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Abstract

Person re-identification (Re-ID) based on unsupervised do-
main adaptation (UDA) aims to transfer the pre-trained model
from one labeled source domain to an unlabeled target do-
main. Existing methods tackle this problem by using cluster-
ing methods to generate pseudo labels. However, pseudo la-
bels produced by these techniques may be unstable and noisy,
substantially deteriorating models’ performance. In this pa-
per, we propose a Reliability Exploration with Self-ensemble
Learning (RESL) framework for domain adaptive person Re-
ID. First, to increase the feature diversity, multiple branches
are presented to extract features from different data aug-
mentations. Taking the temporally average model as a mean
teacher model, online label refining is conducted by using its
dynamic ensemble predictions from different branches as soft
labels. Second, to combat the adverse effects of unreliable
samples in clusters, sample reliability is estimated by evalu-
ating the consistency of different clusters’ results, followed
by selecting reliable instances for training and re-weighting
sample contribution within Re-ID losses. A contrastive loss
is also utilized with cluster-level memory features which are
updated by the mean feature. The experiments demonstrate
that our method can significantly surpass the state-of-the-art
performance on the unsupervised domain adaptive person Re-
ID.

Introduction
Person re-identification (Re-ID) aims to retrieve a given per-
son from different cameras. With the development of deep
learning and increasing computing power, person Re-ID has
achieved great success (Zheng et al. 2019; Lin et al. 2019b;
Shi et al. 2020a,b,c). However, most existing methods based
on supervised learning require a large amount of labeled
data which is time-consuming. And if a pre-trained model
is transferred from one scenario to another, the model per-
formance will drop drastically due to different data distribu-
tion. Therefore, the unsupervised domain adaption (UDA)
for person Re-ID needs to be introduced for transferring a
trained model from a labeled source domain to another un-
labeled dataset.

Recently, most existing methods focusing on unsuper-
vised domain adaption for person Re-ID can be broadly
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Figure 1: Illustration of the proposed reliability estimation
method, which utilizes the overlapping sample in differ-
ent cluster results. Different color circles represent different
clusters produced by different branch features. A reliable in-
stance is supposed to have more overlapping cluster neigh-
bors, and those of a unreliable sample are scatted in different
clusters.

grouped into two categories. The first category is distribution
aligning method (Bak, Carr, and Lalonde 2018; Deng et al.
2018; Wei et al. 2018; Zhong et al. 2018a; Li et al. 2019).
This kind of method align the image distributions between
source and target datasets or apply Generative Adversarial
Network to transfer the style of an image from the source
domain to the target domain, remaining the identity label of
the image for training. However, these methods achieve un-
satisfying performance because they do not make full use
of the information in the target domain data. Most existing
methods(Ding et al. 2020; Ge, Chen, and Li 2020; Zhai et al.
2020b; Zheng et al. 2021a) are based on the second cate-
gory, named clustering-based methods. This kind of method
utilizes the pre-trained model from source domain to gen-
erate pseudo labels on the target domain by clustering the
extracted features. The pseudo label generation step and the
training step are performed alternatively until the model con-
verges. Although these methods can achieve acceptable per-
formance with pseudo labels, they also face the noisy prob-
lem due to the domain gap.
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To handle noisy labels, some researchers use mutual
teaching (Zhang et al. 2018; Shi et al. 2021) to train paired
networks and help to correct each other. MMT(Ge, Chen,
and Li 2020) trains two paired networks and corrects their
pseudo labels by using their moving average networks.
However, this training method would result in the two mod-
els fitting to each other. Moreover, MEB-Net(Zhai et al.
2020b) utilizes multiple networks with different architec-
tures to enhance the feature diversity and try to correct noisy
labels via a brainstorming training strategy. But this method
requires training multiple models iteratively, which is hard
for training. In this paper, a reliability exploration method is
proposed with a self-ensemble learning framework, where
online pseudo labels refining and offline reliable sample se-
lection are utilized to handle the noise problem. Further-
more, our model consists of several branches after the stem
CNN. To equip different branches with diverse knowledge
and specific features, CycleGAN(Zhu et al. 2017) is adopted
to generate images with different camera styles for data aug-
mentation. Then, the predictions of each branch are inte-
grated via a dynamic router. Meanwhile, the temporally av-
eraged model is used as the teacher model, and its integrated
prediction is employed as soft labels to supervise the learn-
ing of different branches, which can be regarded as a self-
ensemble learning way. Compared with other mutual teach-
ing methods, our model can avoid asynchronous model up-
dating while achieving superior performance.

In addition, we propose a method to estimate the pseudo
label reliability by calculating the consistency of different
cluster results, which is shown in Fig.1. Specifically, differ-
ent branch features in the running model and ensemble fea-
tures in the temporally average model are utilized to cluster
images in the target domain. Due to the diversity in features,
the result of each cluster varies. The reliability of each sam-
ple is evaluated by calculating the intersection-over-union of
different clusters in which the sample is located. By select-
ing instances with reliable labels and incorporating the reli-
ability into the Re-ID loss for model training, we can relieve
the negative influence of noisy pseudo labels.

Although self-ensemble learning and reliable sample
selection can significantly reduce the influence of noisy
pseudo labels, the reliability-aware classification loss and
contrastive loss are also utilized to enhance the feature dis-
crimination. Instead of saving the current feature in the
memory bank like previous methods, the ensemble feature
is applied to update the cluster-level memory bank in the
temporally average model. The cluster centroids are used to
guide different branch features through a multi-branch con-
trastive loss.

Our contributions can be summarized as follows:
1. A multi-branch architecture with self-ensemble learn-

ing is proposed, which adopts self-ensemble prediction to
increase the quality of mean teacher-based soft labels.

2. A sample reliability estimation strategy is presented
by evaluating the consistency of sample clusters. By select-
ing reliable samples for training and incorporating reliability
into the Re-ID loss, our model can mitigate the negative in-
fluence of noisy pseudo labels

3. Cluster-level memory bank is constructed with features

in the temporally average average model, and the multi-
branch contrastive learning is used to supervise different
branches’ features, which dramatically strengthens the dis-
crimination of features.

Experiments show that our method achieves a tradeable
effect and surpasses most state-of-the-art methods by large
margins on multiple benchmarks of unsupervised domain
adaptive Re-ID.

Related Work
Fully Unsupervised Re-ID
Fully unsupervised Re-ID (Lin et al. 2019a; Wang and
Zhang 2020; Zeng et al. 2020; Ge et al. 2020) aims to
train Re-ID model without any annotations. These methods
mainly adopt cluster algorithm (Ester et al. 1996a) to gener-
ate pseudo label for model training. A bottom-up clustering
framework (BUC) (Lin et al. 2019a) treats each indepen-
dent sample as a cluster and then hierarchically groups sim-
ilar clusters into one cluster to generate pseudo labels. HCT
(Zeng et al. 2020) uses the hierarchical clustering method
to generate pseudo labels and adopts a PK sampling in the
training procedure. MMCL (Wang and Zhang 2020) and
SSL (Lin et al. 2020) predict pseudo multi-labels by lever-
aging similarity computation and cycle consistency. After
which they train the model as a multi-classification prob-
lem. SpCL (Ge et al. 2020) proposes a novel self-paced con-
trastive learning framework.

Unsupervised Domain Adaptation for Person
Re-ID
Recent studies on unsupervised domain adaptive person Re-
ID could be mainly divided into two categories, one is the
distribution aligning (Deng et al. 2018; Wei et al. 2018;
Zhong et al. 2018a) , and the other is the clustering-based
method(Song et al. 2020; Fu et al. 2019; Zhang et al. 2019;
Yang et al. 2020; Ge, Chen, and Li 2020). For the distri-
bution aligning, most methods use GAN-based methods to
minimize the distance between the source and target do-
mains. For example, SPGAN (Deng et al. 2018), and PT-
GAN (Wei et al. 2018) use CycleGAN (Zhu et al. 2017)
or StarGAN (Choi et al. 2018) to transfer images from
the source domain style to the target domain style and
train the model with the source domain identity labels. Al-
though these methods try to align the distribution between
the source domain and target domain, they can’t fully ex-
plore the target domain images relationship and thus get un-
satisfying performance.

Recently, clustering-based methods are widely used in
domain adaptive person Re-ID. UDAP (Song et al. 2020)
first utilizes the cluster method to generate pseudo labels.
SSG (Fu et al. 2019) uses the global body and local parts
to exploit the potential similarity in a clustering-guided ap-
proach. Although these clustering-based methods dominate
this area, they still suffer the pseudo-label noise problem.
Recently, more clustering-based methods (Zhang et al. 2019;
Yang et al. 2020; Dai et al. 2021; Zheng et al. 2021a,b) are
studying how to mitigate the influence of pseudo label noise.
MMT (Ge, Chen, and Li 2020) proposes to softly refine the

1528



pseudo labels in the target domain by a deep mutual learning
way. GLT(Zheng et al. 2021b) treat the pseudo label refinery
problem as an transportation problem. UNRN(Zheng et al.
2021a) exploits the uncertainty to evaluate the reliability of
the pseudo-label of a sample. Different from the above work,
in this paper, we propose a reliability exploration with self-
ensemble learning method to alleviate the negative effect of
noisy label in both online self-ensemble mutual learning and
offline reliable sample selection .

Learning with Noise
Recent studies on learning with noisy labels can broadly
group to three categories: robust loss design (Wang et al.
2019), label correction (Lee et al. 2018) and re-weighting
methods (Yang et al. 2020; Han et al. 2018). Robust loss de-
sign aims find a robustness function for noisy labels. Ghosh
et al. (Ghosh, Kumar, and Sastry 2017) find that the mean
absolute error loss is robust for noisy label. Wang et al.
(Wang et al. 2019) later propose a symmetric cross entropy
to avoid overfitting in CE loss. Label correction methods
(Lee et al. 2018) try to estimate transition probabilities be-
tween noisy labels and true labels and try to correct noisy
labels. However, these methods require additional clean data
for training. Re-weighting methods reweight the loss to help
handle the noise. Co-teaching (Han et al. 2018) propose to
utilize two networks and select small loss samples to teach
its peer network for further training. In this paper, our work
leverages the consistency of different clusters to estimate
sample reliability to select reliable samples and assign relia-
bility weight on Re-ID loss to resists noisy labels produced
by clustering.

Contrastive Learning
Recently, contrastive learning is used in the field of unsu-
pervised learning to learn a good image representation such
as: MoCo(He et al. 2020), SimCLR(Chen et al. 2020) and
BYOL(Grill et al. 2020), . Although these methods can learn
a discriminative feature, they cannot well generalize to the
person Re-ID task. Some methods introduce contrastive loss
on person Re-ID, for example, SpCL(Ge et al. 2020) uti-
lizes hybrid memory for contrastive learning. Different from
SpCL, in this paper, we update the cluster-level feature in
memory bank by the mean feature in the moving average
model and supervised different branch feature learning by a
multi-branch contrastive loss.

Our Method
Overview
UDA in ReID aims at adapting the model trained on a la-
beled source domain dataset Ds =

{
(xs

i , y
s
i )|

Ns

i=1

}
to an un-

labeled target domain dataset Dt =
{
xt
i|
Nt

i=1

}
. Each image

xs
i in the source domain contains a corresponding ground-

truth label ysi , and the target domain dataset contains Nt

samples without their identity label. We aim to utilize the
labeled data in Ds and the unlabeled data in Dt to learn a
discriminative representations for the target dataset.

Fig. 2 shows the overall architecture of our proposed Re-
liability Exploration with Self-ensemble Learning (RESL)
framework for UDA person Re-ID. We aim to relieve the
negative influence of noisy pseudo labels in the cluster-based
learning method. RESL firstly trains multi-branch model in
the source domain dataset in a supervised manner. After that,
the multi-branch model is adapted to the target dataset by it-
eratively training. Each branch can be viewed as an indepen-
dent expert, in which different augmentations, drop blocks,
and blocks of CNNs are used to help increase the diversity.
Meanwhile, an instance-aware router is adopted to integrate
different expert predictions. The ensemble predictions in the
temporally average model are regarded as soft labels and are
utilized to guide different branches in a mutual learning way.
In each iteration, features from different branches of run-
ning model and the temporally averaged model are used to
cluster and generate pseudo labels. The consistency in dif-
ferent cluster results is used to evaluate the reliability of in-
stances. A cluster-level memory is adopted to guide multiple
branches at feature level. In this way, the noise in pseudo la-
bels can be effectively reduced.

Supervised Training in Source Domains
The proposed RESL framework aims to transfer the knowl-
edge of multi-branch experts from a labeled source domain
to an unlabeled target domain. Therefore, we first train the
Re-ID model on the labeled source domain. The RESL
model consists of a stem CNN and K branches which is
parametered with θ. Therefore the model can output K fea-
ture representations fs

i,k and predicted probabilities p(ysi |
xs
i,k, θ), where xs

i,k is the ith sample’s the kth augmentation
image inputted into the kth branch. The cross-entropy loss
for multiple branches can be defined as:

Ls
id = − 1

Ns

Ns∑
i=1

K∑
k=1

log pj
(
ysi | xs

i,k, θ
)

(1)

where p(ysi | xs
i,k, θ) is the predicted probability of the

sample xi in the kth branch data flow. The softmax triplet
loss can be denoted as:

Ls
tri=−

1

Ns

Ns∑
i=1

K∑
k=1

log
e∥f

s
i,k−f

s
i−,k∥

e∥f
s
i,k−f

s
i+,k∥+e∥f

s
i,k−f

s
i−,k∥

(2)

where fs
i,k | θ is the feature for the source domain sample

xs
i in the kth branch. xs

i+,k and xs
i−,k mean the positive and

negative samples for the ith sample. ∥ · ∥ represents the L2

distance. The overall loss can be defined as :

Ls = Ls
id + Ls

tri (3)

With the K branches architecture, the model can produce
K diverse features and predictions. And the consistency be-
tween different features can be used for evaluating sample
reliability, which can help to reduce noisy samples.

Unsupervised Training in Target Domain
As shown in Fig 2, the RESL framework contains four com-
ponents: style augmentation, reliable sample selection, self-
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Figure 2: The framework of the proposed RESL consists of four components: data augmentation, self-ensemble learning mod-
ule, reliable sample selection and contrastive learning module. The reliable sample selection utilizes on the consistency of
different clusters to evaluate the reliability of identity samples and removes the unreliable ones. In the self-ensemble learning
stage, the ensemble predictions in the temporally average model are used as the soft labels to supervise the model learning. A
contrastive loss is used on the cluster-level feature memory bank to enhance the feature discrimination.

ensemble learning, and contrastive learning. After adapta-
tion training, only the temporally averaged model is used
during the inference stage.

Data augmentation. In our method, data augmentation is
critical to enhancing the diversity of different branches. In
addition to traditional augmentation methods like Random
Erasing (Zhong et al. 2020a), cropping, and flipping, We
utilize Generative Adversarial Network (GAN) to generate
additional data with different camera styles. By this means,
we can obtain more diverse samples under various camera
views, illumination, and background while preserving the
original identities. We consider each camera as a style and
utilize CycleGAN (Zhu et al. 2017) to train a camera-style
transfer model (Zhong et al. 2018b) while preserving the
original image identities. For an image xt

i with its pseudo
label y′i, we generate Ct − 1 images with different camera
styles, where Ct is the camera number in the target domain.
In each training iteration, we randomly select K augmented
images for training and send them into different branches to
equip different experts with diverse knowledge.

Reliability estimation with cluster consistency. In order
to identify unreliable samples assigned with noisy pseudo
labels, we propose a reliability evaluation method by calcu-
lating the consistency of different clusters’ results. Different
branch features in the running model and the mean feature in
the temporally averaged model are used to cluster the sam-
ples in the target domain separately. It should be noted that
in our method, the temporally averaged model is designed to
generate more stable features and predictions. The parame-

ters of the temporally average model at the iteration T are
denoted as E(T )[θ], which can be calculated as:

E(T )[θ] =

{
θt, if t = 0,

αE(T−1)[θ] + (1− α)θt, otherwise
(4)

where α ∈ [0, 1] is the moving momentum, E(T−1) is the
parameter of the temporally average model in the previous
iteration (T − 1).

Let f(xt
i,k|θ) represents the kth branch feature in the run-

ning model, and f(xt
i|E[θ]) means the ensemble feature in

the temporally average model, which can be calculated as:

f(xt
i|E[θ]) =

1

K

K∑
k=1

f(xt
i,k|E[θ]). (5)

Then, we use the cluster algorithm (e.g., DBSCAN (Ester
et al. 1996b)) on these extracted features {f(xt

i,1|θ), ...,
f(xt

i,k|θ), f(xt
i|E[θ])}. Thus, for a given sample xt

i, we can
obtain K + 1 cluster results through these features, defined
as {I(f(xt

i,1|θ), ..., I(f(xt
i,k|θ), ..., I(f(xt

i|E[θ])}.
Since each cluster is identified as a distinct class, the

clustering reliability would significantly influence the model
training. Hence, a reliability estimation strategy is intro-
duced, where a reliable sample is measured by the consis-
tency of different cluster results. A sample can be considered
highly inconsistent if its different cluster results share vari-
ous neighbors. Therefore, the following metric is presented
to measure the sample reliability, which is formulated as an
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intersection-over-union (IOU) score:

R
(
f t
i

)
=

∣∣I(f(xt
i,1|θ))∩I(f(xt

i,k|θ)). . .∩I(f(xt
i|E[θ]))

∣∣∣∣∣I(f(xt
i,1|θ))∪I(f(xt

i,k|θ)) . . .∪I(f(xt
i|E[θ]))

∣∣∣ (6)

where I(f(xt
i,k|θ)) is the cluster set containing the feature

f(xt
i,k|θ), which is the feature of the ith sample in the kth

branch. And f(xt
i|E[θ]) is the ensemble feature in the tem-

porally average model. A larger R (f t
i ) indicates the sam-

ple has more consistent neighbors in different cluster results,
which means more reliable.

As shown in Fig 1, reliable samples have more overlap-
ping neighbors in different clusters. Given above metrics to
measure the reliability of the sample, more reliable samples
can be selected for model training. We set β ∈ [0, 1] as the
reliability threshold, preserving the samples whose R > β
and considering the remaining samples as outliers.

Self-ensemble learning. As shown in Fig 2, our RESL
model uses an instance-aware router to adaptively integrate
the prediction of each expert branch to each input sample.
Taking ResNet as an example, we equipped the K expert
branches with different drop blocks, ResBlocks and Gen-
eralize Mean Pooling(GeM) after the stem CNNs. The dy-
namic router consists of a global average pooling and a fully
connected layer to produce an ensemble weight w ∈ RK ,
where K is the number of branches. Then, we apply the
weight to aggravate the prediction of different branches to
get an ensemble prediction:

p
(
y′i |xt

i, θ
)
=

K∑
k=1

wkp
(
y′i | xs

i,k, θ
)

(7)

where y′i is the clustering-based label and p(y′i | xs
i,k, θ) is

the prediction of the kth branch for the ith image. During
the training stage, a reliability-weighted classification loss
is adopted on the branch and ensemble predictions, which
can be formulated as:

Lce = −R (fi)

(
K∑

k=1

log p
(
y′
i | xt

i,k, θ
)
+ log p̄

(
y′
i | xt

i, θ
))

(8)
in which R(fi) is the reliability of the sample xt

i.
To aggregate diverse knowledge and reduce the negative

influence of noisy labels in an online training way, we take
the ensemble predictions in the temporally averaged model
as soft labels.

Given a target-domain sample and its augmented images,
the temporally average network encodes them into an en-
semble prediction p (y′i | xt

i, E[θ]). Then, the ensemble pre-
diction supervises the current running model by a soft cross-
entropy loss in a mutual learning way. It can be denoted as:

Lsce = −
Nt∑
i=1

K∑
k=1

p
(
y′i | xt

i, E[θ]
)
log p

(
y′i | xt

i,k, θ
)

(9)

where p (y′i | xt
i, E[θ]) is the dynamic ensemble predic-

tion in the temporally average model. During self-ensemble
learning, each branch in the running model can be corrected

in an online way by the ensemble soft labels. Since the data
augmentation is applied, different branches also learn dif-
ferent knowledge from data, which further improves the en-
semble prediction quality.

Contrastive learning A contrastive loss is adopted to en-
hance the feature discrimination. But different from the ex-
isting method (Ge et al. 2020), the cluster-level memory
bank is updated by using the ensemble feature in the tempo-
rally averaged model and the contrastive loss is applied on
the multi-branch features. Firstly, at the beginning of each
epoch, the memory bank can be initialized by:

cj =
1

|Ij |
∑

xt
i∈Ij

f(xt
i|E[θ]) (10)

where f(xt
i|E[θ]) is the ensemble feature in the temporally

average network, and Ij is the jth refined cluster where xi

is located.
During each iteration, the centroid cj can be updated by

the following equation:

cj ← mcj + (1−m) f(xt
i|E[θ]) (11)

where m is the momentum factor that updates centroids.
With centroids in the memory bank, the similarity between
samples and classes can be measure by dot product. There-
fore, the contrastive loss can be denoted as:

Lcon = − 1

Nt

Nt∑
i=1

K∑
k=1

log
exp

(
f(xt

i,k|θ) · c+
)
/τ∑J

j=1 exp
(
f(xt

i,k|θ), cj
)
/τ

(12)
where c+ is the class feature the sample xt

i belongs to, and
τ is the temperature parameter.

Finally, the total loss for the target domain can be formu-
lated as:

Ltarget = λceLce + λsceLsce + λconLcon (13)

where λce, λsce and λcon are weighting factors.

Experiments
Datasets and Evaluation Protocol
We evaluate our method on three large-scale Re-ID datasets:
Market-1501 (Zheng et al. 2015), DukeMTMC-ReID (Ris-
tani et al. 2016; Zheng, Zheng, and Yang 2017) and
MSMT17 (Wei et al. 2018).

Market-1501 (Zheng et al. 2015) consists of 1501 identi-
ties with 32,668 images, which was captured by 6 different
cameras. The training set contains 751 identities with 12,936
images. The test set includes 750 identities, where the query
set contains 3,368 images and the gallery set contains 19,732
images.

DukeMTMC-ReID (Ristani et al. 2016) is a sub-dataset
of DukeMTMC (Zheng, Zheng, and Yang 2017), which in-
cludes 36,411 images with 1812 identities. All images are
collected from 8 high-definition cameras. In addition, this
dataset contains 16,522 training images, 2,228 queries im-
ages, and 17,661 gallery images.
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Methods Reference DukeMTMC to Market1501 Market1501 to DukeMTMC
mAP R1 R5 R10 mAP R1 R5 R10

PUL (Fan et al. 2018) TOMM 2018 20.5 45.5 60.7 66.7 16.4 30.0 43.4 48.5
SPGAN+LMP (Deng et al. 2018) CVPR 2018 26.7 57.7 75.8 82.4 26.2 46.4 62.3 68.0

CamStyle (Zhong et al. 2018b) TIP 2018 27.4 58.8 78.2 84.3 25.1 48.4 62.5 68.9
ECN (Zhong et al. 2019) CVPR 2019 43.0 75.1 87.6 91.6 40.4 63.3 75.8 80.4
PDA-Net (Li et al. 2019) ICCV 2019 47.6 75.2 86.3 90.2 45.1 63.2 77.0 82.5

SSG (Fu et al. 2019) ICCV 2019 58.3 80.0 90.0 92.4 53.4 73.0 80.6 83.2
MMCL (Wang and Zhang 2020) CVPR 2020 60.4 84.4 92.8 95.0 51.4 72.4 82.9 85.0

ACT (Yang et al. 2020) AAAI 2020 60.6 80.5 - - 54.5 72.4 - -
ECN-GPP (Zhong et al. 2020b) TPAMI 2020 63.8 84.1 92.8 95.4 54.4 74.0 83.7 87.4
AD-Cluster (Zhai et al. 2020a) CVPR 2020 68.3 86.7 94.4 96.5 54.1 72.6 82.5 85.5
MMT (Ge, Chen, and Li 2020) ICLR 2020 71.2 87.7 94.9 96.9 65.1 78.0 88.8 92.5
MEB-Net (Zhai et al. 2020b) ECCV 2020 76.0 89.9 96.0 97.5 66.1 79.6 88.3 92.2

SpCL (Ge et al. 2020) NIPS 2020 77.5 89.7 96.1 97.6 68.8 82.9 90.1 92.5
Dual-Refinement (Dai et al. 2021) TIP 2021 78.0 90.9 96.4 97.7 67.7 82.1 90.1 92.5

UNRN (Zheng et al. 2021a) AAAI 2021 78.1 91.9 96.1 97.8 69.1 82.0 90.7 93.5
GLT (Zheng et al. 2021b) CVPR 2021 79.5 92.2 96.5 97.8 69.2 82.0 90.2 92.8

Ours this paper 83.1 93.2 96.8 98.0 72.3 83.9 91.7 93.6

Methods Reference Market-1501 to MSMT17 DukeMTMC-ReID to MSMT17
mAP R1 R5 R10 mAP R1 R5 R10

ECN (Zhong et al. 2019) CVPR 2019 10.2 30.2 41.5 46.8 8.5 25.3 36.3 42.1
SSG (Fu et al. 2019) ICCV 2019 13.3 32.2 - 51.2 13.2 31.6 - 49.6

ECN-GPP (Zhong et al. 2020b) TPAMI 2020 16.2 43.6 54.3 58.9 15.1 40.8 51.8 56.7
MMT (Ge, Chen, and Li 2020) ICLR 2020 23.3 50.1 63.9 69.8 22.9 49.2 63.1 68.8
JVTC+ (Li and Zhang 2020) ECCV 2020 25.1 48.6 65.3 68.2 27.5 52.9 70.5 75.9

SpCL (Ge et al. 2020) NeurIPS 2020 26.8 53.7 65.0 69.8 26.5 53.1 65.8 70.5
Dual-Refinement (Dai et al. 2021) TIP 2021 25.1 53.3 66.1 71.5 26.9 55.0 68.4 73.2

UNRN (Zheng et al. 2021a) AAAI 2021 25.3 52.4 64.7 69.7 26.2 54.9 67.3 70.6
GLT (Zheng et al. 2021b) CVPR 2021 26.5 56.6 67.5 72.0 27.7 59.5 70.1 74.2

Ours this paper 33.6 64.8 74.6 79.6 34.2 65.2 74.6 80.1

Table 1: Performance comparison of the proposed method and state-of-the-art methods for domain adaptation on DukeMTMC-
ReID, Market1501 and MSMT17 datasets.

MSMT17 (Wei et al. 2018) is a large-scale dataset, con-
taining 126,441 images of 4,101 identities. The train set con-
tains 1,041 identities and test set contains 3,060 identities.

Cumulative Matching Characteristic (CMC) and Mean
Average Precision (mAP) are used to evaluate the model. All
experiment results are under the single-query setting, and no
post-processing (Zhong et al. 2017) is applied.

Implementation Details
We use ResNet50 pre-trained on ImageNet(Deng et al.
2009) as our stem CNNs. We add dropblocks, ResBlock,
and Generalize-Mean pooling(GeM) after the 4th layer of
ResNet50, which compose the structure of branches. In ad-
dition to random erasing, flipping and cropping, we aug-
mented the images with different camera styles, which are
generated by the style transfer model. The number of K is
set to 3, and each image has three augmented samples in
each training batch. The batch size for source domain and
target domain are both set as 128 by sampling 32 identities
and 4 image per identity. We utilize the DBSCAN clustering
algorithm, and the Jaccard distance with k-reciprocal nearest
neighbor is used as the distance metric. The eps in DBSACN
is set to 0.6. SGD optimizer is adopted for model optimiza-

tion. The initial learning rate is 0.00035, and is divided by
10 at the 40th and 60th epoch, in a total 70 epochs. The reli-
ability threshold β is set to 0.6. the momentum factor α and
m in Eq.(4) and Eq.(11) are set to 0.999 and 0.2.

Comparison with State-of-the-arts
As shown in Table 1, Our method obtains the performance
of 83.1% on mAP and 93.2% on rank-1 when transferring
DukeMTMC-ReID to Market1501. RESL outperforms the
best memory-based method SPCL by 5.6% and 3.5% on
mAP and rank-1 accuracy. Moreover, the RESL method out-
performs MMT by 11.9% and 5.5% and MEB-Net by 6.1%
and 3.5% on mAP and rank-1, which both utilize multiple
models and mean net for mutual learning. For DukeMTMC-
ReID to Market-1501, our method also gains the best UDA
performance and outperforms the second method GLT by
3.6% and 1.0% on mAP and rank-1.

MSMT17 is a large dataset, consisting 126,441 im-
ages and 4,101 identities, which is a more difficult job.
Our method still gets satisfying results on this challeng-
ing dataset. As shown in Table 1, our method achieve
33.6% mAP and 64.8% rank-1 when transfer DukeMTMC
to MSMT17, which is 7.1% and 8.2% higher than GLT.
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Methods Duke to Market Market to Duke
mAP R1 mAP R1

Fully supervised 85.2 94.6 76.2 87.1
Direct Transfer 28.6 58.0 27.6 44.5

Baseline 69.1 87.7 61.2 75.9
TM+CT 79.0 91.7 69.2 81.9

TM+CT+WL 79.5 92.1 70.2 82.3
TM+CT+EL 81.3 92.5 70.6 83.1

TM+CT+RSS 82.1 92.8 71.2 83.3
Single Branch 80.7 92.6 71.0 82.6

All 83.1 93.2 72.3 83.9

Table 2: Ablation study on the effectiveness of components
in RESL method. CT: Contrastive loss; TM: Temporally av-
erage model; WL: Reliability weighted loss; EL: Ensemble
learning; RSS: Reliable Sample Selection; Single Branch:
only one branch feature is used when inferencing.

When considering DukeMTMC-ReID as the source dataset,
we get 34.2% and 65.2% on mAP and rank-1, which also
outperform other methods. The satisfying results on this
challenging dataset verify our method’s effectiveness.

Ablation Studies
In this section, we perform ablation experiments on different
components of our method to evaluate their effectiveness.

1) Comparisons with supervised learning: In Table 2,
we compare the performance of supervised learning, direct
transfer, baseline model, and RESL. The fully supervised
learning utilizes the ground-truth label to train the model
and thus get the best performance. When directly transfer the
model from Market-1501 to DukeMTMC-ReID, the perfor-
mance of mAP drops from 83.5% to 28.6%, which means
there is a large domain gap between the two datasets. The
baseline model utilizes only classification loss and triplet
loss. Our method improves the mAP from 69.1% to 83.1%
compared with the baseline. And even use a single branch
in the inference stage, our method can also achieve 80.7%
mAP and 92.6% rank-1, which is superior to most state-of-
the-art methods.

2) Effectiveness of self-ensemble learning: In Table 2, we
evaluate the effectiveness of self-ensemble, which uses an
ensemble-based soft CE loss to supervise the model learn-
ing. When adding the ensemble learning, the performance
outperforms the baseline+TM+CT by 1.2% on mAP and
1.0% on rank-1. This is because self-ensemble learning can
reduce the weight of unreliable samples and help the model
learn more useful information.

3) Effectiveness of the reliable sample selection: In Table
2, we evaluate the effectiveness of reliable sample selection
(RSS). With the reliable sample selection, our method fur-
ther improves the mAP and rank-1 by 2.6% mAP and 1.7%
rank-1 on the Duke to Market, and 2.0% and 1.4% on Mar-
ket to Duke. This shows that reliable sample selection can
further relieve the negative effect of the noisy pseudo label
in the target dataset and gain better performance.

4) Analysis the branch number K: K is the branch num-
ber in the RESL framework. As illustrated in Fig 3, we in-

Figure 3: Performance comparison with different reliability
threshold β and different branch number K.

Methods DukeMTMC-ReID to Market1501
R1(mAP) Params Mem

MMT 87.7(71.2) 23.51M 14,735M
MEB-Net 90.3(76.7) 23.51M 16,856M

ours(Single) 92.1(80.5) 23.51M -
ours 92.8(82.0) 32.94M 12,839M

Table 3: The computational complexity comparison. Mem
denotes the training memory when bs is 64.

vestigate the effect of different values of K by changing its
value from 1 to 5. And it can be observed that with the more
branch participating in, the performance gradually increas-
ing. But the performance stop growing when K is larger than
3. This is because more diverse knowledge and features can
be captured as the branch number increasing. On the other
hand, too many branches also can’t promote model training.

5) The impact of reliability threshold β: β is used to select
reliable samples for model training. As shown in Fig 3, we
can find that when β < 0.6 or β > 0.8, the performance de-
creases. This is because, with a small β, samples with noisy
pseudo label can not be found. But when β is too large, less
sample can be selected for training.

6) Computational complexity analysis : The quantitative
comparisons in Table 3 show our method requires less train-
ing memory and gains performance improvement under ac-
ceptable parameter growth. In addition, our single branch
achieves superior performance than other methods using the
same amount of parameters.

Conclusion
In this paper, we propose a Reliability Exploration with self-
Ensemble Learning (RESL) framework to handle the noisy
pseudo-label problem in UDA person ReID via both online
self-ensemble learning and offline reliable sample selection
way. First, a novel multiple branch scheme is proposed, and
its temporally average model is used as a teacher model,
where the ensemble predictions are treated as soft labels.
Second, the reliability estimation method utilizes the consis-
tency of different clusters’ results to select reliable samples.
These two techniques significantly alleviate the negative in-
fluence of noisy labels. And our method achieves superior
performance on benchmark datasets.
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