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Abstract

Unsupervised video object segmentation (UVOS) is a per-
pixel binary labeling problem which aims at separating the
foreground object from the background in the video without
using the ground truth (GT) mask of the foreground object.
Most of the previous UVOS models use the first frame or
the entire video as a reference frame to specify the mask of
the foreground object. Our question is why the first frame
should be selected as a reference frame or why the entire
video should be used to specify the mask. We believe that
we can select a better reference frame to achieve the better
UVOS performance than using only the first frame or the
entire video as a reference frame. In our paper, we propose
Easy Frame Selector (EFS). The EFS enables us to select
an “easy” reference frame that makes the subsequent VOS
become easy, thereby improving the VOS performance. Fur-
thermore, we propose a new framework named as Iterative
Mask Propagation (IMP). In the framework, we repeat ap-
plying EFS to the given video and selecting an “easier” refer-
ence frame from the video than the previous iteration, increas-
ing the VOS performance incrementally. The IMP consists
of EFS, Bi-directional Mask Prediction (BMP), and Tempo-
ral Information Updating (TIU). From the proposed frame-
work, we achieve state-of-the-art performance in three UVOS
benchmark sets: DAVIS16, FBMS, and SegTrack-V2.

Introduction
Video Object Segmentation (VOS) is a task that seg-
ments the objects as pixel-level binary masks from videos.
In general, VOS is divided into two other tasks: Semi-
supervised Video Object Segmentation (SVOS) and Unsu-
pervised Video Object Segmentation (UVOS). At train time,
video frames and their ground truth (GT) masks are given to
both tasks. They are trained in a supervised manner. At in-
ference time, the first frame’s mask annotation of foreground
objects is given to SVOS. On the other hand, only the video
frames without any annotations are given to UVOS. In this
paper, we propose a novel framework for UVOS.

In SVOS, as the first frame’s GT mask is given, most
SVOS models indeed predict the remaining frames’ masks
with the first frame as a reference frame. For UVOS, there
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Figure 1: Three experimental results according to the ref-
erence frame selection: (1) referencing the first frame only
(yellow), (2) referencing entire frames (green), and (3) ref-
erencing the easy frame which predicted by our Easy Frame
Selector (red). We plot the J&F scores computed by pre-
dicted mask for every frame according to the selection.
Black dots indicate the selected reference frame(s). Our ap-
proach (red) shows superior performance than other refer-
ence frame selection methods (yellow and green) in every
frame. Note that predicted masks are express on the image
and the dotted arrows indicate the positions of each frame.

is no need to use the first frame as a reference frame be-
cause there is no annotation even for the first frame. Thus,
any frame can be a reference frame in UVOS. Especially,
we call the reference frame an easy/hard frame according to
how easy to predict a foreground object for the remaining
frames from it.

Most UVOS methods (Tokmakov, Alahari, and Schmid
2017b; Jain, Xiong, and Grauman 2017; Tokmakov, Alahari,
and Schmid 2017a; Cheng et al. 2017; Song et al. 2018;
Yang et al. 2019; Lu et al. 2019; Wang et al. 2019; Faisal
et al. 2019; Siam et al. 2019; Tokmakov, Schmid, and Ala-
hari 2019; Zhou et al. 2020; Zhuo et al. 2019) find the ob-
ject’s mask based on various types of reference frames. In
Yang et al. (2019), they call the first frame as an anchor
frame and use it as a reference frame. However, the first
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frame is not always the best reference frame as shown in
Figure 1. To enlarge information to refer, some papers (Tok-
makov, Alahari, and Schmid 2017b; Song et al. 2018; Lu
et al. 2019; Wang et al. 2019; Faisal et al. 2019; Tokmakov,
Schmid, and Alahari 2019; Zhuo et al. 2019) use the larger
number of reference frames. Especially, Song et al. (2018);
Wang et al. (2019); Faisal et al. (2019) use entire frames
as reference frames. In this case, the chance to use easy
frames as reference frames is enhanced. But, the chance to
use hard frames as reference frames is also enhanced at the
same time. Hard frames can deteriorate the good prediction
from easy frames and can lead to worse performance.

In this paper, to address the above issues, we propose Easy
Frame Selector (EFS), which can select easy frames. In Fig-
ure 1, the yellow line shows the accuracy of mask predic-
tion using the first frame as a reference frame. The accuracy
is evaluated with J&F which is an evaluation metric for
DAVIS. Here, when we use the entire frames as reference
frames to increase the number of the reference frame as like
in Song et al. (2018); Wang et al. (2019); Faisal et al. (2019),
the accuracy is slightly raised, as shown in the green line.
The red line shows that we surpass the other two even with
a single reference frame selected by EFS. It definitely shows
why EFS is needed.

EFS takes a pair of an image and its predicted mask ac-
quired from Salient Object Detection (SOD) as an input in
a frame-by-frame manner. Then, EFS estimates the difficul-
ties of the frames and makes a top-k selection as reference
frames based on the difficulties. Due to EFS, we can prevent
the propagation of inaccurate masks by filtering out the hard
frames.

After selecting easy frames, we predict masks for the re-
maining frames from easy frames. Then, the quality of pre-
dicted masks becomes better than the masks acquired by
SOD. And, this better-quality masks can be used as saliency
cues recursively. Again, we select new easy frames from the
better-quality masks. Then, we predict masks for the remain-
ing frames from the newly selected easy frames. This itera-
tive process is repeated and we can get accurate masks. We
propose this iterative structure as Iterative Mask Propagation
(IMP), which makes an easy frame be easier and can predict
better-quality masks from the easier frame.

In this paper, we focus on selecting easy frames to be used
as reference frames. We show that using easy frames as ref-
erence frames is how effective by many experiments. Also,
We update the saliency cues to get richer temporal infor-
mation by our novel iterative structure. Hence, easy frames
gradually become easier so that our proposed framework im-
prove the accuracy by a large gap. Our main contributions
can be summarized as follows:

• We propose Easy Frame Selector module that selects the
top-k easy frames.

• We propose Iterative Mask Propagation which can make
a better-quality prediction from the easier frame and far
easier frame selection from the better-quality masks iter-
atively.

• We achieve state-of-the-art performance at three UVOS
benchmark sets (DAVIS16, FBMS, and SegTrack-V2)

from our simple yet powerful framework.

Related Work
Semi-supervised Video Object Segmentation

Video Object Segmentation (VOS) represents the tasks that
segment the object’s mask in a video sequence. Semi-
supervised Video Object Segmentation (SVOS), one of the
subcategories of VOS, is a task that provides the object’s
mask in the first frame as a clue to segment. In other words,
it predicts the foreground’s mask with the first frame as a
reference frame.

In Griffin and Corso (2019), they raise doubts about it. Al-
though SVOS task provides the GT mask at the first frame,
they experiment to provide the mask at another frame. They
observe that some other frames make a better performance
than the first frame as a reference frame.

We also think that the selection of a reference frame is
important. We have a similar motive, but our solution is dif-
ferent because of the disparity between the tasks. They focus
on SVOS, so they aim to determine which frame to annotate
instead of the first frame. On the other hand, we cannot have
any annotation for every frame in UVOS, but it is still impor-
tant to have a good reference frame. Therefore, we propose
Easy Frame Selector (EFS), which can select the easy frame.

Unsupervised Video Object Segmentation

Unlike SVOS, UVOS does not provide GT annotation for
every frame in videos at inference time. Since only the
video, which is a series of RGB images, is given for UVOS,
there is no given information to refer to like in SVOS. Thus,
we need to find such information to refer to in a video. This
useful information is called saliency cues.

In Jain, Xiong, and Grauman (2017); Wang et al. (2019);
Faisal et al. (2019); Tokmakov, Schmid, and Alahari (2019);
Zhuo et al. (2019), they use the object saliency cue. Ob-
ject saliency cue is a localization of a frame-level object,
through General Object Detector (GOD), Salient Object De-
tector (SOD) or other basic object detectors such as Faster-
RCNN (Ren et al. 2016) and YOLO (Redmon et al. 2016).
It tells where the foreground object exists. It is often used by
combining it with motion saliency cues to predict the masks
in some papers (Jain, Xiong, and Grauman 2017; Faisal et al.
2019; Tokmakov, Schmid, and Alahari 2019; Zhuo et al.
2019). Also, it is also used to predict adding some tempo-
ral information by LSTM in Wang et al. (2019).

In this paper, we also exploit the object saliency cue.
However, the object saliency cue has a fatal disadvantage. It
does not contain any temporal information. Due to the lack
of temporal information, it is difficult to discriminate sim-
ilar instances. To overcome the disadvantage, we propose
Iterative Mask Propagation (IMP). IMP transfers temporal
information to the saliency cues by propagation. By itera-
tively updating the saliency cues with temporal information,
similar instances can be discriminated by acquired temporal
information.

1246



SOD SOD SOD SOD

EFS EFS EFS EFS

0.71 0.37 0.08 0.18

SOD

EFS

0.22

Video Frames

Saliency Masks
(Saliency cues)

Bi-directional Mask Propagation
Mask Propagated by SVOS

… …

t = treft = 1 t = 2 t = tref-1 t = tref+1 t = Tt = T-1

Temporal Information Updating
Mask Propagated by SVOS

… …

t = treft = 1 t = 2 t = tref-1 t = tref+1 t = Tt = T-1

Reference frame selected by EFS

EFS

0.69

EFS

0.68

EFS

0.71

EFS

0.73

EFS

0.83

EFS

0.5

EFS

0.75

Iterative Mask Propagation

Initial Mask Prediction

Figure 2: Overall architecture for our proposed method. First, each video frame is fed to SOD network (empty red block) to
get their saliency masks. This process is Initial Mask Prediction (yellow-filled-bloack). EFS (empty blue block) estimates their
qualities. The numbers connected by downside arrows from EFS are the estimated scores of the pairs of images and masks.
Then, EFS selects easy frame(s) with the highest score as a reference frame. (For straightforward depiction, we only show a
case of using a single easy frame.) From the reference frame, the mask is propagated by SVOS bi-directionally (red arrows).
By propagating the masks at both ends to the selected easy frame, saliency cues are updated with temporal information (blue
arrows). Then, we select the new easy frame(s) with EFS again. These processes are repeated by Iterative Mask Propagation
(IMP) (green dotted line). At the final iteration, the entire process ends with Bi-directional Mask Propagation (BMP) (red-filled-
block).

Salient Object Detection

Salient Object Detection (SOD) is a task of finding the most
salient object in an image. Recently, many papers (Wu, Su,
and Huang 2019; Liu, Han, and Yang 2018; Huang et al.
2019; Wu et al. 2019; Wang et al. 2020) get good perfor-
mances by extracting various features from an image, from
fine features to coarse features. Among them, we adopt
PFPN (Wang et al. 2020) as our SOD model to extract a
saliency cue from each image. PFPN (Wang et al. 2020)

fuses various features in depth-level to enhance the features,
so it can detect salient objects with various scales. Due to
their ability to detect multi-scale objects, we adopt PFPN
(Wang et al. 2020) as our SOD model.

Proposed Method
Overview
An overview of our method is depicted in Figure 2. Our goal
is to select the easy frame which can make mask prediction
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Model MSG NLC CUT FST SFL LMP FSEG LVO UOVOS ARP PDB

J
Mean ↑ 53.3 55.1 55.2 55.8 64.7 70.0 70.7 75.9 73.9 76.2 77.2
Recall ↑ 61.6 55.8 57.5 64.9 81.4 85.0 83.0 89.1 88.5 89.1 91.1
Decay ↓ 2.4 12.6 2.2 0.0 6.2 1.3 1.5 0.0 0.6 7.0 0.9

F
Mean ↑ 50.8 52.3 55.2 51.1 66.7 65.9 65.3 72.1 68.0 65.3 72.1
Recall ↑ 60.0 61.0 51.9 51.6 77.1 79.2 73.8 83.4 80.6 83.4 83.5
Decay ↓ 5.1 11.4 3.4 2.9 5.1 2.5 1.8 1.3 0.7 7.9 -0.2

T Mean ↓ 54.8 65.4 58.2 60.6 60.3 71.0 65.4 66.7 39.0 39.3 29.1

Model MotAdapt LSMO AGS COSNet AGNN AnDiff MATNet GMVOS DFNet F2Net Ours

J
Mean ↑ 77.2 78.2 79.7 80.5 80.7 81.7 82.4 82.5 83.4 83.1 84.5
Recall ↑ 93.1 87.8 91.1 93.1 94.0 90.9 94.5 94.3 - 95.7 92.7
Decay ↓ 5.0 4.1 1.9 4.4 0.0 2.2 5.5 4.2 - 0.0 2.8

F
Mean ↑ 70.6 74.5 77.4 79.4 79.1 80.5 80.7 81.2 81.8 84.4 86.7
Recall ↑ 84.4 84.7 85.8 89.5 90.5 85.1 90.2 90.3 - 92.3 93.3
Decay ↓ 3.3 3.5 0.0 5.0 0.0 0.6 4.5 5.6 - 0.8 0.8

T Mean ↓ 27.9 21.2 26.7 18.4 33.7 21.4 21.6 19.8 15.9 20.9 16.3

Table 1: Quantitative results on DAVIS16 validation set. The best results for each metric are bold faced. All the other results
are borrowed from Lu et al. (2020); Zhen et al. (2020); Liu et al. (2020).

Model NLC FST FSEG MSTP ARP IET OBN PDB SFL COSNet MATNet F2Net Ours

J Mean ↑ 44.5 55.5 68.4 60.8 59.8 71.9 73.9 74.0 56.0 75.6 76.1 77.5 77.5

Table 2: Quantitative results on FBMS test dataset. The best results are bold faced. All the other results are borrowed from Lu
et al. (2019); Zhou et al. (2020); Liu et al. (2020).

easier and to make the selected easy frame’s saliency cue
better for far easier prediction. SOD network takes entire
frames and then predicts saliency masks for every frame, as
shown in the upper part of Figure 2. EFS selects easy frames
by using images and their predicted saliency cues.From
the easy frames, the masks of the remaining frames are
predicted using SVOS model. Here, we propagate masks
in a bi-directional way, and that is the difference between
SVOS and our UVOS approach. In SVOS, the model prop-
agates masks from the first frame to the last frame (i.e., uni-
direction) because the GT mask is given in the first frame,
thereby the first frame is always selected as a reference
frame. Differently, the reference frame is not always the first
frame in our framework. Therefore, we can propagate masks
from the reference frame to both ends of the sequence. It
is bi-directional. We call it Bi-directional Mask Prediction
(BMP). We can get predicted masks for entire frames except
for the selected reference frame by BMP. It is a red-filled-
block in Figure 2. Then, we make another mask prediction
from both ends to the easy frame selected. It also can be
shown in Figure 2 as a blue-filled-block, and we call it Tem-
poral Information Updating (TIU).

Saliency cues obtained by SOD model at first are frame-
level saliency masks. Unfortunately, they cannot have any
temporal information, but we use them as our beginning
saliency cues. However, BMP can propagate temporal infor-
mation from the easy frame to both ends. Then, both ends
frame can accumulate rich temporal information. By prop-
agating this rich temporal information via TIU from both

ends to the easy frame, frame-level saliency masks are up-
dated to video-level saliency masks. After acquiring video-
level saliency masks, which have more temporal informa-
tion than the beginning, EFS takes the video-level saliency
masks as an input and selects new easy frames again. Then,
we can get a lot better saliency masks by operating BMP and
TIU. We call this iterative process Iterative Mask Propaga-
tion (IMP). At the final iteration, there is no need to further
update saliency masks because all the saliency masks have
enough temporal information. Therefore, we make a final
prediction from selected easy frames by BMP without any
more TIU.

We delineate the detail of our architecture in the remain-
ing sections.

Initial Mask Prediction
Before selecting the easy frame, we extract initial saliency
masks via SOD model. The SOD model takes entire frames
and predicts foreground masks for every frame. We adopt
PFPN (Wang et al. 2020) as our SOD network.

Easy Frame Selector (EFS)
Easy Frame Selector (EFS) is a module that selects easy
frames among entire video frames. In EFS, the difficulty of
the frame is estimated by the pair of the frame and the pre-
dicted mask. The objective of EFS is to find easy frames that
show the foreground object clearly. We define the difficulty
of the frame with two criteria. 1) Mask quality: if the fore-
ground object is accurately predicted, then the frame is an
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Model MSTM STBP SCOM MBNM PDBM SSAV PCSA Ours

SegTrack-V2
Fmax ↑ 0.526 0.640 0.764 0.716 0.800 0.801 0.810 0.836

MAE M ↑ 0.114 0.061 0.030 0.026 0.024 0.023 0.025 0.018
S ↓ 0.643 0.735 0.815 0.809 0.864 0.851 0.865 0.860

Table 3: Quantitative results on SegTrack-V2. The best results are bold faced. All the other results are borrowed from Gu et al.
(2020).

easy frame. 2) Object size: if a frame has too large or small
objects, there is scarce information to refer in the frame. It
may distract a prediction. It should be determined as a hard
frame.

First, we use Structural-measure S (Fan et al. 2017), one
of the evaluation metrics for saliency masks in SOD, to eval-
uate the quality of our predicted masks. S is a measure-
ment that evaluates the structural similarity between pre-
dicted mask and GT mask. We need a saliency cue which re-
veals the object’s shape well. Therefore, we design a simple
CNN that estimates the S score from a pair of an image and
its predicted mask. S score ranges from 0 to 1. The higher
the S score is, the better the quality of the mask is. Note that
Mean Absolute Error (MAE) is widely used, but MAE is a
pixel-wise metric. It cannot capture the structure of the ob-
ject well. Experimental results on comparing S with MAE
are presented in the ablation study section.

The network to estimate S is inspired by Jiang et al.
(2018). Jiang et al. (2018) estimates the quality of bound-
ing boxes for objects as IoU, but we estimate the quality of
a foreground mask. Also, we use a novel method to train
the precise network. EFS needs to estimate the mask quality
of the video frames, but the network is not trained on video
datasets. Rather, we use an image dataset for training a more
general and robust network. It is because video datasets have
a small number of data, and they have a high correlation
among the frames in the same sequence. We think that these
characteristics interrupt to train robust network. In addition,
the GT mask is taken as an input instead of the predicted
saliency mask for training S in the case of perfect predic-
tion.

Second, an object’s size is also important to estimate the
difficulty of a frame. If the size of the object is too small,
there only exists small information. If the size of the object
is too large, the object exceed the size of the frame, and some
parts of the object are missing. These frames are not proper
as easy frames. Therefore, we filter out the frames with ab-
normal size objects through the area of the saliency mask.

For a deeper understanding, we explain the details of
EFS. Let, X = {xi |i = 0, 1, ..., N − 1} denotes a video
sequence of length N . When M (·) denotes SOD network
that detects a salient object in an image,

ŷi = M (xi) (1)

where ŷi represents the acquired saliency mask for the im-
age xi from SOD network. F (·) denotes the network that
estimates S .

The network F (·), which estimates S , is trained with an
image dataset named DUTS (Wang et al. 2017). S of each

image-mask pair is estimated as

Ŝi = F (concat (xi, ŷi)) . (2)

When SGT
i denotes S score between a predicted mask ŷi

and a GT mask yi, the network F (·) is trained with the loss
equation

ℓ =
∣∣∣Ŝi − SGT

i

∣∣∣ . (3)

A filter Fsize to filter out frames containing an object with
abnormal size can be expressed as

Fsize,i =

{
1,
0,

if thsmall < Area(ŷi) < thlarge

otherwise (4)

where thsmall and thlarge are thresholds of small and large
object respectively and Area(·) is the function that can com-
pute an area of a mask. Finally, the score to determine the
difficulty of each frame can be computed as

scorei = ŜiFsize,i. (5)

Based on the estimated score by EFS, we select top-k easy
frames as reference frames.

Iterative Mask Propagation (IMP)
Iterative Mask Propagation (IMP) structure iteratively se-
lects easy frames by EFS and updates the saliency cues with
temporal information. For updating part, it is composed of
two parts. One is Bi-directional Mask Propagation (BMP),
and the other is Temporal Information Updating (TIU).

Bi-directional Mask Prediction (BMP) From the easy
frames selected from EFS, we predict masks of the remain-
ing frames by STM (Oh et al. 2019). All the bi-directional
predictions from the easy frame to both ends of the sequence
are made independently for every easy frame selected.

Temporal Information Updating (TIU) Since the
saliency cues from easy frames to be used for mask
prediction are brought from SOD, they do not have any
temporal information. Therefore, to make saliency cues
have temporal information, we update the saliency cues
with TIU. Previously, BMP predicts masks from the easy
frames to both ends. In TIU, saliency cues are updated by
another mask prediction by STM (Oh et al. 2019) from
both ends to the easy frames. At final, we aggregate entire
saliency cues updated independently from each easy frame
and can get more diverse temporal information for every
frame.
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Figure 3: Qualitative results from our model. (a) dance-twirl in DAVIS16. (b) dogs02 in FBMS. (c) frog in SegTrack-V2.

Iterative Process After updating saliency cues of entire
frames by TIU, EFS selects new easy frames again among
updated saliency cues. We call this iterative process Iterative
Mask Propagation (IMP).

Experiments
Implementation Details
We use PFPN (Wang et al. 2020) as our SOD network. For
mask prediction, we use STM (Oh et al. 2019). ResNet50
(He et al. 2016) is used as a backbone network that estimates
the mask’s quality in EFS. As in Equation (2), an image-
mask pair is fed to the network after concatenation. To match
the dimension, we modify ResNet50 (He et al. 2016)’s first
convolution layer to 4 channels. To train the network, DUTS
(Wang et al. 2017), one of SOD datasets, is used as a trainset.

As for the iterative mechanism, our model can be seen
as slow. When we use a single easy frame and change the
number of iterations, our model consumes 0.32s per image
for two iterations, 0.44s and 0.56s for three and four itera-
tions, respectively. Roughly, additional 0.12s is required to
perform one more iteration. In constrast, when we fix the
number of iterations to three but change the number of easy
frames, our model consumes 0.44s, 0.70s, and 0.96s for two,
three, and four easy frames, respectivley. Additional 0.26s is
required to perform one more easy frame. Our method seems
quite expensive because of the iterative mechanism but it is
not true. We do not need heavy pre-processing such as opti-
cal flow and post-processing such as CRF. Based on MAT-
Net (Zhou et al. 2020), pre-processing and post-processing
take about 0.2s and 0.5s, respectively. Thus, we believe that
our model is also competitive in terms of inference speed.

Meanwhile, if nothing is mentioned, the experiments are
conducted using the number of easy frames as two and the
number of iterations as four.

Datasets
We conduct experiments on three benchmark datasets.
DAVIS16 (Perazzi et al. 2016) is a representative dataset of
VOS. It is a single object VOS dataset. It is composed of
50 sequences. Among them, we evaluate our model with the
validation set who has 20 sequences as other papers do. To

evaluate our model, we use official metrics of DAVIS16: re-
gion similarity J , boundary accuracy F , and temporal sta-
bility T .
FBMS (Ochs, Malik, and Brox 2013) is a frequently used
dataset to evaluate UVOS models. FBMS is composed of 59
sequences. Among them, 30 sequences are used as a vali-
dation set. Pixel-level masks are provided as GT for some
frames, not for the others. We use all the image frames for
propagating richer temporal information. Then, we evaluate
the performance only on the frame annotated. To evaluate
on FBMS, we use region similarity J which is often used to
evaluate on FBMS.
SegTrack-V2 (Li et al. 2013) is another UVOS benchmark.
This dataset also used for Video Salient Object Detection
(VSOD) task, which is a similar task to UVOS. VSOD is a
task that detects salient objects in the video. Only one big
difference is that salient objects can emerge from the middle
frame, not the first frame, in VSOD. Fortunately, all the se-
quences have salient objects emerging from the first frame in
SegTrack-V2, we choose this dataset to evaluate. SegTrack-
V2 is composed of 14 sequences. As this dataset is origi-
nally for VSOD, we use the metrics used for VSOD task:
mean absolute error M , max F-measure Fmax, and struc-
tural measure S .

Quantitative Comparison
DAVIS16 We compare our model with other top-
performing UVOS models. The results are shown in Table
1. As can be seen in Table 1, we achieve state-of-the-art in
most metrics. Especially, we achieve very high performance
in boundary accuracy F . Due to iteratively updated temporal
information, the model can find boundaries of objects more
easily, which are hard to find with scarce temporal informa-
tion. Compared to the previous state-of-the-art method (Liu
et al. 2020), our model achieves gains of 1.7% and 7.4% on
J Mean and F Mean, respectively.

FBMS We also evaluate our model on FBMS. Since
FBMS is a dataset, which is composed of images that are
low-definitive and have small region of salient parts, we use
four easy frames for the stable mask prediction. Also, due to
the relatively short length of the sequences, we evaluate after
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two iterations. Compared results with other models can be
shown in Table 2. We also achieve state-of-the-art in FBMS
along with Liu et al. (2020).

SegTrack-V2 We evaluate our model on SegTrack-V2 and
can achieve state-of-the-art in most metrics. For SegTrack-
V2, two easy frames are enough to have rich temporal in-
formation and evaluate the model after two iterations. Com-
pared to previous state-of-the-art model (Gu et al. 2020), our
model achieves gains of 3.2% on Fmax.

Qualitative Results
In Figure 3, boundaries of objects are clearly found. As
our model predicts the foreground mask with the boundary-
revealing easy frame, our model can find accurate objects’
boundaries.

Ablation Studies
We conduct extensive ablation studies on DAVIS16 (Perazzi
et al. 2016) dataset.

Number of Easy Frames
If the number of easy frames is small, clues could be scarce.
It can occur a prediction error when an object deforms a
lot. On the other hand, it’s also a problem to have too many
reference frames. In this case, relatively hard frames can be
contained as easy frames. Then, included hard frames can
deteriorate the good masks predicted by the easier frames.
Therefore, it is important to set the proper number of easy
frames. In Table 4, we can find that the experiment with two
easy frames has the best performance among the others.

# of EF 1 2 3 4

J&F 84.7 85.5 85.1 85.0

Table 4: Ablation study of the number of easy frames. Using
two easy frames, we could improve the performance from
84.7 to 85.5.

Number of Iterations for IMP
In Figure 4, the performance increases up to four iterations.
However, after four iterations, the performance is saturated
with slightly lower performance. TIU updates saliency cues
with richer temporal information for every iteration. Too
much temporal information makes frames have too global
saliency cues. It leads to a performance drop. There are al-
most no more updates for further iterations with TIU. Then,
the performance is saturated like in Figure 4. Therefore, we
adopt the number of iterations as four.

Evaluation Metric for Easy Frame
To evaluate the quality of a mask in EFS, we have two candi-
dates to be used as an evaluation metric to estimate. The can-
didates are MAE and S , which are the representative metrics
for SOD. We experiment on them, and the results are shown
in Table 5. Because MAE computes the mean of pixel-wise
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Figure 4: Ablation study over the number of iterations.

absolute error, it has a disadvantage that cannot capture the
shape of an object well. Also, due to its inherent character-
istic, MAE is dependent on object’s size. From the above
reasons, we conclude that MAE is not proper to evaluate the
mask quality. On the other hand, S evaluates the structural
similarity between a predicted mask and a GT mask. It is
proper to evaluate the quality of the mask. Therefore, we
conclude to use S as our metric to estimate. The results in
Table 5 support our decision.

Metric MAE S
J&F 80.7 85.5

Table 5: Ablation study on two evaluation metrics for easy
frame to estimate. From the table, we can conclude that S is
a proper metric.

Effect of Temporal Information Updating (TIU)
We ablate TIU in this study. In Table 6, the rightmost column
is composed of experiments without TIU. They iteratively
use EFS and BMP, but without TIU. As can be seen in Table
6, the performances are dropped without TIU. It means TIU
effectively updates saliency cues with temporal information.

Iterations Ours Ours(-TIU)

1 78.5 78.5
2 84.1 83.7
3 85.1 83.2
4 85.5 83.5

Table 6: Ablation study on the effect of TIU

Using Other SVOS Models
Our framework is modularized. A model used for each mod-
ule can be replaceable. Above all, we experiment on replac-
ing the SVOS model used to predict masks. Originally, we
use STM (Oh et al. 2019) as our SVOS model. In Table 7,
other SVOS models (Oh et al. 2018; Seong, Hyun, and Kim
2020) also can achieve good performances with our frame-
work. Also, increasing tendency proves that our IMP is ef-
fective.

Importance of Initial Mask Prediction
Our framework is affected by predicted initial masks. We
experiment with other models to predict the initial masks.
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Iterations 1 2 3 4

RGMP 53.4 57.0 59.5 59.2
KMN 80.0 83.5 84.2 84.1
STM 78.5 84.1 85.1 85.5

Table 7: Ablation study on diverse SVOS models replaced.
The numbers in the table are J&F .

Model w/o w/ gain

COSNet 80.0 82.6 +2.6
MATNet 81.6 86.8 +5.2

Table 8: Ablation study on models to predict the initial
masks. Second column shows the original performances by
the models. Third column shows the performance enhanced
by our framework with each model. Final column shows the
performance gains by our framework.

We use two UVOS models to predict: COSNet (Lu et al.
2019), and MATNet (Zhou et al. 2020).In Table 8, we show
that our framework is effective to enhance the previous mod-
els to predict the initial masks. Especially, we achieve an-
other state-of-the-art performance with MATNet (Zhou et al.
2020).

Conclusions
In this paper, we address the problem of using hard frames
to predict the foreground mask in UVOS task. We propose
EFS to select only easy frames based on the RGB image and
its predicted mask. Also, a powerful IMP structure, which it-
eratively selects easy frames and updates temporal informa-
tion to saliency cues, achieves state-of-the-art in most met-
rics in three UVOS benchmark datasets. In conclusion, our
proposed framework can be applied with other SVOS mod-
els. We expect that our framework can give a strong impact
on an extension from SVOS models to UVOS task.
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