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Abstract
The domain gap severely limits the transferability and scal-
ability of object detectors trained in a specific domain when
applied to a novel one. Most existing works bridge the do-
main gap by minimizing the domain discrepancy in the cat-
egory space and aligning category-agnostic global features.
Though great success, these methods model domain discrep-
ancy with prototypes within a batch, yielding a biased esti-
mation of domain-level distribution. Besides, the category-
agnostic alignment leads to the disagreement of class-specific
distributions in the two domains, further causing inevitable
classification errors. To overcome these two challenges, we
propose a novel Semantic Conditioned AdaptatioN (SCAN)
framework such that well-modeled unbiased semantics can
support semantic conditioned adaptation for precise domain
adaptive object detection. Specifically, class-specific seman-
tics crossing different images in the source domain are graph-
ically aggregated as the input to learn an unbiased seman-
tic paradigm incrementally. The paradigm is then sent to a
lightweight manifestation module to obtain conditional ker-
nels to serve as the role of extracting semantics from the
target domain for better adaptation. Subsequently, condi-
tional kernels are integrated into global alignment to sup-
port the class-specific adaptation in a well-designed Condi-
tional Kernel guided Alignment (CKA) module. Meanwhile,
rich knowledge of the unbiased paradigm is transferred to the
target domain with a novel Graph-based Semantic Transfer
(GST) mechanism, yielding the adaptation in the category-
based feature space. Comprehensive experiments conducted
on three adaptation benchmarks demonstrate that SCAN out-
performs existing works by a large margin.

Introduction
Object detection (Ren et al. 2015; Lin et al. 2017; Tian
et al. 2019) aims to recognize and localize object instances
of predefined categories, which plays a critical part in sev-
eral applications like self-driving and video analysis, etc.
While these approaches have achieved remarkable perfor-
mance when trained and tested in a specific domain, they
will suffer severe performance degradation if evaluated in a
novel domain due to the domain gap (Chen et al. 2018).

To address this challenge, a variety of studies (Chen et al.
2018; Xu et al. 2020; Hoffman et al. 2016) have been
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Figure 1: Illustration of the mAP (%) improvement after re-
placing the output maps, including classification (CLS), re-
gression (REG), and centerness (CTR) output maps, com-
pared with source only model.

conducted that introduce Unsupervised Domain Adaptation
(UDA) to adapt object detectors trained in the annotated
source domain to an unlabeled target domain. A natural idea
is to adapt features with adversarial learning (Chen et al.
2018; Saito et al. 2019; Li et al. 2020), giving a pixel-to-
pixel adaptation on feature pyramids. Instead of aligning the
overall feature maps, some works (Kim et al. 2019; Xu et al.
2020) focus on RPN-based region proposals and adopt a
foreground adaptation to align those regions of interest. Re-
cently, some works (Xu et al. 2020; Zhang, Wang, and Mao
2021) explore the category-level adaptation and model se-
mantic knowledge with category centers, referred to as pro-
totypes within inner-batch. They measure the distance be-
tween prototypes as domain discrepancy and minimize this
discrepancy to bridge the domain gap.

Though great success, there are two challenges in existing
category-level approaches. Firstly, these works model cate-
gory prototypes within a batch, which inevitably bring about
a biased estimation of domain-level distribution due to the
limited and noisy information within the batch-wise obser-
vation. Since object occlusion and imbalanced object cate-
gories always appear in image batches, prototypes within a
batch are hard to provide critical cues to establish an im-
plicit probabilistic model fitting class-specific distributions
well, leading to the difficulty of the alignment. Furthermore,
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directly transferring this biased semantic batch-to-batch (Xu
et al. 2020; Zhang, Wang, and Mao 2021) from source to
target domain is risky, as the unsatisfied categorical repre-
sentations harm the adaptation. Besides, existing prototypes
only capture current iteration semantics, lacking robustness
to the dynamic model optimization. Hence, we aim to model
unbiased semantics with category knowledge in the dynamic
training procedure with a robust representation.

The second challenge lies in that these methods highly
rely on global feature alignment (Chen et al. 2018), which
ignores introducing semantic knowledge in the adversarial
feature alignment. As shown in Figure 1, we conduct an ex-
periment to delve into the importance of semantic knowl-
edge in feature alignment. Given an object detector trained
in the source domain (18.4% mAP) (Hsu et al. 2020a), we
replace the output maps in the target domain with the ones
from the source domain1, which eliminates the influence of
domain gap on each task, as shown in the Red bars. It can be
observed a remarkable 14.6% mAP gain in classification, in-
dicating that bridging the domain gap in classification gives
the most significant benefit in domain adaptive object de-
tection. After that, output maps are replaced by the ones
from our baseline model (Hsu et al. 2020a), which deploys a
class-agnostic alignment (Blue bars), showing the consistent
importance in classification with an 8.7 % mAP gain. How-
ever, we find a noticeable mAP gap in classification between
global alignment and oracle (8.7% vs.14.6%), demonstrat-
ing that numerous classification errors still cannot be solved
in class-agnostic alignment. This observation motivates us to
introduce semantic knowledge in global alignment to bridge
the domain gap in a category-to-category manner.

To overcome these two challenges, we propose a
Semantic Conditioned AdaptatioN (SCAN) framework,
which achieves semantic conditioned adaptation with well-
adapted category distributions. SCAN aims to overcome
the challenge of biased semantics and introduce category
knowledge in the global alignment. In the source domain,
cross-image semantics are aggregated with the graph struc-
ture and then modeled with a Time-Category-Distribution
three-dimensional paradigm. Based on the modeled seman-
tics, we further introduce the conditional kernel to manifest
semantics with activation maps. In the target domain, we
model unbiased semantics with a novel conditional graph
established in the pixel-level and category-level space. To
achieve the semantic conditioned adaptation, we propose
a Conditional Kernel guided Alignment (CKA) module to
guide class-specific alignment and introduce a Graph-based
Semantic Transfer (GST) mechanism to transfer unbiased
semantics from the source to the target domain. After adopt-
ing our method, we observe a significant mAP improvement
in the classification branch with an oracle-neared result, as
shown in Figure 1 Yellow bars. To summarize, our main con-
tributions are as follows.

1We replace output maps (CLS: classification; REG: regression;
CTR: the centerness denoted as foregrounds) obtained from Foggy
Cityscapes validation set by Cityscapes validation set. Note that
they have the same annotations, and the only difference between
them is the weather-based domain gap.

• We propose a Semantic Conditioned AdaptatioN
(SCAN) framework2 for cross-domain object detection.
This work represents the first attempt at modeling unbi-
ased semantics in cross-domain object detection to the
best of our knowledge.

• SCAN utilizes a Conditional Kernel guided Alignment
module and a Graph-based Semantic Transfer mech-
anism to achieve category-level adaptation, represent-
ing the first work introducing unbiased semantic knowl-
edge in global adaptation instead of conventional class-
agnostic alignment.

• Comprehensive experiments on three benchmarks
demonstrate that SCAN achieves state-of-the-art results
and outperforms existing works by a large margin.

Related Work
Cross Domain Object Detection
Cross-domain object detection aims to reduce the perfor-
mance deterioration caused by the domain gap between
training and inference datasets. Extensive works have been
conducted to overcome this challenge, including image-level
style translation (Inoue et al. 2018; Kim et al. 2019; Hsu
et al. 2020b), pixel-level feature alignment (Chen et al. 2018;
Saito et al. 2019; Li et al. 2020), region-level proposal adap-
tation (Kim et al. 2019) and pseudo label self-training (In-
oue et al. 2018). Recently, some works (Xu et al. 2020;
Zheng et al. 2020; Zhang, Wang, and Mao 2021; VS et al.
2021) introduce category-level adaptation to bridge the do-
main gap in the semantic space. GPA (Xu et al. 2020) in-
troduces a graph to model prototype among region propos-
als in each image and minimizes prototype distance between
the source and target domain. The authors in (Zhang, Wang,
and Mao 2021) utilize RPN prototypes to model feature dis-
tributions of RPN-based region proposals. Another idea is
to design a memory module (VS et al. 2021) to save large
amounts of proposal features in the source domain and load
them into the target domain. However, these works model
prototypes within inner-batch, resulting in biased estima-
tion of domain-level distribution. In this work, we aggre-
gate semantics with the graph structure and propose a three-
dimensional paradigm to model unbiased semantics.

Conditional Convolution
Different from conventional convolutions with fixed param-
eters, conditional convolutions learn dynamic kernels de-
pending on the conditioned input. This idea is first explored
in (Jia et al. 2016) to improve object recognition with a
dynamic feature network. Some works have recently intro-
duced conditional convolutions into the detection commu-
nity, fully utilizing its dynamic property to model instance-
level representations. CondInst (Yang et al. 2019) learns
kernels conditioned on the regression output maps to ex-
tract semantic masks for each instance. Similarly, Sparse
RCNN (Sun et al. 2021) and Implicit PointRend (Cheng,

2Open source: https://github.com/CityU-AIM-Group/SCAN.
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Figure 2: Overall of the proposed SCAN framework. G-R denotes the Gradient Reversal layer for adversarial training. (a) We
aggregate cross-image semantics with graph structure, and then model unbiased semantics with a 3-D paradigm P , which acts
as the conditioned input to learn semantic conditioned kernels Wcon. (b) Based on Wcon, we proposed a conditional graph Gcon
to model semantics in the target domain, including a pixel-level sub-graph (marked as circles) and a category-level sub-graph
(marked as stars). (c) CKA (left) and GST (right) utilize Wcon and P to achieve semantic conditioned adaptation.

Parkhi, and Kirillov 2021) utilize region proposals condi-
tioned kernels to extract more discriminative region repre-
sentations. In this work, we extend this idea to cross-domain
object detection and propose a semantic conditioned adap-
tation to bridge the domain gap. Different from existing
works adopting pixel-level and proposal-level conditions,
we model conditions at the domain level, yielding unbi-
ased semantic representations, to overcome the challenge of
cross-domain object detection.

Proposed Method
The overall workflow of SCAN framework is shown in
Figure 2. Given a batch of annotated source images
{Is,i, Ys,i}Bs

i=1 and unlabeled target images {It,i}Bt
i=1, we

first adopt backbone network to extract image features Fs/t,
and then separate the workflow into three branches. (a)
Source domain: We perform fine-grained sampling to ob-
tain semantic patterns and establish a graph to aggregate
cross-image semantics. Then, a three-dimensional seman-
tic paradigm P is proposed to model unbiased semantics,
with which we further introduce the semantic conditioned
kernel Wcon. (b) Target domain: Based on the conditional
kernel Wcon, a conditional graph Gcon is established to
model unbiased semantics, including pixel-level (marked
as circles) and category-level (marked as stars) sub-graphs
{Gpix,Gcat}. (c) Semantic Conditioned Adaptation: After
modeling semantics in both domains, we use Wcon to guide
the global alignment in the CKA module (middle-left) and
transfer the semantics from the unbiased semantic graph GP
to the conditional graph Gcon using graph-based message
propagation (middle-right).

Source Domain: Unbiased Semantics (US)
Given a labeled image batch {Is,i, Ys,i}Bs

i=1 in the source do-
main, we first adopt domain-shared backbone to extract fea-
tures Fs, based on which we perform fine-grained sampling
to collect semantic patterns according to the ground-truth
label, as shown in Figure 2(a). We sample those pixels in-
side object instances as category-specific foreground sam-
ples and perform spatial-uniformed sampling to obtain an
equal number of background samples.
Semantic Modeling. Considering the critical role of long-
distance semantic dependency (Chen et al. 2019), we pro-
pose a cross-image graph to aggregate fine-grained semantic
patterns within a batch. Specifically, we first adopt a nonlin-
ear projection on sampled semantic patterns to obtain node

embedding X = {(xi, yi)}
Nnode

s
i=1 , xi ∈ RD, and then es-

tablish a scalable graph covering all nodes followed by the
graph reasoning as (Zhu et al. 2021) to obtain enhanced node
representations:

X̃ = Norm(softmax(WfX,WgX
T )WhX +X), (1)

where X̃ = {x̃i}
Nnode

s
i=1 represents enhanced nodes, W(·) rep-

resents the learnable weight, and Norm is the layer normal-
ization. To train the parameters in the graph and enhance the
semantics of nodes, we perform an auxiliary node classifica-
tion task with Cross Entropy loss as follows,

Lnode = −
Nnode

s∑
i=1

yilog(softmax(fcls(x̃i))), (2)

where fcls is a nonlinear classifier. In addition to estab-
lishing the cross-image semantic dependence, graph reason-
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ing can relieve some adverse effects of noisy pixels inside
bounding boxes belonging to the background with only box-
level annotations.

To avoid the biased estimation within inner-batch, we
innovatively design a Time-Category-Distribution three-
dimensional paradigm P ∈ RT×C×D to model unbiased
semantic knowledge at the domain level. With this time-
included definition, P not only captures the category knowl-
edge in the current iteration, but also saves T − 1 histor-
ical representations, which provide critical robustness dur-
ing model optimization. To update this paradigm P , an in-
cremental update strategy is proposed, fully utilizing aggre-

gated graph nodes X̃ = {x̃i}
Nnode

s
i=1 . Specifically, we first de-

fine the semantics within batch for category c at the current
iteration as p = 1

Nnode
s,c

∑
yi=c x̃i. Then, we adopt a time-

axis translation to preserve T − 1 historical semantics, and
update the the current state with p:
Pc
k ←− Pc

k+1, 1 ≤ k < T,

Pc
k ←− cos(p,Pc

k−1)p+ (1− cos(p,Pc
k−1))Pc

k, k = T,
(3)

where cos(x, y) = x·y
∥x∥2·∥y∥2

, Pc
k indicates unbiased se-

mantics for Category c at Time k. The cosine-based up-
date (VS et al. 2021) accelerates the learning process in
the early training stage when the local and global seman-
tics are inconsistent, and gradually slows down to find a
global-optima of unbiased semantics. Besides, the memory
queue introduces historical semantic dependency and relives
the noise caused by unstable adversarial learning. With this
three-dimensional format, P utilizes a contiguous sequence
with length T to model category knowledge during training,
which preserves semantic evolution across iterations.
Semantic Conditioned Manifestation. Based on the well-
modeled semantic paradigm P , we further manifest this im-
plicit semantics with semantic conditioned convolution. As
the conditioned input, P is sent to a lightweight manifes-
tation module to learn the parameters of conditional ker-
nels. Since P covers a time-included dynamic procedure,
this manifestation module is designed with a Recurrent Neu-
ral Network (RNN) based unit to capture cross-iteration se-
mantic relationship and model inherent semantic evolution:

Wcon = Conv(tanh(RNN(P))), (4)
where Wcon is the learned semantic conditioned kernels,
Conv is a n× 1 convolution layer, and RNN is a two-layer
recurrent network. Then, we perform conditional convolu-
tion on source features to obtain class-specific semantic ac-
tivation Ss = softmax(Wcon ∗ (Fs)), where ∗ denotes the
convolution operation. Focal Loss is adopted on Ss to train
this dynamic branch to manifest implicit semantics:

Lsem = −
∑
u,v

S(u,v)
s α(1− S(u,v)

s )γ log(Y (u,v)
s ) (5)

where (u, v) denotes the location in the semantic maps, and
α and γ are two common parameters in Focal Loss (Lin et al.
2017). The semantic conditioned kernel manifests unbiased
semantic knowledge with class-specific activation, serving
for modeling semantics in the target domain and migrating
domain gap in a category-to-category manner.

Figure 3: Illustration of the adaptive node sampling. Wcon

represents the semantic conditioned kernels.

Target Domain: Conditional Graph (CG)
Given an image batch {It,i}Bt

i=1 in the target domain, we
adopt domain-shared backbone to extract features Ft. To
model semantics in the target domain, we establish a con-
ditional graph Gcon using the learned conditional kernels
Wcon, which breaks the barrier of inaccessible category an-
notations, as shown in Figure 2(b). We first establish a pixel-
level sub-graph Gpix to model fine-grained semantic pat-
terns, which is further extended to category space, formatted
as a category-level sub-graph Gcat to model the quadratic re-
lationships between two categories.

For the pixel-level sub-graph Gpix, we propose an
adaptive node sampling strategy, as shown in Figure 3,
to obtain fine-grained graph nodes. Given image fea-
tures Ft ∈ RBt×D×H×W and the learned conditional
kernels Wcon ∈ RC×D, we first perform conditional
convolution to obtain explicit semantic activation maps
St ∈ RC×Bt×H×W . Then, class-specific feature repre-
sentations are generated with semantic activation F̃t,c =

St,c

⊙
Ft, F̃t ∈ RC×Bt×D×H×W , where

⊙
is broad-

casted hadamard product. After that, we adopt Density-
Based Spatial Clustering of Applications with Noise (DB-
SCAN) (Schubert et al. 2017) algorithm to obtain a noiseless
sampling prior defined with clusters, yielding clean semantic
maps S̃t ∈ {0, 1}C×Bt×H×W . Based on this prior S̃t, i.e.,
class-specific clusters, we perform fine-grained node sam-
pling on the target feature Ft and adopt spatial-uniformed
sampling to obtain equal number of background node sam-

ples: {(vi, S̃t,i)}
Nnode

t
i=1 , vi ∈ RD. The nonlinear projec-

tion in the source domain is also adopted to obtain node
embedding. Finally, we establish Gpix with nodes Vpix =

{vi}
Nnode

t
i=1 , following the graph reasoning procedure as Eq.1

to obtain enhanced node representations {ṽi}
Nnode

t
i=1 (marked

as circles in Figure 2(b)). Since both domains share the same
category space (Chen et al. 2018), we share the parameters
of graph reasoning in the source and target domain.

To obtain robust semantics in category space, we fur-
ther extend Gpix to implicit semantic space with a category-
level sub-graph Gcat =< Vcat, Ecat >, where Vc

cat =
1

Nnode
t,c

ΣS̃t,i=cṽi is the node embedding of class c, and

E(i,j)cat = cos(Vi
cat,V

j
cat) represents the quadratic relation-

ship between class i and class j (marked as stars in Fig-
ure 2(b)). With the proposed conditional graph Gcon, the se-
mantics are modeled comprehensively in the target domain
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across fine-grained pixel-level space and implicit category-
level space.

Semantic Conditioned Adaptation
After modeling unbiased semantic knowledge in both do-
mains, we present semantic conditioned adaptation to
achieve domain adaptation, as shown in Figure 2(c).
Conditional Kernel Guided Alignment (CKA). We pro-
pose a CKA module to integrate unbiased semantic knowl-
edge in the global alignment, which is a semantic-aware dis-
criminator with a multi-head architecture. Given extracted
image features Fs/t and the conditional kernels Wcon, we
perform conditional convolution to obtain semantic activa-
tion maps Ss/t for both domains. Then, Fs/t are sent to
the CKA module, including shared convolutions fs followed
by C class-specific branches, to obtain semantic-aware fea-
tures: F̂s/t,c = [fs(Fs/t) : Ss/t,c], where [:] represents con-
catenation operation. After that, independent class-specific
domain classifiers fc are adopted the C separated branches
with Binary Cross-Entropy (BCE) loss:

Ladv =− 1

C

∑
u,v

∑
c

{ DS
(u,v)
s,c∑

u,v S
(u,v)
s,c

log(fc(F̂
(u,v)
s,c ))

+
(1−D)S

(u,v)
t,c∑

u,v S
(u,v)
t,c

log(fc(F̂
(u,v)
t,c ))},

(6)

where (u, v) denotes the location in feature/semantic maps,
C is the category number, and D is the binary domain labels.
With the proposed CKA module, the feature belonging to the
same category will be aligned, yielding the mitigation of the
domain gap in a category-to-category manner.
Graph Based Semantic Transfer (GST). To narrow the do-
main gap in category-based feature space, we further pro-
pose a GST mechanism, which utilizes unbiased semantics
P to guide the optimization in the target domain through
a graph-based message propagation. Specifically, CKA first
converts P to a unbiased semantic graph GP =< VP , EP >,
where Vc

P = 1
T

∑
T Pc

T indicates the graph node and
E(i,j)P = cos(Vi

P ,V
j
P) represents the edge. After that, we

establish a graph-based semantic transfer from the unbiased
semantic graph GP modeled in the source domain to the con-
ditional graph Gcon in the target domain, including the node
transfer and edge transfer. For the node transfer, GST utilizes
VP to guide the node embedding of pixel-level sub-graph
Gpix (Gpix ⊂ Gcon), providing unbiased semantic consis-
tency for each instance sample. For the edge part, quadratic
relationships between two categories E(i,j)P should be con-
sistent in both domains, and be used to guide the edge of
category-level graph Gcat (Gcat ⊂ Gcon). Therefore, our
transfer loss, including node and edge terms are as follows,

Ltransfer =
1

Nnode
t C

∑
i

∑
c

{Lkl(ṽ
c
t,i,Vc

P)}

+
1

C

∑
c

{Lcos(E(i,j)cat , E(i,j)P )},
(7)

where the first item represents node transfer, the second item
defines edge transfer, C is the category number, Lkl and

Lcos represent the Kullback-Leibler divergence and Cosine
Embedding loss, respectively, which generate explicit gra-
dient flows in the target domain to guide the model opti-
mization. The proposed GST mechanism transfers the class-
specific knowledge (node) and the inter-class quadratic re-
lationship (edge) to the target domain jointly, bridging the
domain gap in implicit category space comprehensively.

Model Optimization
In the training stage of the proposed SCAN framework, the
whole loss function L consists of five main components de-
noted as,

L = Ldet + Lnode + Lsem + αLadv + βLtransfer (8)

where Ldet is the detection loss in (Tian et al. 2019), Lnode

and Lsem are two auxiliary loss terms to model unbiased
semantic knowledge, Ladv is used in CKA module for
semantic-aware global alignment, Ltransfer is defined in
GST for semantic transfer. Besides, α and β are two param-
eters controlling the adaptation weight.

Experiments
Experimental Settings
We conduct extensive experiments on three domain adap-
tation scenarios, following the standard settings in litera-
ture (Hsu et al. 2020a), i.e. training with labeled source data
and unlabeled target data, and testing on the target data. Our
baseline model is the FCOS (Tian et al. 2019) object detec-
tor combining with the Global Alignment module (Hsu et al.
2020a). Detection results are evaluated with mean Average
Precision (mAP) using different IoU thresholds (Lin et al.
2014), denoted as mAPIoU . Superscripts represent mAP0.5

gains compared with corresponding source only results.
Cityscapes→Foggy Cityscapes: Cityscapes (Cordts et al.
2016) is a city landscape dataset under dry weather condi-
tion with eight annotated categories, which consists train set
with 2975 images and validation set with 500 images. Foggy
Cityscapes (Sakaridis, Dai, and Van Gool 2018) is a synthe-
sized dataset from Cityscapes as foggy weather. Domain gap
caused by the weather condition is explored in adaptation.
Sim10k→Cityscapes: Sim10k (Johnson-Roberson et al.
2017) is a simulated dataset with 10,000 images with the
labels of annotated car bounding boxes. We give an explo-
ration of the domain gap from synthesized to real-world im-
ages following existing literature.
KITTI→Cityscapes: KITTI (Geiger, Lenz, and Urtasun
2012) is a real-world scene dataset collected with different
camera setups. KITTI consists of 7,481 images with car cat-
egories. We conduct the evaluation of the capability of cross-
camera adaptation following literature.

Implementation Details
We use the ImageNet (Deng et al. 2009) pre-trained VGG-
16 (Simonyan and Zisserman 2014) as the backbone net-
work. We adopt the Stochastic Gradient Descent (SGD) op-
timizer with a 0.0025 learning rate and an 8 batch-size. α
and β are set 0.1 and 1, respectively. We set an extremely
low threshold (0.05) to accelerate node sampling to establish
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Method person rider car truck bus train motor bike mAP0.5

F-RCNN (Chen et al. 2018) 17.8 23.6 27.1 11.9 23.8 9.1 14.4 22.8 18.8
EPM (Hsu et al. 2020a) 41.9 38.7 56.7 22.6 41.5 26.8 24.6 35.5 36.0+17.6

IIOD (Wu et al. 2021a) 33.1 43.4 49.6 21.9 45.7 32.0 29.5 37.0 36.6+17.8

RPNPA (Zhang, Wang, and Mao 2021) 33.6 43.8 49.6 32.9 45.5 46.0 35.7 36.8 40.5+21.7

DSS (Wang et al. 2021) 42.9 51.2 53.6 33.6 49.2 18.9 36.2 41.8 40.9+22.1

UMT (Deng et al. 2021) 33.0 46.7 48.6 34.1 56.5 46.8 30.4 37.4 41.7+22.9

MeGA-CDA (VS et al. 2021) 37.7 49.0 52.4 25.4 49.2 46.9 34.5 39.0 41.8+23.0

ICCR-VDD (Wu et al. 2021b) 33.4 44.0 51.7 33.9 52.0 34.7 34.2 36.8 40.0+21.2

Source Only (Hsu et al. 2020a) 30.5 23.9 34.2 5.8 11.1 5.1 10.6 26.1 18.4
Baseline (Hsu et al. 2020a) 38.7 36.1 53.1 21.9 35.4 25.7 20.6 33.9 33.2+14.8

SCAN w/o. CKA&US (ours) 40.4 40.7 54.5 28.1 43.1 38.9 27.6 38.5 39.0+20.6

SCAN w/o. GST&CG (ours) 42.0 44.0 56.9 28.9 47.1 41.9 27.9 38.6 40.9+22.5

SCAN (ours) 41.7 43.9 57.3 28.7 48.6 48.7 31.0 37.3 42.1+23.7

Table 1: Comparison results in the Cityscapes→Foggy Cityscapes (%) domain adaptation scenario.

Method mAP0.5

F-RCNN (Chen et al. 2018) 34.3
EPM (Hsu et al. 2020a) 49.0+9.2

DSS (Wang et al. 2021) 44.5+9.8

MEGA-CDA (VS et al. 2021) 44.8+10.5

RPNPA (Zhang, Wang, and Mao 2021) 45.7+11.1

UMT (Deng et al. 2021) 43.1+8.8

Source Only (Hsu et al. 2020a) 39.8
Baseline (Hsu et al. 2020a) 45.9+6.1

SCAN w/o. CKA&US (ours) 49.6+9.8

SCAN w/o. GST&CG (ours) 51.8+12.0

SCAN (ours) 52.6+12.8

Table 2: Comparison Results on Sim10K→Cityscapes (%).

conditional graph Gcon, ignoring many background sam-
ples. The nonlinear projection is deployed with the Conv-
ReLU-Conv structure, and the nonlinear classifier fs is in
the Fc-ReLU-Fc format. The three-dimensional paradigm P
records T=3 iterations and uses D=256 channels to model
class-specific distributions.

Benchmark Comparison
Cityscapes→Foggy Cityscapes: As shown in Table 1,
SCAN can surpass existing approaches with a promising
42.1% mAP0.5, outperforming RPNPA (Zhang, Wang, and
Mao 2021) and ICCR-VDD (Wu et al. 2021b) with 1.6%,
and 2.1% mAP0.5 gain. Besides, SCAN also achieves the
best absolute gain (+24.5%) compared with source only
model, breaking through existing record (+23.0%) made
by MeGA-CDA (VS et al. 2021) in literature. Moreover,
removing CKA&US and GST&CG can also achieve con-
sistent performance gains with 39.0% and 40.9% mAP0.5,
compared with baseline mode (33.2% mAP0.5), which
demonstrates the strength of semantic condition adaptation.
Sim10k→Cityscapes: Adaptation results are recorded in
Table 2. SCAN can achieve 52.6% mAP0.5 and gives
49.6% and 51.8% mAP0.5 without deploying CKA&US
and GST&CG, respectively, outperforming existing works
greatly. Besides, SCAN surpasses EPM (Hsu et al. 2020a)
(49.0% mAP0.5) with a 3.6% gain using the same single-
stage pipeline. Note that multi-category semantics will de-
grade into foregrounds under single category scenarios,

Method mAP0.5

F-RCNN (Chen et al. 2018) 30.2
EPM (Hsu et al. 2020a) 43.2+8.8

DSS (Wang et al. 2021) 42.7+9.8

MEGA-CDA (VS et al. 2021) 43.0+12.8

RPNPA (Zhang, Wang, and Mao 2021) 44.8+10.8

Source Only (Hsu et al. 2020a) 34.4
Baseline (Hsu et al. 2020a) 39.1+4.7

SCAN w/o. CKA&US (ours) 43.7+9.3

SCAN w/o. GST&CG (ours) 45.4+11.0

SCAN (ours) 45.8+12.4

Table 3: Comparison results on KITTI→Cityscapes (%).

demonstrating that SCAN could also adapt foreground well
with semantic conditional adaptation.
KITTI→Cityscapes: The comparison results are shown in
Table 3. SCAN gives a 45.8 mAP0.5, surpassing other meth-
ods by a large margin. Compared with our baseline model,
eliminating CKA&US achieves 43.7% mAP0.5 and remov-
ing GST&CG gives a 45.4% mAP0.5, both of which outper-
form the baseline model with remarkable gains.

Ablation Study
We present detailed ablation studies, as shown in Table 4.
Conditional Kernel Guided Alignment (CKA). Since
CKA consists of the semantic conditioned kernels, which
are optimized with the unbiased semantics (US), we intro-
duce a CKA† that using classification results to guide global
alignment. Compared with the baseline model, introducing
semantic knowledge in feature alignment could give a 2.4%
mAP0.5 gain (CKA†), demonstrating that semantic knowl-
edge plays a critical role in bridging domain gap.
Unbiased Semantics (US). Introducing unbiased seman-
tics achieves a significant mAP0.5 improvement (35.6%
→ 40.9%), which yields a 40.9 mAP0.5 and outperforms
baseline model (33.2% mAP0.5) with a remarkable 7.7%
mAP0.5. Besides, it can be observed that peeling semantic
modeling (SM: 40.9%→38.7%) and semantic conditioned
manifestation (SCM: 40.9%→36.9%) both makes notice-
able adverse influences, showing that each component is
necessary to model unbiased semantics.
Conditional Graph (CG). Introducing conditional graph
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Figure 4: Qualitative results on the Cityscapes→Foggy Cityscapes adaptation scenario of (a) the source only model, (b)
EPM (Hsu et al. 2020a), (c) SCAN, and (d) ground truth. (Zooming in for best view.)

Setting w/o mAP mAP0.5 mAP0.75

Baseline - 16.9 33.2 15.4
CKA† - 18.5 35.6+2.4 18.1
CKA+US - 22.1 40.9+7.7 21.0
CKA+US SM 19.2 38.7+5.5 19.0
CKA+US SCM 18.8 36.9+3.7 18.4
CKA+US+CG - 22.5 41.4+8.2 21.9
CKA+US+CG ANS 22.2 41.0+7.8 21.3
CKA+US+CG+GST - 23.1 42.1+8.9 21.2
CKA+US+CG+GST Node 22.2 41.5+8.3 21.0
CKA+US+CG+GST Edge 22.8 41.9+8.7 20.9

Table 4: Ablation studies on SCAN framework. SM rep-
resents semantic modeling, SCM indicates semantic condi-
tioned manifestation, and ANS is adaptive node sampling.

achieves 41.4% mAP0.5 and outperforms baseline with 8.2%
mAP0.5, due to the well-modeled semantics in the target do-
main. Replacing our adaptive node sampling (ANS) strat-
egy with handcraft threshold gives a 41.0% mAP0.5 with
a 0.4% mAP0.5 reduction (41.4%→41.0%) compared with
ANS, verifying its better semantic sampling capacity.
Graph-based Semantic Transfer (GST). Adopting node
and edge transfer can both improve the performance with
a 41.9% and 41.5% mAP0.5 while adopting them together
could give the best performance with 42.1% mAP0.5, outper-
forming our baseline model with a significant 8.9% mAP0.5.

Qualitative Results
T-SNE Visualization. As shown in Figure 5, we present
category-specific feature distributions (distinguished in dif-
ferent colors) to demonstrate the effectiveness of the SCAN
framework. We randomly sample the same number of ob-
ject features (marked as circles) in the source domain and
target domain for each category, respectively. After adopt-
ing SCAN, category-specific distributions of the source and
target domain can be aligned well, demonstrating the effec-
tiveness of semantic conditioned adaptation.
Detection Result Visualization. Comparisons of detection
results are shown in Figure 4. SCAN can reduce false-

Figure 5: T-SNE feature visualization of object features in
different categories. For each category, we randomly sample
object features (marked as circles) inside bounding boxes in
the source domain and target domain equally.

negative cases (top row) caused by class-agnostic adapta-
tion, such as the missed truck. Most importantly, SCAN also
eliminates some classification errors, like the rider and bike
in the bottom row, demonstrating the advantages of intro-
ducing semantic knowledge to bridge the domain gap.

Conclusion
We propose a Semantic Conditioned AdaptatioN (SCAN)
framework for cross-domain object detection. In the source
domain, unbiased semantics are aggregated with a cross-
image graph, modeled with the unbiased semantic paradigm,
and manifested with semantic conditioned kernels. A condi-
tional graph is established in the target domain to model un-
biased semantic knowledge at the category level. To achieve
adaptation, we propose a Conditional Kernel guided Align-
ment (CKA) module to align category distributions globally
and a Graph-based Semantic Transfer (GST) mechanism to
adapt semantics in implicit feature space. Comprehensive
experiments on three adaptation scenarios demonstrate the
superior performance of SCAN.
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