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Abstract

We propose a new object-centric framework for learning-
based stereo 3D object detection. Previous studies build
scene-centric representations that do not consider the signifi-
cant variation among outdoor instances and thus lack the flex-
ibility and functionalities that an instance-level model can of-
fer. We build such an instance-level model by formulating and
tackling a local update problem, i.e., how to predict a refined
update given an initial 3D cuboid guess. We demonstrate
how solving this problem can complement scene-centric ap-
proaches in (i) building a coarse-to-fine multi-resolution sys-
tem, (ii) performing model-agnostic object location refine-
ment and, (iii) conducting stereo 3D tracking-by-detection.
Extensive experiments demonstrate the effectiveness of our
approach, which achieves state-of-the-art performance on the
KITTI benchmark. Code and pre-trained models are available
at https://github.com/Nicholasli1995/SNVC.

Introduction
Accurate perception of surrounding objects’ 3D attributes
is indispensable for autonomous driving, robot navigation,
and traffic surveillance. Active range sensors such as Li-
DAR measures the 3D scene geometry directly to perform
precise 3D localization (Lang et al. 2019; Shi, Wang, and Li
2019). However, LiDAR sensors incur a high cost and can
be limited in perception range where distant objects are only
captured with very few points. On the other hand, passive
sensors like cameras are inexpensive, yet the depth informa-
tion is lost during the image formation process which makes
3D scene understanding a challenging inverse problem. Esti-
mating depth from a single RGB image is ill-posed and leads
to limited 3D object detection performance (Brazil and Liu
2019; Wang et al. 2021a; Lu et al. 2021). Stereo cameras,
simulating a binocular human vision system, are the mini-
mum sensor configuration that can exploit multi-view geom-
etry for more reliable depth inference. Studying stereo 3D
object detection (S3DOD), thus not only is a pursuit of the
vision community that aims at visual scene understanding,
but also offers practical value to complement active sensors
through multi-sensor fusion (Liang et al. 2019).

*The correspondence author is Shichao Li.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Stereo Neural Vernier Caliper (SNVC) consists
of the main scale network M that models a coarse global
scene and the Vernier scale network V that models a fine
local scene.M predicts coarse location pc while V takes a
closer look around pc and makes finer measurements.

Recent state-of-the-art (SOTA) S3DOD approaches take
a scene-centric view and build a data representation for the
whole scene. We use a representative work (Chen et al.
2020) as our baseline, which uses the estimated depth to
build a voxel-based scene representation for object detec-
tion. In contrast to it, our study promotes an object-centric
viewpoint and explores instance-level analysis for S3DOD.
The following practical considerations motivate this study,
which demand the attributes of this object-centric viewpoint
that are not offered by the scene-centric counterpart.

• Cost-accuracy trade-off considering the depth variation:
a distant object usually has lower-resolution (LR) feature
representation compared to a nearby one, which makes
it difficult to precisely recover its 3D attributes. Naively
re-computing high-resolution (HR) features and using a
finer voxel grid for the whole scene lead to intimidat-
ing computational cost and cubic memory growth. This
is also unnecessary if the model performance for nearby
instances already saturates. If an instance-level model is
available, a multi-resolution (MR) system can be built
to mitigate this problem. This system benefits from a
coarse-to-fine design which computes an LR global rep-
resentation and focuses on the tiny instances with com-
plementary HR features1.

• Capability for efficiently handling new frames: videos

1Such HR features can be obtained computationally or physi-
cally with an actively zooming camera (Bellotto et al. 2009).
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are more prevalent in real-world scenarios than two
static stereo images. The scene-centric approaches need
to build a scene representation for every new pair of
frames. With an instance-level model, one only needs to
do so for some key frames and can conduct tracking-by-
detection (Andriluka, Roth, and Schiele 2008), i.e., pro-
cessing only a portion of new frames given region-of-
interests (RoIs) implied by past detections.

• Flexibility in video applications: certain objects are more
important in a 3D scene, e.g., a car heading towards a
driver should draw more attention than a vehicle leav-
ing the field of view. Instance-level analysis can offer
the flexibility to prioritize certain regions when analyz-
ing new frames.

To make an instance-level analysis model useful in all afore-
mentioned scenarios, we can design it as a refinement model
in a recurrent manner. Given an initial 3D bounding box
guess, the model should reason about the 3D space around
the cuboid guess and give an updated prediction. Note the
initial guess can vary for different user scenarios, e.g., it can
be a proposal from an LR global model or the prediction
of the last frame. Thus our research question is how to de-
sign such an instance-level refinement model in the stereo
perception setting? We tackle this problem by designing an
instance-level neural network V which builds a voxel-based
local scene representation and scores each voxel how likely
it is a potential update of an object part. V can be combined
with a global modelM to form an MR S3DOD framework
as illustrated in Fig. 1.M performs scene-level depth esti-
mation and outputs coarse 3D object proposals. Conditioned
on each 3D proposal, V further extracts HR features and
refines its 3D attributes. We name this framework Stereo
Neural Vernier Caliper (SNVC) since it resembles a Vernier
caliper whereM (the main scale) models the 3D scene with
a coarse voxel grid while V (the Vernier scale) models an
HR local scene conditioned on the initial guess. Compared
to prior arts, our approach endows an S3DOD system with
the advantages discussed above and can model fine-grained
structures for important regions with a tractable number of
voxels. Such ability leads to superior detection performance,
especially for the hard instances, i.e., the tiny and occluded
ones. This paper’s contributions are summarized as:

• We propose the first MR framework for voxel-based
S3DOD. The new instance-level model V within it, to our
best knowledge, is also the first HR voxel representation
learning approach tackling the local update problem.

• We study the transferability of V and demonstrate it can
be used as a model-agnostic and plug-and-play refine-
ment module for S3DOD that complements many exist-
ing scene-centric approaches.

• SNVC out-performs previously published results on the
KITTI benchmark for S3DOD at the date of submission
(Sep 8th, 2021).

Related Work
Our study is relevant to the following research directions
while having distinct contributions.

Learning-based 3D object detection aims to learn a map-
ping from sensor input to 3D bounding box representa-
tions (Chen et al. 2015). Depending on the sensor modal-
ity, two parallel lines of research are vision-based methods
(Roddick, Kendall, and Cipolla 2019; Ke et al. 2020; Weng
and Kitani 2019; Wang et al. 2021b; Reading et al. 2021)
and LiDAR-based approaches (Chen et al. 2017; Yan, Mao,
and Li 2018; Zhou and Tuzel 2018; Qi et al. 2018; Li, Wang,
and Wang 2021). Our approach lies in the former which does
not require expensive range sensors. Compared with previ-
ous stereo vision-based studies (Chen et al. 2020; Garg et al.
2020) that focus on global scene modeling, we deal with a
different local update problem and dedicate a new model for
HR instance-level analysis. Our design can complement pre-
vious 3D object detectors that do not share the flexibility and
high precision offered by our approach.
Instance-level analysis in 3D object detection builds a fea-
ture representation for an instance proposal to estimate its
high-quality 3D attributes. FQ-Net (Liu et al. 2019) draws
a projected cuboid proposal on an instance patch and re-
gresses its 3D Intersection-over-Union (IoU) for location re-
finement. RAR-Net (Liu et al. 2020) formulates a reinforce-
ment learning framework for iterative instance pose refine-
ment. 3D-RCNN (Kundu, Li, and Rehg 2018) uses instance
shape as auxiliary supervision yet requires extra annotations
which are not needed by our approach. Notably, all these
methods only consider the monocular case and cannot uti-
lize stereo imagery. ZoomNet (Xu et al. 2020) and Disp R-
CNN (Sun et al. 2020) construct point-based representations
for each instance proposal and require extra mask annotation
during training. Such representations also lose the semantic
features and are less robust for distant and occluded objects
which have few foreground points. We instead propose to
learn a voxel-based representation to encode both semantic
and geometric features.
Voxel-based representation is a classical and simple data
structure encoding 3D features and is widely adopted in
image-based rendering (Seitz and Dyer 1999) and multi-
view reconstruction (Vogiatzis, Torr, and Cipolla 2005).
Early studies utilize hand-crafted features and energy-based
models to encode prior knowledge (Snow, Viola, and Zabih
2000), while recent deep learning-based approaches (Choy
et al. 2016; Riegler, Osman Ulusoy, and Geiger 2017) di-
rectly learn such representations from data. Our approach
learns a voxel-based neural representation for the unique lo-
cal update problem under the stereo perception setting.
High-resolution neural networks was recently pro-
posed (Sun et al. 2019) to model fine-grained spatial struc-
ture details to benefit tasks that involve precise localization.
However, later studies only focus on monocular and 2D
tasks (Wang et al. 2020; Cheng et al. 2020; Li et al. 2020,
2021). This work instead studies HR representation learning
for S3DOD and can build an unprecedented fine 3D spatial
resolution of 3 centimeters in the real self-driving scenarios.
Multi-resolution volumetric representation was previ-
ously studied for 3D shape representation (Riegler, Os-
man Ulusoy, and Geiger 2017) and reconstruction (Blaha
et al. 2016) where less important region (e.g., free space)
is represented with coarse voxel grid and a finer voxel grid
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is used for regions close to object surface adaptively. The
octree (Laine and Karras 2010) was a popular choice to gen-
erate an MR partition of a 3D region. We argue that there is
also a large variation of importance for different regions in
S3DOD where regions near objects have a larger influence
on the detection performance. We thus introduce the idea of
varying resolution to voxel-based S3DOD for the first time
with a new MR system.

Cascaded 3D Object Detection
SNVC can be formulated as a cascaded model represented
as the set {M,V} consisting of the main scale networkM
and the Vernier scale network V . Given an RGB image pair
(L,R) captured by calibrated stereo cameras, M builds a
coarse representation of the global 3D scene and predicts q
3D bounding box proposals {pcq}Nq=1 as

M(L,R; θM) = {pcq}Nq=1. (1)

Conditioned on each coarse proposal pcq , V deals with the
local update problem by constructing an HR local scene rep-
resentation and infers an offset δpq to obtain the refined pose
pfq = pcq + δpq .

V(L,R; θV |pcq) = δpq. (2)

This framework is general and does not enforce any assump-
tion on the architecture design ofM. As we will show, one
design of V can handle coarse predictions from different im-
plementations ofM and thus be model-agnostic. In light of
this, we only detail our architecture of V in the main text.
M used in our final system is sketched in Fig. 3 whose ar-
chitecture details are in the supplementary material (SM).

High-resolution Instance-level Update
In this study, we propose to design V based on a three-step
procedure:

• Space partitioning: we build a dense voxel grid in a 3D
RoI conditioned on the coarse 3D proposal where each
voxel is a candidate for a part location update.

• Deep voxel coloring: we aggregate high-level features
extracted by a deep neural network for each voxel.

• Voting: we extract spatial structural information from the
colored voxel grid and score each voxel how likely it is a
location update of an object part. The pose update is then
estimated via a vote based on the predicted object part
locations and confidences.

The first step builds a very dense local 3D scene repre-
sentation aiming at high-precision 3D object localization. In
step two we study two strategies that correspond to two user
scenarios and lead to two architecture variants. Our strat-
egy in step three utilizes several pre-defined cuboid parts for
robust inference considering occlusion. The following sub-
sections describe each step in detail.
Candidate generation. Given a coarse 3D bounding
box prediction pcq represented as a 7-tuple pcq =
(xq, yq, zq, hq, wq, lq, θq), where (xq, yq, zq), (hq, wq, lq)
and θq denotes its translation, size (height, width, length)

Left
Image

Right 
Image

Ground Truth 3D Box

Coarse Prediction

3D RoI

Candidate Location

Receptive Field

Projection

L

W

H

Figure 2: Illustration of the local update problem. A 3D
region-of-interest (brown) is defined based on the coarse
proposal (red). Each candidate (yellow ball) aggregates
high-level stereo visual features. Such high-resolution volu-
metric features are used to infer the ground truth 3D bound-
ing box (green). Best viewed in color. A coarse grid is drawn
for visualization while the real grid is much finer.

and orientation respectively. These quantities are repre-
sented in the camera coordinate system (CCS). We define
a 3D RoI rq around pcq , within which V needs to predict
the instance pose update. We use a cuboid RoI for conve-
nience and represent rq as (xq, yq, zq, H,W,L, θq). rq has
the same 4-D pose (xq, yq, zq, θq) as pcq and a pre-defined
range (H,W,L). The Vernier scale is a fine partition of rq
represented as a 3D voxel grid {di,j,k}NH ,NW ,NLi=1,j=1,k=1 withNH ,
NW , and NL voxels uniformly sampled along the height,
width and length directions respectively. Each voxel di,j,k is
a candidate for precise location update. Fig. 2 illustrates a rq
and its corresponding candidates.

We represent rq with the camera coordinates of its center
and the eight corners by applying a homography encoding
translation and rotation as

H4×4

O3×9

1

 =

 cosθq 0 sinθq xq
0 1 0 yq

−sinθq 0 cosθq zq
0 0 0 1


O3×9

1

 ,
(3)

where O3×9 represent the 9 parts in the object coordinate
system as0 L
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L
2

L
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2 −L2 −L2 −L2 −L2
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2 −H2

H
2 −H2

H
2 −H2

H
2

0 W
2

W
2 −W2 −W2

W
2

W
2 −W2 −W2

 .
(4)

Similarly, di,j,k can be represented in the CCS as

di,j,k = H4×4

−NL∆L/2 + (k − 1)∆L
−NH∆H/2 + (i− 1)∆H
NW∆W/2− (j − 1)∆W

1

 , (5)

where [−NL∆L
2 , −NH∆H

2 , NW∆W
2 ] is the left-back-top cor-

ner of the 3D grid, and [∆L,∆H,∆W ] = [ LNL ,
H
NH

, W
NW

]
gives the grid resolution. In experiments, we specify
∆L,∆H,∆W as 3, 10, and 3 centimeters respectively and
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[NL, NH , NW ] = [192, 32, 128]. Such 3-cm resolution is in
contrast to a 20-cm or even coarser resolution used in our
M and previous studies (Chen et al. 2020; Li, Su, and Zhao
2021; Garg et al. 2020).
Feature aggregation. We design two types of feature aggre-
gation strategies depending on whether one can reuse fea-
tures computed by M. These two strategies result in two
model variants (V-A and V-S).

For the V-A (model-agnostic) models, we assume no
knowledge of the architecture ofM and do not reuse its fea-
tures. This type of model is useful for dealing with proposals
from different 3DOD models or handling new frames that
have no features computed yet. In this case, we aggregate
feature for each candidate from the left/right visual features
LF /RF , which are obtained from a fully convolution net-
work LF /RF = N 2D(L/R; θN ). Specifically, the feature
vector for di,j,k is

Fi,j,k =W(LF ,Kldi,j,k)⊕W(RF ,Krdi,j,k), (6)

where Kl,Kr are the intrinsic parameters of the left-
/right cameras and WF is a warping function and
W(LF ,Kldi,j,k) extracts the feature at Kldi,j,k from the
corresponding location on the feature maps LF . W is im-
plemented as bi-linear interpolation.

For the V-S (model-specific) models, we assume thatM
also constructs a volumetric scene representation (e.g., a
global cost-volume Cg). This case happens when one builds
a two-stage voxel-based detector where V has access to pre-
computed features. Here we sample Fi,j,k from such fea-
tures as Fi,j,k =W(Cg, di,j,k) to save computation.

After aggregation, the grid is colored with high-level vi-
sual features. This is in contrast to the low-level pixel in-
tensity used in the classical voxel coloring study (Seitz and
Dyer 1999). In addition, all voxels are colored instead of col-
oring only the consistent voxels (Seitz and Dyer 1999) be-
cause the Lambertian scene assumption does not hold. Sub-
sequently a network N 3D processes the aggregated volu-
metric representation and predicts the output detailed below.
Output representation. For each pcq , we encode the ground
truth update as dense multi-part confidence since we imple-
ment N 3D as a CNN which is known good at dense clas-
sification tasks. For part m (m = 1, . . . ,K), we assign
each candidate a ground truth confidence cmi,j,k. In imple-
mentation we adopt the ground plane assumption (Roddick,
Kendall, and Cipolla 2019) for autonomous driving datasets
and ignore the offset in the height direction, which leads to
a Bird’s Eye View (BEV) confidence map as cmj,k. This does
not reduce the generality of our framework and one can keep
the original dimension if the height offset is significant in a
different dataset. Denote the ground truth location for part
m as (j?, k?). The confidence map is defined as

cmj,k = e−
(j−j?)2+(k−k?)2

σ2 . (7)

In total, K=9 parts including the ground truth cuboid center
and its 8 corners are used as similarly defined in Eq. (4). To
reduce quantization errors, we transform the predicted con-
fidences ĉj,k into x-z coordinates ŶK×2 using several con-
volution layers as in (Li et al. 2021).

Model instantiation. We have specified the inputs and out-
puts of V , where detailed parameters and network compo-
nents N 2D and N 3D are abstracted away. This makes the
framework flexible and one can specify these parameters and
sub-networks based on its computation budget. In our study,
N 2D is implemented as HRNet-W32 (Sun et al. 2019). Af-
ter coloring the voxel grid, we use 3D convolution layers and
a 3D hourglass network to extract 3D spatial features. The
3D features are pooled and reshaped into BEV feature maps
that are further transformed into confidence maps. The net-
work architecture of V is depicted in Fig. 4 and detailed in
the SM.

Error-statistics-agnostic Training
We train M and V separately. The training process of M
can vary for different possible implementations. For theM
used in our study, we use a similar procedure as the anchor-
based baseline (Chen et al. 2020). The training supervision
consists of a depth regression loss, an anchor classification
loss, and an offset regression loss. The details are in the SM.

Training V is the key step in our framework, where the in-
puts and targets for training V are not readily available. We
propose a simple error-statistics-agnostic (ESA) strategy to
synthesize training data. This training strategy does not de-
pend onM and can be used for any proposal model conve-
niently. Notably, PoseFix (Moon, Chang, and Lee 2019) pro-
posed a refinement model for a different task and assumes
there are certain types of errors from the predictions of the
coarse models. Such error statistics are themselves collected
from extra validation results. In contrast, our strategy as-
sumes a Gaussian prior and does not require more specific
knowledge of the error behavior.
Generating training data. For each ground truth 3D
bounding box Bi = (xi, yi, zi, hi, wi, li, θi), we simu-
late a coarse prediction by adding a noise vector ni =
(nxi , n

y
i , n

z
i , n

h
i , n

w
i , n

l
i, n

θ
i ) where n ∼ N(0,Σ). We further

assume that the noise for each attribute is independent and
the covariance matrix Σ is diagonal. In experiments the stan-
dard derivations for the above attributes are 0.3m, 0m, 0.3m,
5cm, 5cm, 5cm and 5◦ respectively. Larger noise can be used
if one assumes a weakerM. The simulated coarse prediction
pci = Bi+ni, along with the ground truth confidence maps of
Bi, forms one training pair of V . The Gaussian perturbation
is added on-line for each instance in every iteration, which
behaves like data augmentation so that V does not over-fit to
a special subset of inputs.
Loss function. We penalize the predicted confidence maps
of V with L2 loss as Lconf = L2(ĉj,k, cj,k). The trans-
formed coordinates are penalized with smooth L1 loss
Lcoord = SL1(ŶK×2,YK×2). For training V-S models, we
have LStotal = Lconf + Lcoord.

For V-A models, apart from supervising these regression
targets, we add an extra intermediate supervision since we
cannot reuse features encoding the scene depth. We add a
3D convolution head that classifies for each candidate di,j,k
whether it is a foreground or not. This serves to add depth
cues to train V similar to (Chen et al. 2020) yet different
in that we directly add supervision in the 3D space instead
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Figure 3: Diagram of the used main scale networkM following a similar design of DSGN (Chen et al. 2020). A global voxel
grid is used to sample image and cost volume features and construct a volumetric representation of the 3D scene in a pre-
defined spatial range. This volumetric representation is converted into Bird’s Eye View (BEV) feature maps. Object proposals
are obtained by anchor classification and offset regression based on the BEV feature maps. Details are included in our SM.

Left RoI

Pre-computed feature Cg from M

512×512×3
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Left Features LF

W:128 × H:128 × F:32

N 2D

Volumetric Features After Coloring
W:128 × H:32 × D:192 × F:64

W:128 × H:32 × D:192 × F:32

3D Conv × 1 W:128 × H:32 × D:192 × F:32
3D Features

3D Conv × 3
Hourglass × 1

Foreground Classification

3D Conv × 2

W:128 × H:32 × D:192 × 1

C

W:128 × H:32 × D:192 × F:64
3D Features
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AvgPool, Reshape
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W:128 × D:192 × F:64
BEV Features

Part Confidence ĉj,k

W:128 × D:192 × K:9

Part Coordinates ŶK×2
K:9 × 2

2D Hourglass× 1
2D Conv × 1

Figure 4: Architecture of the Vernier scale network V . High-resolution features are extracted from left/right regions of interest
(RoIs). A uniform 3D grid conditioned on the current prediction is sampled. Each grid point is projected back to the RoIs to
aggregate image features. Pre-computed features fromM are used if available. The grid features are processed by a 3D CNN
to predict the part confidence maps which implies the pose update.

of the cost volume used in (Chen et al. 2020). For each
point in the captured point cloud in rq , the candidate it occu-
pies after coordinate quantization is treated as a foreground.
A candidate outside of the ground truth box Bq is treated
as background. All other candidates are not assigned labels
since they can be foreground (a foreground not recorded by
the LiDAR) as well as background (free space). Since there
are much more background candidates than the foreground
ones, we use focal loss (Lin et al. 2017) to supervise this
classification task as

Lfg =


−α(1− p̂i,j,k)γ log(p̂i,j,k), pi,j,k = 1,

−(1− α)p̂γi,j,klog(1− p̂i,j,k), pi,j,k = 0

0, else.

where p̂i,j,k is the predicted foreground probability of candi-
date di,j,k and pi,j,k is the ground-truth one where pi,j,k = 1
for foreground. We use the default parameters γ = 2 and
α = 0.25 and the total training loss LAtotal = Lconf +
Lcoord + Lfg .

Confidence-aware Robust Inference
During inference, the update prediction pfq derives from the
predicted confidence maps ĉj,k and x-z coordinates ŶK×2,

which indicate the tentative update position for each part.
Certain study (Peng et al. 2020) on instance-level S3DOD
models only predicts the center of the object. This is sim-
ilar to K = 1 in our framework, where the predicted new
center is used to refine the instance translation. However,
this could lead to sub-optimal results when the center is oc-
cluded or hard to estimate. We thus propose an update strat-
egy by utilizing K=9 parts along with predicted confidence.
The predicted coordinates ŶK×2 may not define parallel and
orthogonal edges. We thus employ a 9-point registration ap-
proach by estimating a rigid transformation {R̂, T̂} as

R̂, T̂ = arg min
R,T

W||RỸK×2 + T− ŶK×2||, (8)

where ỸK×2 is the same part coordinates of the current pro-
posal and W is the diagonal matrix with part confidences as
its non-zero elements. The closed-form solution to Eq. (8) is

R̂ = VTUT (9)
T̂ = −R̂Ỹcentroid + Ŷcentroid (10)

where U, V gives the singular decomposition as USV =

Ỹ
T

WŶ where Ỹcentroid is the average location of the K
parts. This solution is the global optimum of Eq. (8) as de-
tailed in the SM. The refined 3D box is then obtained by ap-
plying this estimated transformation to the current proposal.
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Figure 5: Qualitative results on KITTI val split. Best viewed in color. More results can be found in the supplementary material.

AP3D@R11 APBEV @R11Method Reference Easy Moderate Hard Easy Moderate Hard
MLF (Xu and Chen 2018) CVPR’ 18 – 9.80 – – 19.54 –

TLNet (Qin, Wang, and Lu 2019) CVPR’ 19 18.15 14.26 13.72 29.22 21.88 18.83
Stereo R-CNN (Li, Chen, and Shen 2019) CVPR’ 19 54.1 36.7 31.1 68.5 48.3 41.5

PL: F-PointNet (Wang et al. 2019) CVPR’ 19 59.4 39.8 33.5 72.8 51.8 33.5
PL++: AVOD (You et al. 2019) ICLR’ 19 63.2 46.8 39.8 77.0 63.7 56.0

IDA-3D (Peng et al. 2020) CVPR’ 20 54.97 37.45 32.23 70.68 50.21 42.93
Disp-RCNN (Sun et al. 2020) CVPR’ 20 64.29 47.73 40.11 77.63 64.38 50.68

DSGN (Chen et al. 2020) CVPR’ 20 72.31 54.27 47.71 83.24 63.91 57.83
ZoomNet (Xu et al. 2020) AAAI’ 20 62.96 50.47 43.63 78.68 66.19 57.60

RTS-3D (Li, Su, and Zhao 2021) AAAI’ 21 64.76 46.70 39.27 77.50 58.65 50.14
Disp-RCNN-flb* (Chen et al. 2021) T-PAMI’ 21 70.11 54.43 47.40 77.47 66.06 57.76

SNVC (Ours) AAAI’ 22 77.29 63.75 56.81 87.07 72.95 66.77

Table 1: Quantitative comparison of AP3D and APBEV with SOTA stereo 3D object detection approaches on KITTI val split.
Disp-RCNN-flb* requires extra mask annotation for training. 11 recall values are used to make the comparison consistent.

Experiments
We first introduce the used benchmark and evaluation met-
rics and then compare the overall performance of our
MR SNVC with previously published approaches. We then
demonstrate how our approach can improve existing 3D ob-
ject detectors as a plug-and-play module. Finally, we present
an ablation study on key design factors of V .
Dataset. We employ the KITTI object detection bench-
mark (Geiger, Lenz, and Urtasun 2012) for evaluation,
which contains outdoor RGB images captured with cali-
brated stereo cameras. The dataset is split into 7,481 training
images and 7,518 testing images. The training images are
further split into the train split and the val split containing
3,712 and 3,769 images respectively. We use the train split
for training and conduct hyper-parameter tuning on the val
split. When reporting the model performance on the testing
set, both the train split and the val split are used for training.
Evaluation metrics. We conduct the evaluation for the car
category. We employ the official average precision metrics to
validate our approach. 3D Average Precision (AP3D) mea-
sures precision at 41 uniformly sampled recall values where
a true positive is a predicted 3D box that has 3D intersection-
over-union (IoU) > 0.7 with the ground truth. Bird Eye’s
View Average Precision (APBEV ) instead uses 2D IoU >
0.7 as the criterion where the 3D boxes are projected to the
ground plane and the object heights are ignored. The KITTI
benchmark further defines three sets of ground truth labels
with different difficulty levels as easy, moderate, and hard.
The difficulty level of one ground truth label is determined

according to its 2D bounding box height, its occlusion level,
and its truncation level. Evaluation is performed in paral-
lel in these three different sets of ground truth labels. The
hard set contains all the ground truth labels while the easy
and moderate sets contain a fraction of easier objects. For
consistency with previous works, results on the val split are
reported using 11 recall values (denoted as @R11).
Training details are attached in our SM.
Comparison with state-of-the-arts. Tab. 1 and Tab. 2 com-
pares the 3D object detection performance of our approach
with other previously published methods on the val split
and the official testing set respectively. Fig. 5 shows 3D
object detections of our system on the val split. Our sys-
tem using V-S outperforms previous approaches in all met-
rics with a clear margin. Compared with (Chen et al. 2020)
that only builds coarse scene-level representation, our sys-
tem benefits from the proposed HR instance-level model that
leads to more precise 3D localization. Compared with the
approaches that build instance-level point cloud (Xu et al.
2020; Sun et al. 2020), our voxel-based representation shows
superior performance, especially for the hard category. We
believe the reason is that the instance point cloud in (Xu et al.
2020; Sun et al. 2020) is sensitive to the depth estimation er-
ror and fails to handle distant and occluded objects due to a
small number of points and lack of semantic visual features.
In this camera-ready version paper, we also refer to a con-
current work (Guo et al. 2021) starting from the same base-
line (DSGN) as us which regularizes voxel representation
learning by distilling knowledge from an extra pre-trained

1381



Figure 6: Qualitative comparison with RTS-3D (Li, Su,
and Zhao 2021) for objects on KITTI val split. The image
patches are RoIs on the left image and the 3D cuboid pre-
dictions are shown as bounding boxes in the bird’s eye view
plots. Note the objects are distant from the cameras.

network. The contribution of distillation is complementary
to ours. None of any methods in Tab. 1/2 needs this process
known as learning from privileged information (Lopez-Paz
et al. 2015) or an extra teacher.
Model-agnostic refinement. Tab. 3 shows the result when
utilizing our V along with other existing 3D object detectors.
We download the pre-trained weights from the official im-
plementation2 of IDA-3D and RTS-3D to generate propos-
als and use our V to refine them. Note that using V leads to
consistent and significant performance gain. This result val-
idates that our V can be used as a model-agnostic refinement
model. We show predictions for some distant and partially-
occluded objects in Fig. 6 where our approach obtains better
pose estimation performance compared to RTS-3D. RTS-3D
can be used to generate coarse predictions in real-time appli-
cations while our V can complement it to obtain high-quality
predictions only when necessary.
Which objects benefit more from V? Tab. 3 shows the
overall improvement in 3DOD performance, yet it does not
reflect how the improvement is related to different object
attributes. Fig. 7 instead shows which objects enjoy more
performance improvements using the same proposals as in
Tab. 3. One can use such knowledge to decide which coarse
proposal to refine in practice. Each ground truth (GT) object
is assigned to the corresponding bin based on an attribute
such as its depth, if there is one matching predicted object.
A predicted object matches a ground truth if their 3D IoU
> 0.3. The match that has the largest 3D IoU is recorded
for each GT object. The average of the matching 3D IoUs is
shown as the line plots for GT objects in each bin.

The detection quality in terms of AP3D improves for GT
objects in all bins after using our V for refinement, in terms
of all three attributes that influence the difficulty of detec-

2Different environments led to slight difference compared to the
published results in Tab. 1.

Figure 7: 3D object detection performance with respect to
ground truth depth (top), occlusion level (middle) and trun-
cation level (bottom) on the KITTI val split. Each bar in-
dicates the number of ground truth (GT) objects that fall in
the corresponding bin and are detected with 3D IoU > 0.3.
A red cross shows the average 3D IoU for those detected
GT objects in a bin before utilizing our V for refinement. A
green dot shows such a result after using V . The occlusion
level and truncation level are annotated for each ground truth
object in the KITTI benchmark.

tion. Note even if the objects are heavily occluded or par-
tially truncated, using V still leads to a robust performance
boost. RTS-3D also uses a voxel-based representation, and
we can observe that the improvement over it for the middle-
range and distant objects is more significant than the nearby
objects. This validates our assumption that extracting com-
plementary HR features are more helpful for the tiny objects
that only have LR representations in the global feature maps.
Effect of learning multiple object parts. To validate our
multi-part registration approach, we re-train another model
to predict only the center confidence. This model uses the
predicted center to update the proposal translation during
inference. The performance comparison is shown in Tab. 4,
where our multi-part strategy leads to consistently better per-
formance since it is more robust to partially-occluded ob-
jects whose visible parts can be used to provide a more reli-
able estimate.
Effect of voxel size. To demonstrate the advantage of learn-
ing an HR voxel representation, we train V with a varying
voxel resolution and the results of using these variants with
RTS-3D are shown in Tab. 5. We can observe that using a
smaller voxel size significantly improves the 3DOD perfor-
mance which justifies our choice of parameters. While us-
ing a much coarser voxel grid (second row) leads to worse
results, such performance is still better than using RTS-3D
along without our V . However, when the voxel grid is ex-
tremely coarse (first row), V cannot learn effective volumet-
ric representation for S3DOD.
Comparison of space requirement. Building a uniform
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Method Reference AP3D@R40 APBEV @R40

Easy Moderate Hard Easy Moderate Hard
TLNet (Qin, Wang, and Lu 2019) CVPR’ 19 7.64 4.37 3.74 13.71 7.69 6.73

Stereo R-CNN (Li, Chen, and Shen 2019) CVPR’ 19 47.58 30.23 23.72 61.92 41.31 33.42
ZoomNet (Xu et al. 2020) AAAI’ 20 55.98 38.64 30.97 72.94 54.91 44.14
IDA-3D (Peng et al. 2020) CVPR’ 20 45.09 29.32 23.13 61.87 42.47 34.59

Disp-RCNN (Sun et al. 2020) CVPR’ 20 59.58 39.34 31.99 74.07 52.34 43.77
DSGN (Chen et al. 2020) CVPR’ 20 73.50 52.18 45.14 82.90 65.05 56.60
CDN (Garg et al. 2020) NeurIPS’ 20 74.52 54.22 46.36 83.32 66.24 57.65

RTS-3D (Li, Su, and Zhao 2021) AAAI’ 21 58.51 37.38 31.12 72.17 51.79 43.19
Disp-RCNN-flb* (Chen et al. 2021) T-PAMI’ 21 68.21 45.78 37.73 79.76 58.62 47.73

SNVC (Ours) AAAI’ 22 78.54 61.34 54.23 86.88 73.61 64.49

Table 2: Overall system performance evaluated with AP3D and APBEV , and compared with SOTA stereo 3D object detection
approaches on KITTI test set (official KITTI leader-board).The official recall values are used.

Figure 8: A comparison of needed number of voxels (NoVs)
w and w/o our MR strategy. Vanilla: NoVs used for repre-
senting a global scene using a uniform resolution. Vernier:
NoVs used to model a local scene in our V . Main scale:
NoVs used in our M with a resolution of 0.2m. SNVC,
N=x: total NoVs as a sum of NoVs used in M plus that
used in building local scene for x proposals.

voxel grid for the global scene as used in the scene-centric
approaches needs intimidating memory that is not scalable
to smaller voxel size. A comparison of the required num-
ber of voxels (NoVs) required in such systems and that
needed in our proposed MR system is shown in Fig. 8. The
NoVs used in the vanilla approach is Q(Lg,Wg, Hg,∆) =
Lg∗Wg∗Hg

∆3 where [Lg,Wg, Hg] = [60m, 60m, 4m] are the
global spatial range and ∆ is the voxel size. In contrast,
the NoVs used in our approach is NL ∗ NH ∗ NW ∗ N +
Q(Lg,Wg, Hg,∆g) where ∆g is the used global voxel size
in the main scale network (0.2m) and N is the number of
selected coarse proposals. Note that our SNVC uses signif-
icantly fewer NoVs than the vanilla approach to achieve a
finer representation beyond ∆g , even for a large number of
proposals (N=50). Our framework can thus model the im-
portant regions at a high resolution and keep the total mem-
ory usage tractable at the same time.
More ablation studies and results can be found in our SM
which includes how V can be employed for tracking-by-
detection using the predictions from the previous frame as
proposals.

Method AP3D/APBEV @R11

Easy Moderate Hard
RTS-3D 59.31/74.49 41.61/53.98 34.67/46.66
RTS-3D + V 69.25/82.71 52.92/65.75 45.82/57.47
IDA-3D 53.59/69.28 36.79/50.11 32.34/43.31
IDA-3D + V 64.13/80.81 48.89/62.19 43.00/55.03

Table 3: AP3D/APBEV evaluated on the KITTI val split
when using V-A as a model-agnostic refinement module
with other 3D object detectors.

Method AP3D/APBEV @R11

Easy Moderate Hard
Center-only (K=1) 64.94/77.89 47.22/64.00 43.73/55.84
Part-based (K=9) 69.25/82.71 52.92/65.75 45.82/57.47

Table 4: The same evaluation for RTS-3D + V as in Tab. 3
with varying number of parts K.

(NL, NH , NW )
AP3D/APBEV @R11

Easy Moderate Hard
(24, 16, 16) 33.65/43.80 27.84/37.38 24.30/32.64
(48, 16, 32) 60.10/73.25 44.31/56.19 37.45/53.30
(192, 32, 128) 69.25/82.71 52.92/65.75 45.82/57.47

Table 5: The same evaluation for RTS-3D + V as in Tab. 3
with varying voxel size.

Conclusion
We introduce the idea of multi-resolution modeling to voxel-
based stereo 3D object detection by modeling different re-
gions with varying resolutions. This approach can keep the
detection problem computationally tractable and can model
important regions with smaller voxels to achieve high pre-
cision. A new instance-level model is designed, which sam-
ples candidate 3D locations and uses predicted object part
coordinates to estimate a pose update. Our approach is vali-
dated to achieve state-of-the-art stereo 3D object detection
performance and can perform model-agnostic refinement.
For future study, instead of using a sampling grid with a
fixed range, information from previous frames can be used
to build a motion model that helps predict the future object
location and provide a better clue on where to sample.
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