actual 3D scenes, causing the
boundary ambiguity of the targeted object. This uncertainty
brings difficulty for labeling and learning. Current 3D detec-
tors predict the bounding box directly, regarding it as Dirac
delta distribution. However, it does not fully consider such
ambiguity. To deal with it, distribution learning is used to ef-
ficiently represent the boundary ambiguity. In this paper, we
revise the common regression method by predicting the dis-
tribution of the 3D box and then present a distribution-aware
regression (DAR) module for box refinement and localiza-
tion quality estimation. It contains scale adaptive (SA) en-
coder and joint localization quality estimator (JLQE). With
the adaptive receptive field, SA encoder refines discriminative
features for precise distribution learning. JLQE provides a re-
liable location score by further leveraging the distribution s-
tatistics, correlating with the localization quality of the target-
ed object. Combining DAR module and the baseline VoteNet,
we propose a novel 3D detector called DAVNet. Extensive
experiments on both ScanNet V2 and SUN RGB-D datasets
demonstrate that the proposed DAVNet achieves significant
improvement and outperforms state-of-the-art 3D detectors.

Introduction
3D object detection has a pivotal role in the field of robotic
scene perception. Current 3D detectors (Qi et al. 2019; Shi,
Wang, and Li 2019) have made progress these years. How-
ever, they regress 3D bounding box directly, limited in Dirac
delta distribution. They do not fully consider the label am-
biguity of the occluded object. Occlusion is common in the
3D scene. As shown in Figure 1 (a), we can hardly confir-
m the size of a partly seen object. The position and the size
of an incomplete target tend to be ambiguous even though
they were manually labeled. Dirac delta distribution fails to
represent such uncertainty.

To solve the label ambiguity, some researchers made ef-
forts in the 2D domain (He et al. 2019). GFocalLoss (Li
et al. 2020b) has confirmed the effectiveness of distribution
representation for box boundary. It predicts the general dis-
tribution of the distance between the anchor point and four
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Figure 1: Occlusion is common in 3D scenes. (a) The bound-
ary of a partly-seen object is ambiguous. (b)The ground truth
size of the same object may be different due to the occlusion.

boundaries. However, it is unsuitable for 3D object detection
for the inconsistency with the common 3D box representa-
tion. Most 3D detectors regress the residual offset of the cen-
ter, size, and orientation. Hence, we keep this representation
method and learn the distribution of the offsets above (see
Figure 2). We design distribution aware regression (DAR)
module for precise boundary perception.

For accurate distribution prediction, we aim to improve
the procedure of feature extraction. VoteNet (Qi et al. 2019)
proposed an approach for proposal generation by predicting
the corresponding center of each point. Nevertheless, it used
a fixed region for set abstraction, which is unsuitable for ob-
jects of different sizes. The vote point remains a certain dis-
tance from the center when the voting step brings unsatisfac-
tory prediction, especially for the large object (see Figure 3
(a)). A fixed region brings unbalanced pooling quality to d-
ifferent categories. Besides, the set abstraction performance
heavily depends on the voting accuracy. To avoid such con-
cerns, we adopt scale adaptive (SA) encoder to re-pooling
the features with a rough 3D proposal. According to the pri-
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Figure 2: The comparison of two regression methods. P s-
tands for the probability of each box. Utilizing the distribu-
tion is more in line with the data characteristics.

or result, SA encoder adjusts the receptive field adaptively
to extract distribution aware representation.

Except the location, the box confidence is also a crucial
aspect for prediction. For the box scoring, localization qual-
ity estimation is one of the essential parts. VoteNet treats the
distance between vote points and their corresponding center-
s as the location score. It is not a proper way to represent the
localization quality. Recent studies (Zheng et al. 2021; Wang
et al. 2020) utilize an individual branch for IoU prediction.
Coincidentally, GFocalLoss (Li et al. 2020a) points out the
relationship between the boundary distribution and localiza-
tion quality in 2D object detection. A flat distribution prob-
ably leads to inaccurate boundaries while a sharp one may
bring a precise result. We also found this phenomenon in
the 3D scene. Hence, we propose joint localization quality
estimator (JLQE), which combines the physical feature and
distribution feature for location confidence prediction. Fur-
thermore, we refine Distribution-Guided Quality Predictor
(DGQP) (Li et al. 2020a) and provide a robust distribution
encoder. By using the proposed JLQE, we can obtain a reli-
able box score.

In response to the shortcomings mentioned above, we de-
velop a novel 3D object detector called DAVNet, based on
VoteNet. It adopts a distribution-guided box regression to
generate a precise bounding box with reliable confidence.
The contribution of this paper can be summarized as below:

• The proposed DAR module conducts box refinement by
regressing the distribution, which can indicate the bound-
ary uncertainty. We revise the distribution encoder and
propose JLQE, which provides a reliable location score
by further leveraging the learned distribution. SA en-
coder extracts feature with more physical information by
applying adaptive receptive field.
• The proposed DAVNet achieves significant improvement

on SUN RGB-D (mAP@0.25: 60.32) and ScanNet V2
(mAP@0.25: 67.11). The proposed network outperforms
state-of-the-art methods on these two datasets.

Figure 3: Using a unified pooling region is not suitable for
all scenes. (a) A small region may lose some valid points
when RPN brings poor effect. (b) A large one may contain
more noise points in a complex scene.

Related Work
3D Object Detection from Point Cloud
With the rapid development of the 2D object detection
method (Girshick 2015; Ren et al. 2015), more recent at-
tention has focused on the 3D domain. There comes a lot
of enlightening literature. At early stage, there were some
template-based methods (Li et al. 2015; Nan, Xie, and Shar-
f 2012). After that, deep network are widely used such as
(Song and Xiao 2016; Hou, Dai, and Nießner 2019; Yi et al.
2019). To deal with the sparsity and the disorder of point
clouds, some researchers (Su et al. 2015; Qi et al. 2016; Wei,
Yu, and Sun 2020) project them to the multiple views and
extract view-wise features. Others (Maturana and Scherer
2015; Wu et al. 2015; Ben-Shabat, Lindenbaum, and Fis-
cher 2017) transform the point cloud into a set of voxel
for 3D convolution. PointNet (Qi et al. 2017a,b) provides
new insight into feature extraction, by learning point-wise
features directly. PointRCNN (Shi, Wang, and Li 2019) is
a pioneering work, providing a two-stage 3D detector that
is widely used. VoteNet (Qi et al. 2019) utilize the Hough
voting for proposal generation and its variant, MLCVNet
(Xie et al. 2020), captures the contextual information with
self-attention. However, previous works do not pay enough
attention to the label uncertainty on the dataset, limited in
Dirac delta distribution. In this paper, we take advantage of
the learned distribution to indicate such ambiguity, leading
to a significant improvement.

Representation of Bounding Box
Most of the existing works describe the bounding box in the
form of Dirac delta distribution. Gaussian YOLOv3 (Choi
et al. 2019) introduces the boundary uncertainty to re-score
the bounding box and KL Loss (He et al. 2019) confirms the
effectiveness of distribution regression for box refinement.
However, both of them adopt a Gaussian assumption and
predict the variance. GFocalLoss (Li et al. 2020b,a) take a
step forward. They relax the assumption and predict a more
flexible distribution.

Prior studies mentioned above focus on the 2D domain.
CaDNN (Reading et al. 2021) adopts pixel-wise depth dis-
tribution learning for monocular 3D object detection. How-
ever, most of these studies have been limited to image input,
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Figure 4: Overview of the proposed DAVNet. DAR module aims at box refinement. It regresses the distribution of the box
location and provides precise prediction by integration. Inside, SA encoder generates discriminative features for distribution
learning, which is utilized by JLQE to provide a reliable location score.

unsuitable for point cloud data. Concerning such inconsis-
tency, we provide new insights into point cloud 3D object
detection by introducing distribution representation.

Localization Quality Estimation
Localization quality estimation plays a vital role in box s-
coring. Some existing works (Tychsen-Smith and Petersson
2018; Jiang et al. 2018; Wu, Li, and Wang 2020) set a sep-
arated branch to predict the IoU or center score in the 2D
domain. In addition, CIA-SSD (Zheng et al. 2021) demon-
strates the advantages of using IoU estimation for 3D object
detection. By the way, how to further improve the accura-
cy remains consideration. We utilize the distribution feature
efficiently and provide a powerful way for it.

Method
As shown in Figure 4, the proposed DAVNet consists of two
parts: region proposal network (RPN) for proposal gener-
ation by using the voting strategy on the point cloud, and
the proposed DAR module for bounding box refinement by
learning the box distribution.

Region Proposal Network
RPN of the proposed 3D detector is VoteNet. It is an anchor-
free detector, saving a large amount of memory. The back-
bone of RPN is PointNet++ (Qi et al. 2017b). 2048 points
are sampled from the inputs with furthest point sampling (F-
PS). They are sent into RPN as input. The backbone in it
encodes the point cloud feature for proposal voting. After
that, RPN conducts set abstraction to aggregate vote point
feature and predicts 3D proposals for DAR module. Due to
the limitation in the set abstraction and regression method in

VoteNet (mentioned below), the 3D proposals may be inac-
curate when facing a complex 3D scene.

Distribution Aware Regression
The 3D proposals in RPN are predicted directly, without
consideration to the severe label ambiguity. There is a cer-
tain limitation associated with the most common regression
method. As shown in Figure 2, it takes the boundary of the
target as a certain value, following Dirac delta assumption.
However, the target boundary is probably uncertain due to
the occlusion or noise in the complex 3D scene. We are not
able to confirm the exact boundary or center when the target
is occluded (see Figure1 (a)). The same objects may have d-
ifferent ground truth sizes due to the occlusion (see Figure1
(b)). Dirac delta distribution fails to represent such ambigu-
ity. Learning the distribution of it can better handle such a
situation and improve the box precision.

Scale adaptive encoder. The set abstraction in VoteNet u-
tilizes a fixed region to aggregate the neighbor point. How-
ever, the vote points generated by RPN are probably not con-
vincing for the large object, since its points are far from the
center. The fixed area fails to cover all the valid points when
their location is inaccurate (see Figure 3 (a)). Simply enlarg-
ing the region may contain more noise points in the crowded
scene (see Figure 3 (b)). Hence, a unified region brings un-
balanced pooling quality among different categories.

To address such concerns, we decouple the pooling qual-
ity and the voting quality by introducing SA encoder. We
first generate 4 * 4 * 4 grid points by uniformly sampling
within each 3D proposal. We generate the grid point feature
by interpolation from its 3 neighbour points. The proposal
feature is obtained from the concatenated grid point feature
through several MLP layers. SA encoder can deal with the
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Figure 5: The relationship between the localization quality
and the distribution.

targets of different sizes and extract SA features by employ-
ing adaptive receptive fields according to the prior proposal
from RPN. The RPN feature in Figure 4 is obtained from the
set abstraction in RPN. We further combine the SA feature
and RPN feature to create distribution-aware representation.

Distribution calculation. Probability distribution P (x) of
the regression value y satisfies the formula below

y =

∫ +∞

−∞
P (x)xdx (1)

ỹ =

∫ ymax

ymin

P (y) ydy ≈
Nbins∑
i=0

P (yi) yi (2)

Nbins∑
i=0

P (yi) = 1 (3)

where ỹ is an approximation of y, whose range is denoted as
[ymin, ymax]. We convert the Eq. 1 into a discrete form (Eq.
2) by approximating the integration interval with a set of bin-
s {yi |ymin ≤ yi ≤ ymax } , i ∈ [1, Nbins]. y represents the
offset ∆ϕ̃ we predicted in Eq. 4. Thus we can calculate the
offset by learning its distribution P (x). After generating the
aggregation feature, DAR module adopts a stacked convo-
lution layer to predict the probability of each bin mentioned
above. We can calculate the output y through the integration
in Eq. 2.

For box representation, GFocalLoss predicts the offset-
s between the four boundaries and the anchor point in 2D
object detection, which is not feasible for the 3D task. For
a 3D box, similarly regressing the six offsets of the bound-
ary is unfriendly to the network convergence, since all the
variables are related to the vote point position. Their re-
gression distribution will change during the training pro-
cess. Most of 3D detectors commonly predict the residual
offset of the center (∆x,∆y,∆z), size(∆w,∆h,∆l) and
orientation(∆θ). To a certain extent, the data distribution of

Figure 6: The modification of the distribution encoder. Two
distributions result in the same feature by using DGQP in
GFocalLoss because they have the same top k P (y). Adding
a standard deviation of yi can avoid such confusion.

∆w,∆h,∆l is fixed during training. We regress the normal-
ized offset ∆ϕ̃ in Eq. 4.

∆ϕ̃ =
∆ϕ

δϕ
, ϕ = x, y, z, w, h, l, θ (4)

where ∆w̃, ∆h̃, ∆l̃ are normalized by wmean, hmean, lmean,
the mean value of the corresponding category in the whole
dataset. δz is set to hmean and δθ is set to π. Due to the
uncertain orientation of the objects, δx and δy should keep
the same. Hence, we normalize ∆x̃,∆ỹ with the maximum
between the wmean and lmean. The normalization can bring
a uniform distribution for each regression variable which is
beneficial for the network convergence.

The settings of hyperparameters will be discussed in Sec-
tion 4.4. By taking advantage of the distribution-based re-
gression, we improve the performance of the box localiza-
tion significantly.

Joint localization quality estimator. The confidence of a
target contains two aspects, classification score and location
score. VoteNet takes Scenterness as the location score which
is supervised by the distance between the vote point and the
target center. Scenterness has only focused on the voting qual-
ity and ignored the performance on box prediction. 3D IoU,
as the final evaluation metric, can represent the location con-
fidence comprehensively. Hence, we carry out IoU predic-
tion to provide accurate box evaluation.

There is a strong correlation between the steepness of the
distribution and the IoU score in 3D scene. As illustrated
in Figure 5, an accurate bounding box accompanies a sharp
distribution. DGQP (Li et al. 2020a) utilizes the top k and
mean value of P (y) to encode the steepness of it, which is
restricted to unimodal distribution.

The two distributions in Figure 6 may result in the same
feature since their top k probabilities are the same. Howev-
er, the distribution in Figure 6 (a) is sharper than those in
Figure 6 (b). DGQP has limitations in representing the mul-
timodal distribution, because it has only used the probability
information (P (y)). It brings great challenge to the network
convergence and makes the training procedure unstable. To
avoid such confusion, we add the standard deviation of y a-
mong the selected bins. By using the appended features, we
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AP@0.25
table sofa booksh chair desk dresser nightst bed bathtub toilet mAP

VoteNet 47.3 64.0 28.8 75.3 22.0 29.8 62.2 83.0 74.4 90.1 57.7
MLCVNet 50.4 66.3 31.9 75.8 26.5 31.3 61.5 85.8 79.2 89.1 59.8
H3DNet - - - - - - - - - - 60.1

our 52.1 66.4 29.4 77.1 27.5 32.2 65.0 84.6 78.9 90.0 60.3
AP@0.5

VoteNet 14.1 40.6 5.7 51.1 4.3 10.4 33.7 44.9 52.9 59.4 31.7
H3DNet - - - - - - - - - - 39.0

our 28.4 52.9 8.7 60.8 9.3 20.2 49.1 57.9 39.5 67.3 39.4

Table 1: Performance comparison with the state-of-the-art 3D object detectors on SUN RGB-D validation set. The result of
VoteNet on mAP@0.5 is obtained from the model it released. Those of MLCVNet are not released.

Input mAP 0.25 mAP 0.5
DSS Geo+RGB 15.2 6.8

MRCNN 2D-3D Geo+RGB 17.3 10.5
F-PointNet Geo+RGB 19.8 10.8

GSPN Geo+RGB 30.6 17.7
3D-SIS Geo+RGB 40.2 22.5
3D-SIS Geo only 25.4 14.6
VoteNet Geo only 58.6 33.5

MLCVNet Geo only 64.5 41.4
3D-MPA Geo only 64.2 49.2
H3DNet Geo only 67.2 48.1

DAVNet(ours) Geo only 67.1 50.2

Table 2: Performance comparison with state-of-the-art
methods on ScanNet V2 validation set

can distinguish the two distributions in Figure 6. It improves
its robustness while keeping the scale invariance of DGQP.

We transform the aggregation feature into the same shape
as the distribution feature and concatenate them for IoU pre-
diction. Benefiting from the distribution statistics, we ob-
tain an IoU with higher precision, denoted as SIoU. Figure
7 shows the result of Scenterness and SIoU, which strongly
verifies the accuracy of SIoU. Scenterness is supervised by a
hard label, resulting in unsatisfactory performance. The final
location scores SBox is obtained by multiplying these two s-
cores (Eq. 5), which benefits in the Non-Maximum Suppres-
sion (NMS) stage.

SBox = Scenterness ∗ SIoU (5)

Loss Function
The loss calculation in RPN (lRPN) follows those in
VoteNet. The loss in DAR module (lDAR) is defined in E-
q. 7.

lRPN = lvote + 0.1 ∗ lcls + lbox (6)

lDAR = l̃box + liou + ldfl (7)

where lbox and l̃box represent the regression loss of the
bounding box in RPN and DAR respectively. Since a val-
ue can obtained from unlimited distribution, we use Distri-
bution Focal Loss(DFL) (Li et al. 2020b) to supervise the

Figure 7: Performance comparison between the Scenterness

and SIoU. The points closed to the green line have higher
accuracy.

distribution.

ldfl =

Nbins−1∑
i=0

f
yi+1
yi (8)

f
yi+1
yi = − (yi+1 − y) ∗ lnP (yi)− (y − yi) ∗ lnP (yi+1) (9)

where fyi+1
yi is set to 0 when y /∈ [yi, yi+1). ldfl guarantees

the sharpness and accuracy of the distribution. We use the
cross entropy loss for the classification (lcls) and the smooth
L1 loss for all the regression (lvote, lbox, l̃box, liou). The total
loss is lloss = lRPN + lDAR.

Experiment
Datasets
We evaluate our network on ScanNet V2 (Dai et al. 2017)
and SUN RGB-D (Song, Lichtenberg, and Xiao 2015). S-
canNet has 1513 indoor 3D scenes and 1201 of them are
used for training. It provides complete scenes, fused by sev-
eral RGB-D images. Different from ScanNet, frames on
SUN RGB-D are captured from a single view, causing se-
vere incompleteness in point clouds. There are 10335 frames
with depth images and over 64000 labeled boxes with orien-
tation in SUN RGB-D.
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Figure 8: Qualitative comparison results of 3D object detection. DAVNet has better performance on box regression, benefiting
from the effectiveness of the distribution representation. It can also suppress false detection with the help of the reliable score
predicted by JLQE.

Implementation Details
We use an Adam optimizer to train our model in batch size
8 for both datasets. For ScanNet V2, the network is trained
for 180 epochs. The learning rate is initialized as 0.01 and
decreased by 10× after 120 and 160 epochs. For SUN RGB-
D, we train for 200 epochs with a learning rate initialized as
0.001. It is decreased by 10× after 120, 160, and 180 epochs.
We conduct all our training on one GTX1080Ti GPU.

Comparisons with State-of-the-Art Methods
Tabel 1 shows the performance on the validation set of SUN
RGB-D. DAVNet reaches 60.3% and 39.4% on mAP@0.25
and mAP@0.5 respectively. The scenes in SUN RGB-D are
challenging due to the serious occlusion. The DAR module
can conquer these complex scenes. The proposed DAVNet
surpasses VoteNet and MLCVNet on several labels espe-
cially the large ones such as dresser, sofa, and table. The
score on bathtub drops from AP@0.25 to AP@0.5 since the
number of this label is not enough for accurate distribution
learning. The proposed DAVNet benefits from SA encoder
which is adaptive to the object scale. The improvement on
SUN RGB-D can strongly verify our effectiveness.

Table 2 shows the comparison on ScanNet V2. Deep s-
liding shape (Song and Xiao 2016), Mask RCNN (He et al.
2020), F-PointNet (Qi et al. 2018), GSPN (Yi et al. 2019)
and 3D SIS (Hou, Dai, and Nießner 2019) utilize the ge-
ometry and RGB information, but they still need a proper
way to fuse the multi modal information effectively. We al-
so compare DAVNet with 3D-MPA (Engelmann et al. 2020)
and H3DNet (Zhang et al. 2020). We achieve 67.1% and
50.2% on mAP@0.25 and mAP@0.5 separately, making

Figure 9: Comparison with the RPN results on mAP@0.25.
The green box stands for positive detection while the red one
represents false detection.

8.5% and 16.7% improvement from VoteNet. We outperfor-
m H3DNet by 2.1% on mAP@0.5, remaining a small gap
on mAP@0.25. As illustrated in Figure 8, DAVNet achieves
better performance in box regression, which confirms the
effectiveness of the distribution representation. Meanwhile,
with the help of the reliable score provided by JLQE, the
number of false-positive results decreases. It brings a higher
score in mAP@0.5.
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Figure 10: (a) Label distribution on ScanNet V2. (b) Per-
formance of different Nbins on mAP@0.25. (c) Label dis-
tribution on SUN RGB-D. The distribution of ∆x,∆y,∆z
is collected by a pre-trained network as they are associated
with the voting quality. The others four are constant on the
dataset.

SAE DR JLQE Head ScanNet SUN RGB-D
- 64.13 57.79

X RPN 64.97 58.50
X DAR 65.55 58.77
X X DAR 66.49 59.02
X X RPN 65.27 59.68
X X DAR 66.37 59.75
X X X DAR 67.11 60.32

Table 3: Ablation study for DAR module on validation
set(mAP 0.25). SAE stands for SA encoder. DR means using
the distribution regression. Head stands for the prediction re-
sult in two stages.

Ablation Study
To further validate the proposed method and analyze each
individual component, we conduct extensive ablation exper-
iments on these datasets. In this session, we will investigate
the effectiveness of the three modules mentioned above. Ta-
ble 3 displays the results of different combinations among
the three modules. The baseline (1st row) is the VoteNet we
trained and the 2nd, 3rd, and 4th rows stand for SA encoder
module using the original regression method. The 5th, 6th, 7th

rows apply distribution regression on the basis of 2nd, 3rd,4th

rows respectively. Table 3 demonstrates that each module
has made a certain improvement. We further investigate their
effectiveness below.

Effect of scale adaptive encoder. The 3rd row shows that
the SA encoder made 1.42% and 0.98% improvement from
the baseline. Due to its robustness, it can also help fine-turn
the RPN, bringing 0.84% and 0.71% improvement (see 2nd

row). Hence, we can even take SA encoder as an auxiliary
network and drop it during the inference, which can also
achieve a certain improvement.

Effect of distribution aware regression. We validate the
effect of the DAR module by processing distribution regres-

standard deviation Scannet mAP0.25
× 65.8
X 66.2

Table 4: Effect of the standard deviation feature.

location score features mAP0.25
Scenterness - 64.13

Scenterness ∗ SIoU
RPN feature 64.82

Aggregation feature 65.4

Table 5: Effect of the SIoU and the aggregation feature.

sion after the SA encoder. The 6th row in Table 3 shows that
utilizing the distribution helps improve the regression qual-
ity, making remarkable improvement. As can be seen from
Figure 9, DAR module also limits the false prediction, which
validates its robustness in complex scenes.

Effect of joint localization quality estimator. We inves-
tigate the effects of JLQE. The 4th, 7th rows in Table 3
show that replacing the location score by SBox in Eq. 5 can
bring significant improvement. Figure 7 illustrates the gap
between the Scenterness and SIoU, which highlights its accu-
racy. In addition, Table 4 validates the effectiveness of the
appended standard deviation feature in Figure 6.

To eliminate the impact from the other factor, we drop
the DAR module and carry out IoU prediction in RPN. The
performance are shown in Table 5. The 2nd row demonstrates
that SIoU is a powerful guidance for box scoring. Hence,
making use of the predicted IoU is more effective.

We further investigate the effect of the distribution fea-
tures. The 3rd row in Table 5 illustrates that, by using the
aggregation feature, the accuracy can be further improved.

Analysis of the hyperparameters. To identify the corre-
lation between the Nbins and the precision of the DAR mod-
ule, we conduct an experiment about different Nbins (see
Figure 10 (b)). Increasing it can help raise the accuracy, but
it may also cost more memory. At last, it is set to 40. The
settings of the distribution region [ymin, ymax] follows the
collected label distribution in Figure 10. On ScanNet V2, it
is set to [−1, 1] for ∆x,∆y,∆z and [−1, 2] for ∆w,∆h,∆l.
On SUN RGB-D, they are all set to [−1, 1].

Conclusion
In this paper, we develop a novel 3D object detector named
Distribution Aware VoteNet. Our main contribution is that
we design DAR module, providing a distribution-based re-
gression method for point cloud 3D object detection. Inside
DAR module, we design JLQE to provide a reliable loca-
tion score. It predicts the IoU of the bounding box by fur-
ther utilizing the distribution statistics, which is correlative
with the localization quality. We also propose SA encoder
which adopts adaptive receptive fields to increase the ro-
bustness in the pooling stage. The experiment results on S-
canNet V2 and SUN RGB-D demonstrate that the proposed
DAVNet achieves significant improvement in 3D object de-
tection compared with the previous state-of-the-art methods.
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