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Abstract

Orthogonality regularization has proven effective in improv-
ing the precision, convergence speed and the training sta-
bility of CNNs. Here, we propose a novel Orthogonal Dic-
tionary Convolution Strategy (ODCS) on CNNs to improve
orthogonality effect by optimizing the network architecture
and changing the regularized object. Specifically, we remove
the nonlinear layer in typical convolution block “Conv(BN)
+ Nonlinear + Pointwise Conv(BN)”, and only impose or-
thogonal regularization on the front Conv. The structure,
“Conv(BN) + Pointwise Conv(BN)”, is then equivalent to a
pair of dictionary and encoding, defined in sparse dictionary
learning. Thanks to the exact and efficient representation of
signal with dictionaries in low-dimensional projections, our
strategy could reduce the superfluous information in dictio-
nary Conv kernels. Meanwhile, the proposed strategy relieves
the too strict orthogonality regularization in training, which
makes hyper-parameters tuning of model to be more flexi-
ble. In addition, our ODCS can modify the state-of-the-art
models easily without any extra consumption in inference
phase. We evaluate it on a variety of CNNs in small-scale (CI-
FAR), large-scale (ImageNet) and fine-grained (CUB-200-
2011) image classification tasks, respectively. The experi-
mental results show that our method achieve a stable and su-
perior improvement.

Introduction
With the development of deep learning research, convo-
lutional neural networks (CNNs) (Krizhevsky, Sutskever,
and Hinton 2012; Simonyan and Zisserman 2015; He et al.
2016) have been increasingly demonstrated to offer effi-
cient feature extraction capabilities. However, the boom-
ing parameters and complex structures make it easy to
incur vanishing/exploding gradients (Bengio, Simard, and
Frasconi 1994; Glorot and Bengio 2010), especially for
ultra-deep models. To constrain these huge parameters in
high-dimension spaces, many solutions have been invented,
including parameter initialization (Saxe, McClelland, and
Ganguli 2014), normalization of internal activation (Ioffe
and Szegedy 2015), second-order optimization (Dauphin
et al. 2014), et al.
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Among these methods, orthogonality regularization (Xie,
Xiong, and Pu 2017) is a commonly used training technique
to be applied on the linear transformations on hidden layers
of CNNs. By forcing filters in convolution (Conv) kernel to
be orthogonal from each other, orthogonality regularization
stabilizes the distribution of each hidden layer’s activation,
reduces the phenomenon of gradient vanishing or exploding
and accelerates the convergence speed (Zhou, Do, and Ko-
vacevic 2006). More recently, a lot of variations (Wang et al.
2020; Yang et al. 2020; Sarhan et al. 2020; Liu et al. 2019)
that further reduce the correlation of each kernel are succes-
sively presented, thus improving the feature expressiveness,
robustness, and the performances in tasks.

Inspired by the success of sparse dictionary learn-
ing (Mailhé et al. 2008; Yaghoobi, Blumensath, and Davies
2008; Mairal et al. 2009; Ramı́rez, Sprechmann, and Sapiro
2010), we take notice of the similarity between Conv block
and sparse coding methods. We observe that Convs play a
similar role as dictionaries that save large prior informa-
tion. Since reducing correlation between filters in kernel has
proven to be benefit for performance (Rabouy, Paris, and
Glotin 2015), we further speculate that it is better to impose
orthogonality regularization on dictionary layers than on all
of them to maximize the effect of orthogonality. Therefore,
we propose our Orthogonal Dictionary Convolution Strat-
egy (ODCS) that enhances the effect of orthogonality by
optimizing the structure of CNNs. As shown in Figure 1,
given a typical Conv block structure, our ODCS has three
main steps: (1) Create or locate the specific structure of
“Conv(BN) + Nonlinear + Pointwise Conv(BN)” in net-
works. (2) Remove nonlinear layer between Convs. (3) Only
regularize the kernel of front Conv by orthogonality regular-
ization without constraint on norm of kernels, forming the
pair of dictionary and encoding matrix kernel, to improve
the CNNs’ performance.

Our proposed strategy enhances the ability of extracting
various features, and thereby fully utilizing the model ca-
pacity. Due to the removal of nonlinear function, two Convs
can be fused as an extensive linear transformer or a stronger
Conv. In terms of sparse dictionary learning, the former is
a dictionary matrix and the latter is actually an encoding
matrix. Imposing orthogonality regularization on dictionary
Conv can reduce redundancy of kernels in whole structure,
thus producing gain in fusion of models with orthogonal rep-
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Figure 1: We propose a novel Orthogonal Dictionary Convolution Strategy (ODCS). The strategy recommends a method to
optimize the structure for orthogonality regularization to maximize the effect of it. There are three main steps: (1) Locate Conv
block, “Conv(BN) + Nonlinear + Pointwise Conv(BN)”. (2) Remove nonlinear layer between Convs. (3) Regularize only on
the front Conv. Convs is equivalent to the product of dictionary matrix and encoding matrix. Our strategy can be applied on
state-of-the-art models easily without any extra consumption in inference phase.

resentations (Rabouy, Paris, and Glotin 2015). By imposing
the regularization selectively and releasing the constraint on
norm of kernels in traditional regularization, our ODCS re-
lieves the negative effect of too strict orthogonality (Bansal,
Chen, and Wang 2018). Our method could save the efforts
for searching the optimal hyper-parameter on the weight of
regularization during training. The experiments demonstrate
that our ODCS yields superior performance compared to
state-of-the-art orthogonality strategies.

In summary, our contributions could be summarized as:

• We propose a novel Orthogonal Dictionary Convolution
Strategy (ODCS) that only imposes orthogonality regu-
larization on dictionary Convs instead of all layers, and
the regularization is without norm constraint on kernels.

• The presented strategy enhances the diversity of dictio-
nary Conv without extra cost. Moreover, our strategy
could easily be applied on the classical CNN architec-
tures to improve the performance.

• The method relieves negative effect of too strict regular-
ization. This makes it easier to tune the hyper-parameter
setting on regularization, thus facilitating its application
on different datasets and networks.

• Extensive experimental results show that the proposed
ODCS consistently improves the classification accu-
racy in small-scale (CIFAR), large-scale (ImageNet-
2012) and fine-grained (CUB-200-2011) image recogni-
tion compared to traditional methods.

Related Works
Orthogonality was used in the initialization method of CNNs
early. (Saxe, McClelland, and Ganguli 2014; Mishkin and
Matas 2016) exhibited random orthogonal initial conditions
on network weights. The initial conditions lead to efficient
propagation of gradients even in deep nonlinear networks.
The initialization method allows learning of very deep net-
works via standard SGD to converge fast and shows the su-
perior performance than standard initialization.

Many works focus on exploring loss function for orthog-
onality regularization, and it is more widely used to sta-
bilize training. (Rodrı́guez et al. 2017) pointed out that
feature decorrelation is an alternative for using the full ca-
pacity of the models. They imposed constraints in feature
decorrelation to eliminate interference between negatively
correlated feature weights to reduce over-fitting efficiently.
Works (Xie, Xiong, and Pu 2017) proposed a variant of reg-
ularization that utilizes orthogonality among different filter
banks without any shortcuts/identity mappings from scratch.
Other works (Huang et al. 2018; Bansal, Chen, and Wang
2018) explored a variety of orthogonality regularization loss,
and they proposed Spectral Restricted Isometry Property
Regularization (SRIP) has better performance improvement.
They verified the performance of each regularization to al-
leviate the gradient vanishing or exploding phenomenon in
training networks. In recent works, (Wang et al. 2020) did
not use the common kernel orthogonality. They proved that
the orthogonality of the kernel cannot guarantee the orthog-
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onality of the convolutional layer. Even if the kernel ma-
trix satisfies the orthogonality, the Conv itself is still non-
uniform and changeable. They imposed orthogonality be-
tween filters based on the doubly block-Toeplitz matrix rep-
resentation of the convolutional kernel.

Many works explored other training methods to gain
orthogonality of layers equivalently. Works (Harandi and
Fernando 2016; Ozay and Okatani 2016; Huang et al.
2018) considered Stiefel manifold-based hard constraints
of weights. They proposed several orthogonal weight nor-
malization methods to solve optimization over multiple de-
pendent Stiefel manifolds. MHH-based methods (Liu et al.
2018; Lin et al. 2020) are inspired by the Thomson problem
in physics and define the hyperspherical energy to character-
ize the diversity on a unit hypersphere and shows significant
and consistent improvement in supervised learning tasks.
Since the orthogonal regularization is too limiting (Miyato
et al. 2018), (Brock, Donahue, and Simonyan 2019) ex-
plored several variants designed to relax the constraint. They
minimized the pairwise cosine similarity between filters by
removing the diagonal terms from the regularization and
freeing the norm.

On the other side, the sparse dictionary learning (Mailhé
et al. 2008; Yaghoobi, Blumensath, and Davies 2008) has
been found useful on diversity-based regularization in CNN
training. Early studies in sparse coding (Mairal et al. 2009;
Ramı́rez, Sprechmann, and Sapiro 2010), model the diver-
sity with the empirical covariance matrix and show that en-
couraging such diversity can improve the dictionary’s gener-
alizability. (Rabouy, Paris, and Glotin 2015) improved im-
age classification by orthogonality of sparse codes. To ex-
plain the observations of the networks’ fusion results, they
studied the orthogonality properties by the cosine compu-
tation and put forward the various qualities of the studied
bases and sparse representation. Analogously, in the Low-
Rank methods, (Yang et al. 2020) ensured the valid form of
SVD training by adding regularization on singular vectors
of each Conv.

Different from the existing works, our ODCS aims at ex-
ploring the appropriate method to utilize orthogonality reg-
ularization in sparse dictionary learning by researching the
suitable structure of networks.

Method
In this section, we will review the existing classic orthogo-
nality regularization widely used in CNN training. Follow-
ing that, we will further describe our ODCS and give the
proof of mathematical expression as well as corresponding
analysis.

The default mathematical expressions are defined as fol-
lows. Let W ∈ Rm×n donates the Conv kernel, where
m = Nk and n = CdHkWk. Cd is the channel of input
data. Nk, Hk and Wk are the numbers, height and width of
the kernel.

Preliminaries
Previous work, Soft Orthogonality Regularization (SO), rec-
ommended that the Gram matrix of Conv kernel WTW

should be approximated to the identity matrix. The regular-
ization is implemented as:

λ
∑
W

||WTW − I||22 (1)

where I donates the identity matrix and || · ||2 is l2-norm. λ
indicates the weight of loss.

This regularization has two implicit meanings to filters
in kernel. It constrains convolution filters to be orthogonal
to each other, and enforces the modulus norm of each filter
to be consistent with 1. It takes advantage of orthogonal-
ity while maintains the normal propagation of the gradient
during training. The strictness of regular constraints can be
controlled simply by adjusting λ. There are many variants
of orthogonality regularization with different loss functions
and training strategies.

The Proposed Orthogonal Dictionary Convolution
Strategy
The structure “Conv(BN) + Nonlinear + Pointwise
Conv(BN)” frequently applied in recent networks, like
ResNet (He et al. 2016) and its variants (Xie et al. 2017;
Zagoruyko and Komodakis 2016) and DenseNet (Huang
et al. 2017). The front Conv plays the main role of extract-
ing spatial features and the Pointwise Conv performs dimen-
sionality reduction and expansion (He et al. 2016). Inspired
by sparse dictionary learning, during the inference, it’s seem
like the front Conv plays the role of dictionary and the Point-
wise one is like encoding. Meanwhile, orthogonal dictio-
nary is proved to enhance the performance of feature extrac-
tor (Rabouy, Paris, and Glotin 2015). Therefore, we explore
to apply the sparse dictionary learning upon CNNs from the
mathematical formula and abundant experiments.

Formulas for ODCS. With im2col method (Heide, Hei-
drich, and Wetzstein 2015; Yanai, Tanno, and Okamoto
2016), kernel W is retained and data X is converted to
patch-matrix X̃ . X̃ ∈ Rn×k, where k = WdHd. Wd and
Hd are width and height of data. Then, Conv can be formu-
lated as matrix multiplications of W and X̃ . The result Y
calculated by the unit consisting of Conv, batch normaliza-
tion (BN), and ReLU could be denoted as

Y = ψ(γ
WX̃ − µ√
σ2 + ε

+ β)

= ψ(γ
WX̃√
σ2 + ε

+ β − γ µ√
σ2 + ε

)

= ψ(aWX̃ + b)

(2)

where µ, σ2, γ, β are the parameters of BN and ψ de-
notes the ReLU. In order to simplify the equation, let a =
γ/
√
σ2 + ε and b = β − aµ. The structure, “Conv(BN) +

Nonlinear + Pointwise Conv(BN)”, can be expressed as

Y = aEWEψ(aDWDX̃ + bD) + bE (3)

where WD and WE are the kernels of front Conv and lat-
ter Pointwise Conv respectively. aD, bD, aE , bE are pa-
rameters of BN after each Conv. There are two points worth
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noted. Firstly, when the kernel size of Conv is 1 (Pointwise),
the conversion of X can be ignored, as X̃ = X . Secondly,
if remove ReLU ψ between two Convs, the equation then is
changed to

Y = aEWEaDWDX̃ + aEWEbD + bE (4)

We want to emphasize that removing the nonlinear layer
and insuring the latter Conv to be Pointwise are two vital
steps in our ODCS. Our ODCS applies the theory of sparse
dictionary learning in CNN training. According to the the-
ory, linearity of blocks is the key to apply the theory in CNN
successfully. This is also empirically validated by our exper-
iments.

Without nonlinear operation, two multipliers, aDWD and
aEWE , is strictly combined to the linear transformation. We
have argued above that these two Convs are functionally dif-
ferent. Specifically, with the view of sparse dictionary learn-
ing (Lee et al. 2006; Rabouy, Paris, and Glotin 2015), every
row in aDWD can be regarded as a “basis” kernel and every
column in aEWE is a set of “coefficient” vectors. The lin-
ear combination of kernels is equivalent to a more complex
kernel, like the signal recovered. In view of this, we call the
WD as dictionary Conv and WE encoding Conv.

Orthogonal dictionary Conv. According to the analysis
in (Bansal, Chen, and Wang 2018), if the kernel is over-
complete, reducing the correlation within dictionary kernel
would increase the diversities. In prevalent deep learning
networks, WD is always an over-complete matrix. There-
fore, the orthogonality on WD is useful in most CNNs. On
the other side, in works (Rabouy, Paris, and Glotin 2015;
Tropp and Gilbert 2007) in sparse coding, cosine computa-
tion is used to improve the orthogonality properties, gaining
the performance improvement in image classification. Di-
versity in dictionary in sparse methods has been proved to
be beneficial. Inspired by these conclusions, in order to im-
prove the feature extraction capability, we propose to impose
orthogonality regularization on dictionary Convs as follows:

LODCS = λ
∑

W∈WD

||WTW ◦ (1− I)||22 (5)

where WD denotes the set of dictionary Convs according to
ODCS in the network. ◦ denotes the element-wise multipli-
cation and 1 is the matrix with all elements set to 1. Compar-
ing Equation 5 and Equation 1, it is clear there are two sig-
nificant differences: (1) We relax the constraint on the norm.
The norm of kernels of dictionary Conv can be trained freely
when the kernel is upgraded. (2) We only constrain the di-
rections of each filter as suggested by (Brock, Donahue, and
Simonyan 2019) while Equation 1 further limits the norm of
all kernels to 1. (Bansal, Chen, and Wang 2018) has proven
that the over strict regularization like Equation 1 may harm
the model capacity and expressiveness. We will experimen-
tally demonstrate that our would alleviate the side effect of
existing orthogonality regularization.

Finally, we add the regularization loss with weight λ to
the final loss for CNNs, so that the task objective and or-
thogonality regularization can be simultaneously achieved.

Figure 2: ODCS applied on different networks. (a) Basic
block in ResNet; (b) Variant of (a). The second 3 × 3 Conv
is decomposed into two Pointwise Convs to fit the premise
of ODCS; (c) The structure modified from (b) by ODCS;
(d) BottleNeck block in ResNet; (e) The structure modified
from (d) by ODCS. In the all the structures, BN layers are
omitted. The red boxes in (c) and (e) mark the structure we
proposed.

In addition, as shown in Equation 4, the regularization
should strictly constrain the product of Conv kernel and pa-
rameters of BN, aDWD, instead of WD. In fact, they are
essentially the same. Although γ and σ would change for
each batch of training data, they could be also regarded as
parameters and be merged into Conv. In addition, since the
aD only alter the norm rather than the direction of every vec-
tor in the matrixWD, the orthogonality ofWD would not be
affected by BN. To simplify, we just impose orthogonality
regularization on the kernel of dictionary Conv.

Applications of ODCS on Variety CNNs
Our strategy is suitable for most classical network back-
bones. In order to adapt the backbone to our proposed
ODCS, we will show more examples. We need to redesign
some blocks and apply our ODCS.

Blocks without Pointwise Conv. Basic block in ResNet
is taken as represent of plain networks without Pointwise
Conv, as shown in figure 2(a). The original basic block used
in ResNet for small-scale images consists of two 3×3 Convs
and does not include Pointwise Conv, so it is necessary to be
introduced.

Since the amount of parameters and calculations effect the
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performance of the network heavily, we redesign the basic
block based on the purposes that maintaining the parameters
and calculations. Meanwhile, our ODCS needs a Pointwise
Conv behind the 3×3 Conv. We decompose the second 3×3
Conv into two Pointwise Convs, and the output channel of
the first Pointwise Conv is set to 4C (the number of input
channel is C), as shown in figure 2(b). The variant has a
similar structure, parameters, and calculations to the original
basic block. In the experiment, we test the performance of
this network adequately to prove that the variant can be the
baseline of our experiment.

Then, the variant has satisfied the condition. We apply the
ODCS to the variant by removing the ReLU behind 3 × 3
Conv and imposing the loss LODCS to the 3 × 3 Conv, as
shown as in figure 2(c).

Blocks with Pointwise Conv. The bottleneck block, in
figure 2(d), is widely used in networks. It originally has the
structure “3 × 3 Conv BN + ReLU + Pointwise Conv BN”.
So, we directly apply ODCS to the bottleneck block and gain
the recommended structure in Figure 2(e).

Experiments
First of all, we benchmark our Orthogonal Dictionary Con-
volution Strategy on ResNet (He et al. 2016) including sev-
eral different variants. All training/validation data, data pre-
processing process, and data enhancement process are kept
consistent in ablation experiments. Top-1 accuracy is evalu-
ated in each experiment.

Small-scale Image Classification on CIFAR
CIFAR-10 and CIFAR-100 consists of 50k training images
and 10k validation images, divided into 10 and 100 classes
respectively. We use the standard SGD optimizer to train
our models with momentum of 0.9 and the weight decay
is 4 × 10−5. We use data augmentations, including random
cropping and random flip. These models are trained with a
mini-batch size of 128 on one GPU. In each experiment, we
train several times with the same configuration to prevent the
impact of fluctuations, and report the median of results.

We perform two groups of experiments using basic block
and bottleneck block for small-scaled image classification
task. In order to adapt the networks to our proposed ODCS,
we transform the basic block in ResNet-20, 56 and 110 to
the variant according to strategy, as shown in Figure 2(b). In
order to distinguish the ResNet and its variants, we mark the
original ResNet as “Origin” and mark the variants changed
by ODCS(without LODCS) as “baseline” in Table 1. The
results of original ResNets and variants are compared to
confirm the effect of modify in Table 1. It shows that the
accuracy of variants are approximate to original networks.
Therefore, the structural alteration might not be the main
reason for improvement of ODCS. We test the SO and
SRIP (Bansal, Chen, and Wang 2018) and list the results
of SVD (Yang et al. 2020) and ONI (Huang et al. 2020). It’s
obvious that ODCS is better than other works in absolute
precision.

We also test the bottleneck block in ResNet-50 and 101
in Table 2. Compared with the work (Wang et al. 2020), our

CIFAR-10 CIFAR-100
Method 20 56 110 20 56 110
Origin 92.07 93.25 92.64 77.90 80.12 79.92

Baseline 92.49 93.37 93.40 78.84 80.27 80.73
SO 92.46 93.59 93.46 76.80 81.55 81.58

SRIP 92.65 93.89 93.96 79.20 82.33 82.84
SVD* 91.39 93.27 93.47 - - -
ONI* - - 93.44 - - -
ODCS 93.13 94.29 94.55 79.50 82.65 83.08

Table 1: Accuracy on CIFAR using ResNet-20, 56 and 110
with basic block. “*” indicates the results reported in the
cited paper.

CIFAR-10 CIFAR-100
Method 50 101 50 101

Baseline(ResNet)* - - 78.50 -
OCNN* - - 79.50 -

Baseline(ResNet) 92.98 92.76 82.90 83.51
ODCS 93.57 93.60 84.62 84.55

Table 2: Accuracy on CIFAR using ResNet-50 and 101
with bottleneck block. “*” indicates the results reported in
work (Wang et al. 2020).

baseline is 4.4% higher. The amount of increase is 1.72%
and is also larger than the latest work. Our ODCS has shown
the remarkable performance gains in all experiments and im-
provement is stable.

Fine-grained Image Classification on
CUB-200-2011
We conduct fine-grained image classification experiments
on CUB-200-2011 bird dataset to show the performance of
ODCS. The CUB-200-2011 is a most widely studied bird’s
classification task, with 5994 training images and 5794 test
images annotated with bounding boxes from 200 wild bird
species. It is one of the most competitive datasets, since there
are only 30 images in each category for training. During
training, we set the batch size to 72 and the initial learning
rate as 0.05 with decay factor of 0.1 after every 30 epochs
to train each model for 120 epochs. We use random crop-
ping, brightness jitter and random flip data augmentations
provided by standard training setting. According to the tun-
ing schedule for λ on CIFAR, we adjust the schedule used
in CUB-200-2011 proportionally.

We use ResNet-34, 50 and 101 models as baselines and
we impose the ODCS on these networks. Experiments show
that ODS improves the performance of fine-grained image
classification. Compared to the baselines, ODCS increased
the accuracy for 2.45%, 0.51% and 0.26% for ResNet-34, 50
and 101, respectively. The improvement we have achieved is
considerable in the challenging fine-grained classification.

We find that performance of SO degraded in training. Its
accuracy is less than the baseline by 0.9% and 1.15% on
ResNet-50 and 101. It’s also shown in Figure 3(bottom) that
curve of SO fluctuates severely during the whole training,
probably due to the too strict constraint. The performance
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Method 34 50 101
Baseline(ResNet) 79.48 81.04 82.70

SO 80.80 80.14 81.55
SRIP 81.45 81.17 82.82

ODCS 81.93 81.55 82.96

Table 3: Accuracy of fine-grained image classification task
in CUB-200-2011 datasets. ResNet-34 with basic block and
ResNet-50 and 101 with bottleneck block are used.

of SRIP is better than SO, though its curve fluctuates more
vigorously than ours.

Large-scale Image Classification on Imagenet-2012
To further validate the effectiveness of ODCS on large-scale
image classification, we evaluate it on the ImageNet-2012
dataset (Russakovsky et al. 2015). The experimental settings
are kept as below: We apply SGD with a momentum of 0.9,
and a weight decay of 4e-5. The initial learning rate is 0.4
and it is adjusted following “cosine” learning schedule. It
trains 120 epochs with batch size 512 on 8 GPUs.

For verifying the performance on different structures, we
apply ODCS on the ResNet-34 with basic block and ResNet-
50 with bottleneck block. As shown in Table 4, our ODCS
gains substantial improvement based on a high baseline,
1.93%, 0.27% and 0.27% in ResNet-34, 50 and 101, respec-
tively. To compare with related works, we list some results
of SOTA methods, the ONI (Huang et al. 2020) and methods
based on MHE (Liu et al. 2018), in Table 5. Significantly, the
absolute value of our results is much higher than the others.

Method 34 50 101
Baseline(ResNet) 74.37 76.73 76.60

ODCS 76.30 77.00 76.87

Table 4: Accuracy of ImageNet-2012 dataset using ResNet-
34, 50 and 101 with our ODCS.

Method 34 50
MHE† 70.40 74.98

HS-MHE† 70.50 75.02
RP-CoMHE† 70.62 75.49
AP-CoMHE† 70.68 75.47

ONI* - 76.45
ODCS 76.30 77.00

Table 5: Accuracy of ImageNet-2012 dataset with related
methods. “†” means the data of (Liu et al. 2018). “*” means
the data of (Huang et al. 2020).

Ablation Studies
We have also conducted ablation experiments on the struc-
ture based on our strategy and regularization terms on the
CIFAR datasets.

Method 20 56 110
With ReLU 92.28 93.45 93.01

Without ReLU 93.13 94.29 94.55

Table 6: Accuracy comparison on CIFAR-10 with / with-
out ReLU between Convs. The regularization LODCS is still
working on the dictionary Conv in this experiment.

CIFAR-10 CIFAR-100
λ 20 56 110 20 56 110

5e-2 92.95 94.33 94.42 79.67 82.75 82.35
1e-2 92.81 94.10 94.37 79.43 82.48 82.70
5e-3 93.13 94.29 94.55 79.50 82.65 82.48
1e-3 92.88 94.30 94.32 79.48 82.54 82.36
σ 0.137 0.105 0.098 0.104 0.120 0.162

Table 7: Accuracy comparison on CIFAR-10 and CIFAR-
100 with different weights for loss. All weights are tested on
ResNet-20, 56 and 110. The standard deviation of accuracy
σ is listed to show the stability for different weights.

Impact of nonlinear operation (ReLU). ReLU between
two Convs have a significant effect according to our ODCS.
Eliminating nonlinear operations is the key to make two
Conv be linearly combined. We compare the performance
of networks with and without ReLU between Convs. The
results in Table 6 show that ReLU reduces models’ perfor-
mance for over 0.8%, in our ODCS. As for the reason, ReLU
might prevent the linear combination between Convs to syn-
thesize a feature extractor with better performance.

Weight for regularization. As shown in Table 7, we com-
pare the influence of weight λ for loss function in ODCS. We
test different λ settings from 5e-2 to 1e-3 on CIFAR with
ResNet-20, 56 and 101. In Table 7, the standard deviations
σ of the results of the models are all extremely small. The
accuracy of the same network in the same dataset with dif-
ferent λ fluctuate slightly, indicating that nearly all networks
are extremely insensitive to λ.

Specifically, we find the accuracy is slightly higher when
λ is 5e-3 and we finally set the λ to 5e-3 for all experiments.

Stable training without complex adjustment for loss
weight. We carefully inspect the training curves of ResNet-
110 on CIFAR-10 and ResNet-50 on CUB-200-2011 in Fig-
ure 3. Evidently, the weight of loss for ODCS is not sen-
sitive. However, for other methods, the weight of loss need
to be designed carefully to maintain. Besides, the schedule
varies for different configurations, which makes the training
more difficulty.

It is also observed that all the regularization methods sig-
nificantly accelerate the training process in the initial stage,
especially for ODCS and SRIP. After the second decrease of
learning rate, ODCS still maintains the highest accuracy.

Influence of limiting norm in strategies. To solve the
problem of being too restrictive in present regularization,
we use loss LODCS instead of SO. To verify the validity
of removing limit, we test the regularization with or with-
out limit on the norm of vectors in WTW by changing the
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Figure 3: Training curves for different methods. Top: Train-
ing curves for ResNet-110 on CIFAR-10; Bottom: Training
curves for ResNet-50 on CUB-200-2011. The tuning sched-
ule of λ is shown on the top of the graph. We zoom in the
optimal accuracy on curves to show the advantage of ODCS.

corresponding loss functions.
The results in Table 8 show that ODCS is slightly worse

than SO and SRIP when enforce norm=1. It’s probably be-
cause ODCS only constrains kernels to be orthogonal and it
is more relaxed than traditional regularization. In the early
stage of training, the ODCS is not strict enough, which re-
sults in slow pre-training fitting with traditional strategy. The
mismatch among the regular term, the object of action and
the network structure causes its performance on the classi-
fication to decline. When the norm is free, the difference
among ODCS, SO and SRIP is obvious, and our ODCS is
slightly better than the others. In the strategy we proposed,
orthogonality between kernels is a sufficient condition to ex-
tract enough features for dictionary Conv.

Compared to the same regularization in different strategy,
our strategy is significantly better than traditional ones. SO
increase more than 0.6%, and SRIP increase about 0.3%.
Our ODCS achieves the largest margin, 1.67%, 1.79%,
2.05% on ResNet-20, 56 and 110 respectively. The exper-
iment demonstrates that loss LODCS , as a basic conditions
of orthogonality, is a suitable component in ODCS.

norm Method 20 56 110
SO 92.46 93.59 93.46

1 SRIP 92.65 93.89 93.96
ODCS 91.46 92.50 92.45

SO 93.04 94.29 94.49
free SRIP 93.00 94.11 94.32

ODCS 93.13 94.29 94.55

Table 8: Accuracy comparison on CIFAR-10 with different
regularization loss functions. The influence of whether lim-
its the norm of kernel to 1 is different for each strategy.

In summary. It’s worth noted that the ablation studies
show that our ODCS is an integrated method. Each step can-
not be separated as an improvement method alone. Creating
or locating the specific structure and removing ReLU is for
Conv to form the pair of dictionary and encoding. Releas-
ing the constraint on norm of kernels in regularization is to
reduce the superfluous information in dictionary Conv ker-
nels.

Conclusion and Future Works
Inspired by orthogonality regularization and sparse dictio-
nary learning, an Orthogonal Dictionary Convolution Strat-
egy (ODCS) is presented to improve the performance of
CNNs. In this paper, we propose to changing the architec-
tures by removing nonlinear layer between Convs and then
imposing orthogonality regularization on specific dictionary
Conv. As shown in experiments, ODCS could be easily ap-
plied to classical deep neural networks for various tasks. The
extensive experiments show that our method achieves higher
accuracy, more stable training curve and faster convergence
than traditional strategy. Moreover, releasing the constraint
on norm of kernels in LODCS not only enhances the diver-
sity of dictionary Conv but also relaxes the too strict regular-
ization in training. This makes the hyper-parameters tuning
of regularization is more flexible. In the future work, we will
explore more applications for ODCS, such as Image Denois-
ing, 3D Point Cloud Detection.
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6225–6236.
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