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Abstract

Binary networks are extremely efficient as they use only t-
wo symbols to define the network: {+1,−1}. One can make
the prior distribution of these symbols a design choice. The
recent IR-Net of Qin et al. argues that imposing a Bernoul-
li distribution with equal priors (equal bit ratios) over the
binary weights leads to maximum entropy and thus mini-
mizes information loss. However, prior work cannot precise-
ly control the binary weight distribution during training, and
therefore cannot guarantee maximum entropy. Here, we show
that quantizing using optimal transport can guarantee any
bit ratio, including equal ratios. We investigate experimen-
tally that equal bit ratios are indeed preferable and show that
our method leads to optimization benefits. We show that our
quantization method is effective when compared to state-of-
the-art binarization methods, even when using binary weight
pruning. Our code is available at https://github.com/liyun
qianggyn/Equal-Bits-BNN.

Introduction
Binary networks allow compact storage and swift computa-
tions by limiting the network weights to only two bit sym-
bols {−1,+1}. In this paper we investigate weights priors
before seeing any data: is there a reason to prefer predomi-
nantly positive bit weights? Or more negative ones? Or is e-
quality preferable? Successful recent work (Qin et al. 2020b)
argues that a good prior choice is to have an equal bit-ratio:
i.e. an equal number of +1 and −1 symbols in the network.
This is done by imposing an equal prior under the standard
Bernoulli distribution (Qin et al. 2020b; Peters and Welling
2018; Zhou et al. 2016). Equal bit distributions minimize in-
formation loss and thus maximizes entropy, showing benefit-
s across architectures and datasets (Qin et al. 2020b). How-
ever, current work cannot add a hard constraint of making
symbol priors exactly equal, and therefore cannot guarantee
maximum entropy.

Here, we propose a method to add a hard constraint to
binary weight distribution, offering precise control for any
desired bit ratio, including equal prior ratios. We add hard
constraints in the standard quantization setting (Bulat and
Tzimiropoulos 2019; Qin et al. 2020b; Rastegari et al. 2016)
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making use of real-valued latent weights that approximate
the binary weights. We quantize these real-valued weight-
s by aligning them to any desired prior Bernoulli distribu-
tion, which incorporates our preferred binary weight prior.
Our quantization uses optimal transport (Villani 2003) and
can guarantee any bit ratio. Our method makes it possible
to experimentally test the hypothesis in (Qin et al. 2020b)
that equal bit ratios are indeed preferable to other bit ratios.
We baptize our approach with equal bit ratios: bi-half . Fur-
thermore, we show that enforcing equal priors using our ap-
proach leads to optimization benefits by reducing the prob-
lem search-space and avoiding local minima.

We make the following contributions: (i) a binary network
optimization method based on optimal transport; (ii) exact
control over weight bit ratios; (iii) validation of the assump-
tion that equal bit ratios are preferable; (iv) optimization
benefits such as search-space reduction and good minima;
(v) favorable results compared to the state-of-the-art, and
can ensure half-half weight distribution even when pruning
is used.

Related Work
For a comprehensive survey on binary networks, see (Qin
et al. 2020a). In Table 1 we show the relation between our
proposed method and pioneering methods, that are repre-
sentatives of their peers, in terms of the binarization choic-
es made. The XNOR method (Table 1(a)) was the first to
propose binarizing latent real-valued weights using the sign
function (Rastegari et al. 2016). Rather than making each bi-
nary weight depend only on its associated real-value weight
or gradient value, IR-Net (Qin et al. 2020b) (Table 1(b)) is
a prototype method that uses filter-weight statistics to up-
date each individual binary weight. Here, we also use filter-
weight statistics to update the binary weights, however sim-
ilar to (Helwegen et al. 2019) Table 1(d)) we do not rely
on the sign function for binarization, but instead use binary
weight flips. This is a natural choice, as flipping the sign of a
binary weight is the only operation one can apply to binary
weights.

Sign versus Bit Flips
The front-runners of binary networks are BinaryConnec-
t (Courbariaux, Bengio, and David 2015) and XNOR (Raste-
gari et al. 2016) and rely on auxiliary real weights and
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a© Sign, no filter statistics b© Sign, filter statistics c© Flip, filter statistics d© Flip, no filter statistics
(Rastegari et al. 2016) (Qin et al. 2020b) Our bi-half (Helwegen et al. 2019)

InitializeGradient g; Gradient g; Gradient g; Latent weight w; Gradient g;
Latent weight w; Latent weight w; Threshold dependent on w; Predefined threshold τ ;

Binarize b← sign(w) b← sign
(

w−avg(w)
std(w−avg(w))

)
b← flip(b), if

{
rank(w) < D

2 and rank(w − αg) ≥ D
2

rank(w) ≥ D
2 and rank(w − αg) < D

2

b← flip(b), if
{
τ < |g|, and
sign(g) = sign(b)

Table 1: Optimization perspectives. (a) Classical binarization methods tie each binary weight b to an associated real-valued
latent variable w, and quantize each weight by only considering its associated real-valued by using the sign function. (b) Rather
than updating the weights independent of each other, recent work uses filter-weight statistics when updating the binary weights.
(c) Our proposed optimization method does not focus on using the sign function, but rather flips the binary weights based on
the distribution of the real weights, thus the binary weight updates depend on the statistics of the other weights through the rank
of w. (d) Recent work moves away from using the sign of the latent variables, and instead trains the binary network with bit
sign flips, however they still consider independent weight updates.

the sign function to define binary weights. These work-
s are subsequently extended with focus on the scaling fac-
tors in XNOR++ (Bulat and Tzimiropoulos 2019) and BN-
N+ (Darabi et al. 2019), while HWGQ (Li et al. 2017) uses
the sign function recursively for binarization. Bi-Real (Liu
et al. 2018) also uses the sign function for binarization and
analyzes better approximations of the gradient of the sign
function. From a different perspective, recent work tries to
sidestep having to approximate the gradient of the sign func-
tion, and uses bit flips to train binary networks (Helwegen
et al. 2019). The sign of the binary weights can be flipped
based on searchable (Yang et al. 2020) or learnable thresh-
olds (Liu et al. 2020). Here, we also rely on bit flips based
on a dynamic thresholding of the real weights, entailed by
our optimal transport optimization strategy.

Using Filter Statistics or Not
Commonly, binarization methods define each binary weight
update by considering only its associated value in the real-
valued latent weights (Bulat and Tzimiropoulos 2019; Li
et al. 2017; Rastegari et al. 2016; Liu et al. 2018) or in
the gradient vector (Helwegen et al. 2019). However, bina-
ry weights can also be updated using explicit statistics of
the other weights in the filter (Lin, Zhao, and Pan 2017)
or implicitly learned through a function (Han et al. 2020).
The real-valued filter statistics are used in IR-Net (Qin et al.
2020b) to enforce a Bernoulli distribution with equal priors.
In hashing, (Li and van Gemert 2021) designed a parameter-
free coding layer to maximize hash channel capacity by
shifting the network output with median. Similarly, our opti-
mal transport optimization leads to ranking the real weights,
and therefore making use of the statistics of the real-weights
in each filter.

Network Pruning
Pruning has been shown to improve the efficiency of deep
networks (Frankle et al. 2020; Huang et al. 2018; Lin et al.
2017; Xiao, Wang, and Rajasekaran 2019; Ye et al. 2020).
However, the reason why pruning can bring improvements
remains unclear in real-valued networks. It is commonly be-
lieved (Evci et al. 2020; Frankle and Carbin 2020; Malach
et al. 2020; Zhou et al. 2019) that finding the “important”

weight values is crucial for retraining a small pruned mod-
el. Specifically, the “important” weight values are inherit-
ed (Han, Mao, and Dally 2016) or re-winded (Frankle and
Carbin 2020) from a large trained model. In contrast, (Liu
et al. 2019) claims that the selected important weights are
typically not useful for the small pruned model, while the
pruned architecture itself is more relevant. The lottery-ticket
idea has recently been applied to binary networks (Diffend-
erfer and Kailkhura 2021). Here, we show that having equal
+1 and −1 ratios is also optimal when the networks rely
on pruning and that our optimal transport optimization can
easily be adapted to work with methods using pruning.

Binarizing with Optimal Transport
Binary Weights
We define a binary network where the weights B take binary
values {1,−1}D. The binary weights B follow a Bernoulli
distribution B ∼ Be(ppos), describing the probabilities of
individual binary values b ∈ {−1, 1} in terms of the hyper-
parameters ppos and pneg:

p(b) = Be(b | ppos) =

{
ppos if b = +1
pneg = 1− ppos, if b = −1

(1)
To be consistent with previous work, we follow XNOR-
Net (Rastegari et al. 2016) and apply the binary optimization
per individual filter.

Because the matrix B is discrete, we follow (Courbariaux,
Bengio, and David 2015; Rastegari et al. 2016) by using
real-valued latent weights W to aid the training of discrete
values, where each binary weight in B has an associated
real-valued weight in W. In the forward pass we quantize
the real-valued weights W to estimate the matrix B. Then,
we use the estimated matrix B to compute the loss, and
in the backward pass we update the associated real-valued
weights W.

Optimal Transport Optimization
The optimization aligns the real-valued weight distribution
W with the prior Bernoulli distribution in Eq. (1) and quan-
tizes the real-valued weights W to B.
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The empirical distribution Pw of the real-valued variable
W ∈ RD and the empirical distribution Pb for the discrete
variable B can be written as:

Pw =
D∑
i=1

piδwi , Pb =
2∑
j=1

qjδbj , (2)

where δx is the Dirac function at location x. The pi and qj
are the probability mass associated to the corresponding dis-
tribution locations wi and bj , where Pb has only 2 possible
locations in the distribution space {−1, 1}.

To align Pw with the Bernoulli prior Pb in Eq. (1) we use
optimal transport (OT) (Villani 2003) which minimizes the
cost of moving the starting distribution Pw to the target dis-
tribution Pb. Because Pw and Pb are only accessible through
a finite set of values, the corresponding optimal transport
cost is:

π0 = min
π∈Π(Pw,Pb)

〈π, C〉F , (3)

where Π(Pw,Pb) is the space of the joint probability with
marginals Pw and Pb, and π is the general probabilistic cou-
pling that indicates how much mass is transported to push
distribution Pw towards the distribution Pb. The 〈., .〉F de-
notes the Frobenius dot product, and C ≥ 0 is the cost
function matrix whose element C(wi, bj) denotes the cost of
moving a probability mass from location wi to location bj in
distribution space. When the cost is defined as a distance, the
OT becomes the Wasserstein distance. We minimize the 1-
Wasserstein distance between Pw and Pb. This minimization
has an elegant closed-form solution based on simply sorting.
For a continuous-valued weights vector W ∈ RD, we first
sort the elements of W, and then assign the top pposD el-
ements to +1, and the bottom (1 − ppos)D portion of the
elements to −1:

B = π0 (W) =

{
+1, top pposD of sorted W

−1, bottom (1− ppos)D of sorted W
(4)

Rather than using the sign function to define the binariza-
tion, we flip the binary weights based on the distribution of
W. Thus the flipping of a binary weight depends on the dis-
tribution of the other binary weights through W, which is
optimized to be as close as possible to B.

When applying our method in combination with pruning
as in (Diffenderfer and Kailkhura 2021), we first mask the
binary weights B′ = M � B with a mask M ∈ {0, 1}D.
This leads to a certain percentage of the weights being
pruned. Subsequently, we apply the Eq. (4) to the remain-
ing non-pruned weights, where D in Eq. (4) become the L1

norm of the mask, |M|.

Bi-half: Explicitly Controlling the Bit Ratio
Our optimal transport optimization allows us to enforce a
hard constraint on precise bit ratios by varying the ppos val-
ue. Therefore, we can test a range of prior binary weight
distributions.

Following (Qin et al. 2020b), a good prior over the bi-
nary weights is one maximizing the entropy. Using optimal

transport, we maximize the entropy of the binary weights by
setting the bit ratio to half in Eq. (4):

p∗pos = argmaxpposH(B ∼ Be(ppos)) =
1

2
, (5)

where H(·) denotes the entropy of the binary weights B.
We dub this approach bi-half . Unlike previous work (Qin
et al. 2020b), we can guarantee equal symbol distribution-
s and therefore maximum entropy throughout the complete
training procedure.
Initialization and scaling factor. We initialize the real-
valued weights using Kaiming normal (He et al. 2015). The
binary weights are initialized to be equally distributed per
filter according to Eq. (5). To circumvent exploding gradi-
ents, we use one scaling factor α per layer for the binary
weights to keep the activation variance in the forward pass
close to 1. Based on the ReLU variance analysis in (He et al.
2015) it holds that 1

2D ·V ar(αB) = 1, whereD is the num-
ber of connections and B are our binary weights. B is reg-
ularized to a bi-half distribution, thus V ar(B) = 1, which
gives α =

√
2/D.

To better clarify, for an L-layer network with input data
y1 standardized to V ar[y1] = 1, where the variance of each
binary layer l is V ar[Bl] = 1, and Dl is the number of con-
nections in that layer: i) Without the scaling, the output vari-
ance is V ar[yL] = V ar[y1]

∏L
l=2

Dl

2 V ar[Bl] =
∏L
l=2

Dl

2 .
Typically Dl is large, leading to exploding gradients; ii)
With the scaling, we scale Bl by α =

√
2/Dl, leading to

V ar[yL] = V ar[y1]
∏L
l=2

Dl

2 V ar(αBl) = 1 which stabi-
lizes learning.

Experiments
Datasets and Implementation Details
We evaluate on Cifar-10, Cifar-100 (Krizhevsky and Hin-
ton 2009) and ImageNet (Deng et al. 2009), for a num-
ber of network architectures. Following (Frankle and Carbin
2020; Ramanujan et al. 2020) we evaluate 4 shallow C-
NNs: Conv2, Conv4, Conv6, and Conv8 with 2/4/6/8 con-
volutional layers. We train the shallow models on Cifar-10
for 100 epochs, with weight decay 1e−4, momentum 0.9,
batch size 128, and initial learning rate 0.1 using a cosine
learning rate decay (Loshchilov and Hutter 2017). Follow-
ing (Qin et al. 2020b) we also evaluate their ResNet-20 ar-
chitecture and settings on Cifar-10. On Cifar-100, we evalu-
ate our method on 5 different models including VGG16 (Si-
monyan and Zisserman 2015), ResNet18 (He et al. 2016),
ResNet34 (He et al. 2016), InceptionV3 (Szegedy et al.
2016), ShuffleNet (Zhang et al. 2018). We train the Cifar-
100 models for 350 epochs using SGD with weight decay
5e−4, momentum 0.9, batch size 128, and initial learning
rate 0.1 divided by 10 at epochs 150, 250 and 320. For Im-
ageNet we use ResNet-18 and ResNet-34 trained for 100
epochs using SGD with momentum 0.9, weight decay 1e−4,
and batch size 256. Following (Liu et al. 2018; Qin et al.
2020b), the initial learning rate is set as 0.1 and we divide it
by 10 at epochs 30, 60, 90. All our models are trained from
scratch without any pre-training. For the shallow network-
s we apply our method on all layers, while for the rest we
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(a) Binary weight entropy on Conv2. (b) Activation entropy on ResNet-18.

Figure 1: Hypothesis: bi-half maximizes the entropy. Entropy of binary weights and activations. We compare our bi-half method
to sign (Rastegari et al. 2016) and IR-Net (Qin et al. 2020b). (a) Entropy of the binary weights during training for Conv2 on
Cifar10. (b) Entropy of the network activations for ResNet-18 on Cifar100. Our bi-half model can guarantee maximum entropy
during training for the binary weight distribution and it is able to better maximize the entropy of the activations.

follow (Liu et al. 2018; Qin et al. 2020b), and apply it on
all convolutional and fully-connected layers except the first,
last and the downsampling layers.

Hypothesis: Bi-half Maximizes the Entropy

Here we test whether our proposed bi-half model can in-
deed guarantee maximum entropy and therefore an exactly
equal ratio of the −1 and +1 symbols. Fig. 2 shows the bit
flips performed in our proposed bi-half method during train-
ing when compared to two baselines: sign (Rastegari et al.
2016) and IR-Net (Qin et al. 2020b). We train a Conv2 net-
work on Cifar-10 and plot the flips of binary weights in a sin-
gle binary weight filter during training. The binary weights
are initialized to be equal distributed (half of the weight-
s positive and the other half negative). The classical sign
method (Rastegari et al. 2016) in Fig. 2(c) binarizes each
weight independent of the other weights, therefore during
training the flips for (+1 to −1) and (−1 to +1) are uneven.
The recent IR-Net (Qin et al. 2020b) in Fig. 2(b) balances
the latent weights by using their statistics to obtain evenly
distributed binary weight values. However, it can not guar-
antee evenly distributed binary weights throughout training.
Our bi-half model in Fig. 2(c) updates the binary weight
based on the statistics of the other weights. For our method
the binary weights are evenly flipped during training, offer-
ing exact control of bit weight ratios.

Fig. 1(a) shows the binary weights entropy changes dur-
ing training on Conv2 when compared to sign (Rastegar-
i et al. 2016) and IR-Net (Qin et al. 2020b). IR-Net aims
to maximize entropy by subtracting the mean value of the
weights, yet, this is not exact. In contrast, we maximize
the information entropy by precisely controlling the bina-
ry weight distribution. In Fig. 1(b) we show the entropy of
the binary activations. Adjusting the distribution of bina-
ry weights retains the information in the binary activation.
For our bi-half method, the binary activation of each chan-
nel is close to the maximum information entropy under the
Bernoulli distribution.

(a) Sign has uneven flips without balancing the latent weights

(b) IR-Net has uneven flips with balancing the latent weights

(c) Bi-half has even flips with precisely controlling the flipping

Figure 2: Hypothesis: bi-half maximizes the entropy. Bit
flips during training. We compare the bit flips during train-
ing in our bi-half with the sign (Rastegari et al. 2016) and
IR-Net (Qin et al. 2020b) on the Conv2 network on Cifar-
10. The x-axis shows the training iterations. Left: Bit flips
during training to +1 (dark blue) or to -1 (cyan). Right: Ac-
cumulated bit flips over the training iterations, as well as the
difference between the bit flips from (+1 to−1) and the ones
from (−1 to +1). In contrast to Sign and IR-Net, our Bi-half
method can guarantee an equal bit ratio.

Empirical Analysis
(a) Effect of hyper-parameters. In Fig. 3 we study the eff-
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(a) Latent weights magnitude (b) Gradient magnitude (c) flips with constant lr. (d) flips with cosine lr. (e) accuracy

Figure 3: Empirical analysis (a): Effect of hyper-parameters. We show the effect of weight decay and learning rate decay on
binary weights flips using the Conv2 network on Cifar-10. Carefully tuning these hyper-parameters is important for adequately
training the binary networks.

Figure 4: Empirical analysis (c): Optimization benefits. We train our bi-half model 100 times on Cifar-10 and plot the distribu-
tion of the losses and accuracies over the 100 repetitions. We compare our results using optimal transport to the results using
the standard sign function. On average our bi-half model tends to arrive at better losses and accuracies than the baseline.

Figure 5: Empirical analysis (b): Which bit-ratios are pre-
ferred? We varying the bit-ratios on Cifar-10 and Cifar-100
using Conv2 the choice of the priorppos under the Bernoulli
distribution. The x-axis is the probability of +1 connection-
s denoted by ppos in the Bernoulli prior distribution, while
the y-axis denotes the top-1 accuracy values. Results are in
agreement with the hypothesis of (Qin et al. 2020b) that e-
qual priors as imposed in our bi-half model are preferable.

ectiveness of the commonly used training techniques of
varying the weight decay and learning rate decay, when
training the Conv2 network on Cifar-10. Fig. 3(a) shows that
using a higher weight decay reduces the magnitude of latent
weights during training and therefore the magnitude of the
cut-off point (threshold) between the positive and negative
values. Fig. 3(b) compares the gradient magnitude of two d-
ifferent learning rate (lr) schedules: “constant lr” and “cosine
lr”. The magnitude of the gradients reduces during training
when using the cosine learning rate. In Fig. 3(c) we find that
increasing the weight decay for binary network with a con-
stant learning rate schedule, increases binary weights flips.

Fig. 3(d) shows that decaying the learning rate when using a
cosine learning rate schedule gradually decreases the num-
ber of flipped weights. Fig. 3(e) shows that the choice of
weight decay and learning rate decay affect each other. Our
bi-half method uses the rank of latent weights to flip the bi-
nary weights. A proper tuned hyper-parameter of weight de-
cay and learning rate decay will affect the flipping threshold.
Therefore in the experiments, we carefully tune the hyper-
parameters of weight decay and learning rate decay to build
a competitive baseline.

(b) Which bit-ratio is preferred? In Fig. 5, we evaluate the
choice of the prior ppos in the Bernoulli distribution for Con-
v2 on Cifar-10 and Cifar-100. By varying the bit-ratio, the
best performance is consistently obtained when the negative
and positive symbols have equal priors as in the bi-half mod-
el. Indeed, as suggested in (Qin et al. 2020b), when there is
no other a-priori reason to select a different ppos, having e-
qual bit ratios is a good choice.

(c) Optimization benefits with bi-half. The uniform prior
over the −1 and +1 under the Bernoulli distribution regu-
larizes the problem space, leading to only a subset of possi-
ble weight combinations available during optimization. We
illustrate this intuitively on a 2D example for a simple fully-
connected neural network with one input layer, one hidden
layer, and one output layer in a two-class classification set-
ting. We consider a 2D binary input vector x = [x1, x2]ᵀ,
and define the network as: σ(w2

ᵀσ(w1
ᵀx + b1)), where

σ(·) is a sigmoid nonlinearity, w1 is a [2× 3] binary weight
matrix, b1 is [3 × 1] binary bias vector, and w2 is a [3 × 1]
binary vector. We group all 12 parameters as a vector B. We
enumerate all possible binary weight combinations in B, i.e.
212 = 4096, and plot all decision boundaries that separate
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Weight combinations: 100% (4096). Weight combinations: 22.5% (924).

Unique solutions: 100% (76). Unique solutions: 86.8% (66). (c) Solution space

(a) Full binary network (b) Bi-half network vs bit-ratios

Figure 6: Empirical analysis (c): Optimization benefits. Bi-half regularization: 2D example for a 12-parameter fully connected
binary network σ(w2

ᵀσ(w1
ᵀx + b1)), where σ(·) is a sigmoid nonlinearity. Weights are in {−1, 1}. (a) Enumeration of all

decision boundaries for 12 binary parameters (4096 = 212 combinations). (b) Weight combinations and unique solutions when
using our bi-half constraint. (c) The weight combinations and unique decision boundaries for various bit-ratios. When the
number of negative binary weights is 6 on the x-axis, we have equal bit-ratios, which is the optimal ratio. Using the bi-half
works as a regularization, reducing the search-space while retaining the majority of the solutions.

Figure 7: Architecture variations: Different architectures on Cifar-100. We evaluate on Cifar-100 over 5 different architectures:
VGG16 (Simonyan and Zisserman 2015), ResNet18 (He et al. 2016), ResNet34 (He et al. 2016), InceptionV3 (Szegedy et al.
2016), ShuffleNet (Zhang et al. 2018). We compare sign (Rastegari et al. 2016), IR-Net (Qin et al. 2020b) and our bi-half .
The 1/32 and 1/1 indicate the bit-width for weights and for activations, where 1/1 means we quantize both the weights and the
activations to binary code values. Our method achieves competitive accuracy across different network architectures.

input space into two classes as shown in Fig. 6(a). All possi-
ble 4096 binary weights combinations offer only 76 unique
decision boundaries. In Fig. 6.(b) the Bernoulli distribution
over the weights with equal prior (bi-half ) regularizes the
problem space: it reduces the weight combinations to 924,
while retaining 66 unique solutions, therefore the ratio of the
solutions to the complete search spaces is increased nearly 4
times. Fig. 6.(c) shows in a half-log plot how the numbers of
weight combinations and unique network solutions change
with varying bit-ratios. Equal bit ratios is optimal.

In Fig. 4 we train the Conv2 networks 100 times on Cifar-
10 and plot the distribution of the training and test losses
and accuracies. We plot these results when using the bi-half
model optimization with optimal transport and by training
the network using the standard sign function. The figure
shows the bi-half method consistently finds better solution-
s with lower training and test losses and higher training and

test accuracy. To better visualize this trend we sort the values
of the losses for our bi-half and the baseline sign method
over the 100 repetitions and plots them next to each other.
On average the bi-half finds better optima.

Architecture Variations
In Table 2 we compare the Sign (Rastegari et al. 2016), IR-
Net (Qin et al. 2020b) and our bi-half on four shallow Con-
v2/4/6/8 networks on Cifar-10 (averaged over 5 trials). As
the networks become deeper, the proposed bi-half method
consistently outperforms the other methods.

In Fig. 7, we further evaluate our method on Cifar-100
over 5 different architectures: VGG16 (Simonyan and Zis-
serman 2015), ResNet18 (He et al. 2016), ResNet34 (He
et al. 2016), InceptionV3 (Szegedy et al. 2016), Shuf-
fleNet (Zhang et al. 2018). Our method is slightly more ac-
curate than the other methods, especially on the VGG16 ar-
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Conv2 Conv4 Conv6 Conv8 ResNet-18

Figure 8: Comparison with state-of-the-art (b): Pruned networks. Test accuracy of Conv2/4/6/8 on CIFAR-10, and ResNet-18
on CIFAR-100 when varying the % pruned weights. We compare with the MPT baseline (Diffenderfer and Kailkhura 2021)
using binary weight masking and the sign function. Having equal +1 and −1 ratios is also optimal when the networks rely on
pruning and that our optimal transport optimization can easily be adapted to work in combination with pruning.

Method Conv2 Conv4 Conv6 Conv8

Sign 77.86±0.69 86.49±0.24 88.51±0.35 89.17±0.26
IR-Net 78.32±0.25 87.20±0.26 89.61±0.11 90.06±0.06
Ours 79.25±0.28 87.68±0.32 89.92±0.19 90.40±0.17

Table 2: Accuracy comparison of sign (Rastegari et al.
2016), IR-Net (Qin et al. 2020b) and ours on Conv2/4/6/8
networks using Cifar-10, over 5 repetitions. As the depth of
the network increases, the accuracy of our method increases.

chitecture, it never performs worse.

Comparison with State-of-the-art
(a) Comparison on ImageNet. For the large-scale Im-
ageNet dataset we evaluate a ResNet-18 and ResNet-34
backbone (He et al. 2016). Table 3 shows a number
of state-of-the-art quantization methods over ResNet-18
and ResNet-34, including: ABC-Net (Lin, Zhao, and Pan
2017), XNOR (Rastegari et al. 2016), BNN+ (Darabi et al.
2019), Bi-Real (Liu et al. 2018), RBNN (Lin et al. 2020),
XNOR++ (Bulat and Tzimiropoulos 2019), IR-Net (Qin
et al. 2020b), and Real2binary (Martinez et al. 2020). Of all
the methods, RBNN is the closest in accuracy to our bi-half
model. This is because RBNN relies on the sign function
but draws inspiration from hashing, and adds an activation-
aware loss to change the distribution of the activations be-
fore binarization. On the other hand, our method uses the s-
tandard classification loss but outperforms most other meth-
ods by a large margin on both ResNet-18 and ResNet-34.
(b) Comparison on pruned networks. In Fig. 8 we show
the effect of our bi-half on pruned models. Following the
MPT method (Diffenderfer and Kailkhura 2021) we learn
a mask for the binary weights to prune them. However, in
our bi-half approach for pruning we optimize using opti-
mal transport for equal bit ratios in the remaining unpruned
weights. We train shallow Conv2/4/6/8 networks on CIFAR-
10, and ResNet-18 on CIFAR-100 while varying the per-
centage of pruned weights. Each curve is the average over
five trials. Pruning consistently finds subnetworks that out-
perform the full binary network. Our bi-half method with
optimal transport retains the information entropy for the
pruned subnetworks, and consistently outperforms the MPT

Backbone Method Bit-width Top-1(%) Top-5(%)
(W/A)

ResNet-18

FP 32/32 69.3 89.2
ABC-Net 1/1 42.7 67.6
XNOR 1/1 51.2 73.2
BNN+ 1/1 53.0 72.6
Least-squares 1/1 58.9 81.4
XNOR++ 1/1 57.1 79.9
IR-Net 1/1 58.1 80.0
RBNN 1/1 59.9 81.9
Sign (Baseline) 1/1 59.98 82.47
Bi-half (ours) 1/1 60.40 82.86

ResNet-34

FP 32/32 73.3 91.3
ABC-Net 1/1 52.4 76.5
Bi-Real 1/1 62.2 83.9
IR-Net 1/1 62.9 84.1
RBNN 1/1 63.1 84.4
bi-half (ours) 1/1 64.17 85.36

Table 3: Comparison with state-of-the-art (a): ImageNet re-
sults. We show Top-1 and Top-5 accuracy on ImageNet for a
number of state-of-the-art binary networks. Sign is our base-
line by carefully tuning the hyper-parameters. Our proposes
bi-half model consistently outperforms the other binariza-
tion methods on this large-scale classification task.

baseline using the sign function for binarization.

Conclusion
We focus on binary networks for their well-recognized effi-
ciency and memory benefits. To that end, we propose a novel
method that optimizes the weight binarization by aligning a
real-valued proxy weight distributions with an idealized dis-
tribution using optimal transport. This optimization allows
to test which prior bit ratio is preferred in a binary network,
and we show that the equal bit ratios, as advertised by (Qin
et al. 2020b), indeed work better. We confirm that our opti-
mal transport binarization has optimization benefits such as:
reducing the search space and leading to better local opti-
ma. Finally, we demonstrate competitive performance when
compared to state-of-the-art, and improved accuracy on 3 d-
ifferent datasets and various architectures. We additionally
show accuracy gains with pruning techniques.
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