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Abstract

Deep neural networks (DNNs) are vulnerable to adversarial
examples that are carefully designed to cause the deep learn-
ing model to make mistakes. Adversarial examples of 2D im-
ages and 3D point clouds have been extensively studied, but
studies on event-based data are limited. Event-based data can
be an alternative to a 2D image under high-speed movements,
such as autonomous driving. However, the given adversarial
events make the current deep learning model vulnerable to
safety issues. In this work, we generate adversarial examples
and then train the robust models for event-based data, for the
first time. Our algorithm shifts the time of the original events
and generates additional adversarial events. Additional adver-
sarial events are generated in two stages. First, null events
are added to the event-based data to generate additional ad-
versarial events. The perturbation size can be controlled with
the number of null events. Second, the location and time of
additional adversarial events are set to mislead DNNs in a
gradient-based attack. Our algorithm achieves an attack suc-
cess rate of 97.95% on the N-Caltech101 dataset. Further-
more, the adversarial training model improves robustness on
the adversarial event data compared to the original model.

Introduction

Although deep neural networks (DNNs) have achieved great
success in various domains, DNNs are vulnerable to adver-
sarial examples. Adversarial examples can mislead DNNs
by adding imperceivable perturbations to the original data.
They raise security concerns for DNNS in safety-critical sce-
narios, such as face recognition and autonomous driving,
etc. For secure and robust deep learning, adversarial attacks
have been extensively studied for data such as 2D images
(Goodfellow, Shlens, and Szegedy 2015; Madry et al. 2018;
Carlini and Wagner 2017), 3D point clouds (Xiang, Qi, and
Li 2018; Tsai et al. 2020), and natural languages (Jia and
Liang 2017; Zhao, Dua, and Singh 2018). However, studies
on event-based data are limited.

An event camera is an asynchronous visual sensor with
high dynamic range and temporal resolution. Instead of cap-
turing the brightness of images at a fixed rate, an event cam-
era measures brightness changes (called events) for each
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Figure 1: Grid representations of adversarial events. The
event times are separated by three channels and converted
to 2D RGB images. Shifting events (top). Generating addi-
tional adversarial events (middle). A combined method (bot-
tom).

pixel independently. An event camera can be an alterna-
tive to a traditional camera in situations that require high-
speed and high-dynamic range, such as autonomous driv-
ing and unmanned aerial vehicles (UAVs) (Maqueda et al.
2018; Dimitrova et al. 2020). Although event-based deep
learning models have been studied in various fields such as
object recognition (Sironi et al. 2018; Gehrig et al. 2019;
Lagorce et al. 2016), gesture recognition (Chen et al. 2020),
and optical flow (Zhu et al. 2018, 2019), adversarial attacks
on the event-based deep learning model raise security prob-
lems. In a recent study, Marchisio et al. (2021) generated
2D adversarial images in event-based data. They projected
event-based data to 2D images and generated 2D adversarial
images. However, event-based data cannot be retrieved from
2D adversarial images. As the input data of an event camera
cannot be attacked, it does not pose a real threat to the event-
based deep learning. In this paper, we study how to generate



adversarial examples for raw event-based data and train the
robust deep learning model against adversarial examples.

As to the attacking target, we focus on the event spike
tensor (EST) representation (Gehrig et al. 2019) of event-
based data, which is a generalized grid representation of the
event-based data. By projecting event-based data over the
time or polarity axis, other types of grid representation can
be derived from EST. Here, we demonstrate the adversarial
attack algorithm by conducting experiments on the EST and
the projected EST.

There are challenges of generating adversarial examples
in the conventional way due to the characteristics of event-
based data. First, the adversarial attack performance is af-
fected by the frequency of relative motion between an event
camera and objects. An event camera captures static ob-
jects with repeated movements of the camera. When the fre-
quency of the relative motion is high, a perturbation can
make some events mis-regarded as original events rather
than adversarial events. Second, the success rate of an at-
tack depends on the size of event-based data. The size of
event-based data is not fixed because an event is measured
whenever a brightness changes. When the event-based data
is small, there are fewer attacking targets. The number of
attacking targets can limit the attack performance.

In this paper, we create adversarial examples that consider
the characteristics of the aforementioned event-based data.
Our algorithm shifts the time of the original events and gen-
erates additional adversarial events. When shifting the time
of the original events, we set the optimal perturbation size of
an attacker to perturb the event-based deep learning model.
The perturbation size depends on temporal scales in the grid
representation and frequency of camera motion. Generation
of additional adversarial events is proceeded with two steps.
First, we add null events to the event-based data to generate
additional adversarial events. A null event is an empty space
to generate additional adversarial events and to control the
perturbation of the adversarial attacks. By adding null events
to the original event, additional adversarial attacks can be
performed at any time and space. Second, we set the time
and location of additional adversarial events in a gradient-
based attack. We set the location of additional adversarial
events based on the loss gradient of the null events. Then, we
determine the time of additional adversarial events based on
a projected gradient descent (PGD) attack algorithm (Madry
et al. 2018).

Our algorithm shows a 97.95% success rate for untargeted
attack and 70.68% success rate for random targeted attack on
the N-Caltech101 dataset (Orchard et al. 2015). We utilize
the proposed attack algorithm to train networks that perform
well both on the original events and adversarial events. Fur-
thermore, we discuss the transferability of adversarial events
between representation models. The contributions of this pa-
per can be summarized as follows.

* We propose an adversarial attack algorithm for event-
based deep learning model for the first time.

* An optimal perturbation size is set to attack the time of
the original events.

* Null-events make it possible to generate additional ad-
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versarial events at any time and space.

* Additional adversarial events are generated in a gradient-
based attack.

* We generate adversarial events for various types of grid
representation and kernel function.Through experiments
on grid representations and kernel functions, we prove
that our method can generate adversarial events for grid
representation model in general .

* We train event-based deep learning models that are ro-
bust to adversarial examples.

Related Work
Event-based Data

Due to the sparse and asynchronous characteristics of the
event-based data, typical event-based algorithms aggregate
events into a grid representation. Event-based data consists
of a stream of events that encode the location, time, and
polarity of the brightness changes (Gallego et al. 2019).
When event-based data is converted into a grid representa-
tion, (x,y) position coordinates become pixel position co-
ordinates, and time coordinates become tensor values. As
each event alone contains little information, events must
be aggregated into a grid representation. The event count
model (Maqueda et al. 2018; Zhu et al. 2018) measures event
counts for each pixel and polarity, but it discards temporal
and polarity information. The two-channel model (Maqueda
et al. 2018; Zhu et al. 2018; Sironi et al. 2018) uses only
one time as a tensor value. The voxel grid model (Zhu et al.
2019) uses all the temporal information, but it discards polar
information. The EST model (Gehrig et al. 2019) processes
events with a specific kernel and converts event-based data
into a grid representation of multiple channels. Compared to
other representations, EST keeps the most information from
raw event streams. EST is a generalized grid representation,
thus it can be transformed to other representations by pro-
jecting over the temporal or polar axis. For example, project-
ing the EST over the temporal axis leads to the two-channel,
and projecting the EST over the polar axis leads to the voxel
grid. We demonstrate our attacking algorithm for grid repre-
sentation of event-based data with the EST and the projected
EST.

Adversarial Attack

Szegedy et al. (2014) first pointed out that DNNs were vul-
nerable to intentionally designed adversarial examples. Ad-
versarial examples can easily fool DNNs by adding imper-
ceptable perturbations to the original data. Since 2014, sev-
eral approaches (Goodfellow, Shlens, and Szegedy 2015;
Madry et al. 2018; Lecuyer et al. 2019; Athalye, Carlini,
and Wagner 2018; Song et al. 2018) have been proposed to
generate adversarial examples to attack models effectively.
Fast gradient sign method (FGSM) (Goodfellow, Shlens,
and Szegedy 2015) is one of the most popular one-step
gradient-based approaches for L,-bounded attacks. A PGD
attack (Madry et al. 2018) iteratively applies FGSM multiple
times, and is one of the strongest adversarial attacks. But,
they mainly target 2D images. Recent studies have shown



that DNNs are vulnerable to 3D adversarial objects. Xiang
et al. (2018) generated 3D adversarial point clouds through
point perturbation or point generation. Tsai et al. (2020)
generated physical 3D adversarial objects and proved that
physical objects can mislead the DNNs to make wrong pre-
dictions. While adversarial examples of 2D images and 3D
point clouds have been extensively studied, studies on event-
based data are limited.

Adpversarial Attack on the Event-based Data

Marchisio et al. (2021) studied various types of adversar-
ial examples for event-based data. They performed a typi-
cal adversarial attack on intermediate features of the event-
based deep learning model. The intermediate features are 2D
grid representations of event-based data. However, adversar-
ial examples of the input event cannot be retrieved from 2D
adversarial features. Inverse operation is not possible, be-
cause input events are convolved with nonlinear kernel func-
tions and aggregated into grid representations. As the input
data of an event camera cannot be attacked, it does not pose
a real threat to the event-based deep learning. To the best of
our knowledge, this is the first study to generate adversarial
examples for event-based data.

Method
Event-based Deep Learning

Event-based Data An event camera has independent pix-
els that trigger events when there is a change in log bright-
ness:
L($7y,t) - L(LE, y7t - K) > pCa

where p € {—1,+1} is the polarity of the brightness
change; C'is the contrast threshold; and « is the elapsed time
after the last event occurence at the same pixel. Events are
triggered by brightness changes and relative motion between
the event camera and objects. The event camera captures
static objects with the repeated movements of the camera. As
the motor is moving repeatedly, event-based data includes
recurrent information. In a given time interval 7, triggered
events are defined as point-sets:

&= {ek}évzl = {(xk7yk7tk7pk)}kN:17
where 2, € [0,W] and y, € [0, H] are the event’s spa-
tial coordinates; pr, € {—1,+1} is the event polarity; and
tr € (0,1] is the event’s normalized timestamp. Data is not
defined in any location without an event.

Kernel Convolution Because event-based data contains
numerous events, each separate event has limited infor-
mation. Use of a suitable kernel derives a meaningful
signal from events with high temporal resolution. The
EST representation model convolves the event-based data
with a multilayer perceptron (MLP) kernel, which is a
learnable kernel, or a trilinear voting kernel k(z,y,t) =
§(z,y) max(0, 1 — |%|). An exponential kernel, k(z, y, t)
§(x,y) L exp(—1), is used to construct spatio-temporal fea-
tures of HOTS (Lagorce et al. 2016) and HATS (Sironi et al.
2018). Each time value of the event-based data is convolved
with appropriate number of temporal channels by a suitable
kernel for grid representation.
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Figure 2: Point-sets (left) and grid representation (right) of
event-based data. Point-sets of event-based data are mapped
to tensor map 7' € RE*W*H The event times are separated
by three temporal bins. The temporal bins of + polarity and
- polarity are concatenated along the temporal dimension.

Grid Representation As event-based data includes recur-
rent information, an event-based vision algorithm divides
event-based data into the temporal bins for efficient pro-
cessing. Given the convolved signals, the EST representa-
tion model computes a tensor map 7' € RE*W>H where
W is the width; H is the height; and C is the number of
channels. The spatio-temporal coordinates (zy, Y, tx) lie
on a 3D voxel grid, i.e., zx € {0,1,2,..., W — 1},y; €
{0,1,2,...,H — 1}, and t;, € {0,At,..., BAt}, where
At is the temporal scale for each temporal bin and B is the
number of temporal bins (Gehrig et al. 2019). The convolved
time values are assigned to each temporal bin and used as
the tensor value of the tensor map 7". The temporal bins of +
polarity and - polarity are concatenated along the temporal
dimension. The temporal channel C of the EST is 2- B. The
temporal scale At is 1/B as t;, € (0,1] is the normalized
timestamp.

In the current event-based grid representation model, time
0 is given as a tensor value for the (z, y) coordinate position
without any event. Mapping time O to the nonexisting event
preserves the structure and information of the events. After
the event-based data is converted to the grid representation,
data is fed into the convolutional neural network (CNN).

Shifting Original Events

We first recall the PGD attack to generate adversarial ex-
amples. A PGD attack is a typical multistep attack algo-
rithm for an L., bounded adversary. Given the 2D image
u € REXHXW “the PGD attack generates an adversarial ex-
ample as follows:

utl = Proj {u’ + a - sign[V,J (0,4, y)], }

where ¢ the iteration of the attack; e the perturbation size;
Proj, projects the adversarial sample into the ¢ — L, neigh-
bor of the benign sample; « is the step size; J the loss func-
tion; # parameters of the DNNs; and y the true label.

The event-based deep learning model extracts features
based on the event times. Therefore, we add imperceptible
perturbations to the original event times and intentionally
mislead the DNNs. The original event times are attacked by
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Figure 3: Shifting the original events and generating additional adversarial events. The original events are shifted with perturba-
tions relative to the temporal scale. Solid arrows and dotted arrows indicate the original events and shifted events, respectively.
Null events are generated in the location without any event and concatenated to the original events. The number in parentheses
means the number of redundant events. The location of additional adversarial events are set based on the loss gradient of the
null event. A line with a diamond head indicates an additional adversarial event. A PGD attack algorithm is performed on the
original events and additional events. The redundant events are separated by a minimum time resolution .

a PGD attack as follows:
tH =Proj  {t'+

B-f

sign[V,J(0,t",y)], }

B-f

where ¢ is the timestamp of £, B is the number of temporal
bins, and f is the relative frequency. We divide the perturba-
tion size € and step size o by the number of temporal bins
B and relative frequency f. For event-based data, convolved
signals are given to each temporal bin of grid representation.
As B increases, the temporal scale of each bin decreases.
Therefore, we use the relative perturbation size B%f and step

size B%f to perturb the time value in the smaller time scale

At.

The perturbation size is generally proportional to the at-
tack success rate because more perturbation can mislead
DNNs easily. However, larger perturbation size can shift the
events to the same location of another temporal bin. In the
bottom of Figure 4, large perturbation can shift the event
to the same location of another temporal bin. As another
temporal bin may contain the same information, the attack
performance is reduced. Therefore, the relative perturbation
size - 7 balances the two opposing cases. We demonstrate
it in the experiment section.

An adversarial attack on the original events only deals
with N time values. However, an infinite number of ad-
versarial events can be theoretically generated in the region
where z € {0,1,.W},y € {0,1,..H}, and normalized
timestamp ¢ € (0, 1]. In a pixel with k events, only k events
can be attacked and additional adversarial events cannot be
generated. In addition, a pixel without an event cannot have
any adversarial event.
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Figure 4: Effect of temporal scale At to the shifting events.
The entire time is divided by 4 temporal bins. Solid arrows
and dotted arrows indicate the original events and shifted
events, respectively. Perturbations less than temporal scale
At (top). Large perturbation can shift the events to the same
location of another temporal bin (bottom).

Null Event

Therefore, we propose to add null events to the original
event-based data. The time value of the null event is set to 0
to satisfy two conditions. The first condition is that the null
event should be distinguished from the original event. The
normalized time value of the original event lies in the in-
terval (0, 1]. Because the time value ¢ is recorded when the
brightness changes, there is no original event at time 0. The
time value of the null event should be set to the interval ex-
cluding (0, 1]. Second, the null event should not affect the
prediction of DNNs for the original event. A nonzero time
value of the event is mapped to a nonzero tensor value in the
grid representation. Even a small time value can make real
events in the grid representation. Therefore, we set the time
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Figure 5: Effect of null events with respect to the time value.
(a) is the original event data. (b), (c), and (d) contains null
events. (b) contains the null event of time value —1. (c) con-
tains the null event of random time value. (d) contains the
null event of time value 0. (d) is the same as the original
data.

value of the null event to 0. As shown in Figure 5, null event
of time value 0 does not change the original events.

When null events are added to the original event, adver-
sarial attacks can be performed at the desired location and
time. Furthermore, a null event controls the perturbation
size. For adversarial attacks on 2D images, perturbations of
pixel values are limited to make invisible changes to the hu-
man eye. Similarly, adversarial attacks on event-based data
can achieve the same effect by adjusting the number of null
events. The effect of null events is included in the supple-
mental material.

An original event does not have an event with time value
0, but a null event is defined as a multiset that allows re-
dundancy at time value 0. m represents the number of null
events added to each pixel. Null events can be added dif-
ferently for each pixel, but in this paper, we add the same
number of null events to the location without any event for
simplicity as follows:

N™ = {(x1, y1,0,p)"},

where no event exists in (z,y;,p;). Null events N™ are
added to the original events to make adversarial events £ "

Generating Additional Adversarial Events

By adding null events, adversarial events can be created in
any space and time. However, additional adversarial events
should be generated at the appropriate location and time to
attack DNNs. The method proceeds in two stages. First, the
location of additional adversarial events are set based on the
null event’s loss gradient. An event is generated when the
time value of a null event increases from O to the time inter-
val (0, 1]. If the generated event increases the loss, the gen-
erated event is assumed to have attacked the original event
properly. Therefore, the position of loss gradient’s + compo-
nent indicates the location where the original event should
be attacked. The null events’ loss gradients are defined as
Vi, J(0,t1,y), where ¢; € (0,1]; 0 is the model parameter;
and y is the true label. We use the location (zy,y;,p;) of
the top p% loss gradients to generate additional adversar-
ial events. Then, we set the time of additional adversarial
events. We initialized additional adversarial events as ran-
dom values between 0 and 1. We use the PGD attack for the
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Algorithm 1: Generating Additional Adversarial Events

Input: Original event & = {(xk, Yk, tk, Pk) F oy
Parameter: Null events per grid m, iterations I, step size «,
perturbation size e, true label y
Output: Adversarial event £,
1: Get the location {(x;, y;, p;)} without any event from &
2: Initialize null event N'™
Nm «— {(.Z'l, Y, tl7pl>7n}s th =0
3: & <+ CONCAT(E,N™)
4 (z1,y1,p) <+ Select the top p% of N™ with
Vo J(Ey,0)
s: Initialize additional adversarial events N
t; < rand(0, 1]
N {(xi, st m0)}

6: &, + CONCAT(E,N')

7. fori=1,2,...1 do

8:  t; < Proj (t; + o - sign(Vy, J(Eq,y,0)))
9: end for

10: Return &,

time perturbation of additional adversarial events. The over-
all procedure for generating additional adversarial events is
explained in Algorithm 1.

Constraint of Event-based Data

After generating the adversarial events, we apply constraints
on the adversarial events because events cannot occur si-
multaneously at the same location. Thus, when adversarial
events are generated simultaneously at the same location,
the adversarial events are separated by a minimum time res-
olution \. In addition, the time values of adversarial events
are limited in the interval (0, 1].

Experiments

In this section, we first present an extensive evaluation of
adversarial attacks for event-based deep learning. We val-
idated our algorithm with various grid representations and
kernel functions on the standard event camera benchmark.
All the testing results are obtained with an average of three
random seeds.

Experiments Setup

We mainly focus on the EST model (Gehrig et al. 2019) for
the attacking target: MLP kernel, EST representation, and
ResNet-34 (He et al. 2016) architecture. The MLP kernel
consists of two hidden layers each with 30 units. The MLP
kernel takes event times as input and derives the meaningful
signal around it. The temporal bins in the EST are set to 10,
5,and 1.

We follow the settings in the original EST model (Gehrig
et al. 2019) to train target models: ADAM optimizer
(Kingma and Ba 2014) with an initial learning rate of 0.0001
that decays by 0.5 times every 1 epoch; weight decay of 0;
the batch normalization momentum (Kingma and Ba 2014)
of 0.1. We train the networks for 30 epochs for the event
camera dataset.



Attack | Representation | Kernel | Shifting Generating Generating and shifting
EST (10) MLP 95.50 14.65 95.87
EST (5) MLP 96.13 24.59 100.0
EST (1) MLP 95.96 61.47 99.0
Untargeted attack Voxel grid (10) MLP 95.14 12.15 96.12
Two-channel (1) MLP 97.74 63.35 99.42
EST (10) Trilinear | 94.16 14.62 96.03
Two-channel (1) | Trilinear | 97.02 63.43 99.21
EST (10) MLP 41.64 29.69 69.50
EST (5) MLP 63.87 14.61 70.74
EST (1) MLP 65.84 9.47 67.65
Random targeted attack | Voxel grid (10) MLP 52.62 45.23 80.23
Two-channel (1) MLP 69.87 5.36 69.48
EST (10) Trilinear | 41.42 30.11 69.78
Two-channel (1) | Trilinear | 67.84 6.12 67.42

Table 1: The attack success rate(%) for shifting original events, generating additional adversarial events, and a combined
method. The number in parentheses means the number of time channels in the grid representations.

Figure 6: Visualizations of adversarial events with point-sets
and grid representations. (a) Original events. (b) Shifting
original events. (c) Generating additional adversarial events.

Dataset

We use N-Caltech101 dataset (Orchard et al. 2015) in our
evaluation. N-Caltech101 is the event-based version of Cal-
tech101 (Zhao, Dua, and Singh 2004). It was recorded with
an ATIS event camera (Posch, Matolin, and Wohlgenannt
2010) on a motor. The event camera records the event
from Caltech101 examples, while the motor is moving. N-
Caltech101 consists of 4,356 training samples and 2,612 val-
idating samples in 100 classes.

Adpversarial Attack on the Event-based Data

In this subsection, we evaluate the attack success rate of
three methods for generating adversarial examples: shifting
original events, generating additional adversarial events, and
a combined method. The times of the original events are
shifted with a PGD attack of L., norm. We set the num-
ber of iterations to 3. We set the default attacker step size o
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to 0.5 and divided « by the number of temporal bins B. The
% is the attacker step size relative to the temporal scale. But
the 7 is limited below 0.1 for visual imperceptibility. The
perturbation size is set to twice of the 5. When generating
additional adversarial events, we selected only the top 1%
loss gradients of null events and assigned five null events to
the location. The number of null events is related with the vi-
sual perceptibility of adversarial examples, but the attacker
parameters of generating additional adversarial events had
little effect on the perceptibility. Therefore, we set the at-
tacker parameters larger compared to the shifting events: at-
tacker step size to 0.01, the perturbation size to 0.1, and the
number of iterations to 10.

The attacking targets are EST, voxel grid, and two-
channel representations models. EST (10), EST (5), and EST
(1) have ten, five, and one temporal bin(s) for each polarity,
respectively. Two-channel (1) has one temporal bin as EST
(1), but it is derived by averaging the EST (10) temporal
bins. Voxel grid (10) is derived by averaging the EST (10)
polarity channels.

As shown in Table 1, shifting original events substan-
tially reduces the model’s recognition performance because
it distorts the features of the original events. This method
achieves a 95.50% untargeted attack success rate with a
small step size of 0.05 for the EST (10). However, larger step
size of 0.1 is required to fool the EST (1) and two-channel
(1). Generating additional adversarial events does not sig-
nificantly reduce the recognition performance compared to
shifting events. However, additional adversarial events im-
prove the attack success rate of shifting events for most mod-
els.

Figure 6 shows the adversarial events of the EST (10)
from Table 1. Shifting events changes the times of the orig-
inal events, resulting in the color change in grid represen-
tation. Additional adversarial events create adversarial fea-
tures in the grid representation. Visualization results show
that all the attack method fool the deep learning model with
imperceptible changes. More visualization results can be



€
m 005 010 015 02 025
EST(10) | 9511 9550 9340 9496 90.66
EST(5) | 9056 90474 9549 9613 94.83
EST (1) 6261 8601 9363 9596 98.05
Voxel grid (10) | 94.89  95.14 9318 89.86 87.99
Two-channel (1) | 6977 8972 958 9773 9831

Table 2: The untargeted attack success rate (%) of shifting
events against EST (10), EST (5), EST (1), voxel grid (10),
and two-channel (1) with respect to the perturbation size e.

N 0.05 0.10 0.15 0.2 0.25
requency

Normal ‘95.11 95.50 93.40 9496 90.66

Half 75,5 86.17 90.18 91.16 81.79

Table 3: The untargeted attack success rate (%) of shifting
events against EST (10) with respect to the frequency of data
and perturbation size e.

found in the supplemental material.

The Effect of Perturbation Size

Large perturbations increase the attack success rate in gen-
eral. In the adversarial attack on the event-based data, pertur-
bation size relative to the temporal scale is more important.
Temporal scale is determined by the temporal bins of grid
representation model and the data frequency.

Tables 2 and 3 show the attack success rates for shifting
events with different perturbation sizes. The step size is set
to half of the perturbation size, and the number of iterations
is set to three. As shown in Table 2, the attack success rates
of the EST (10), EST (5), and voxel grid (10) do not in-
crease continuously as the perturbation size increases. The
attack success rate of EST (10) and voxel grid (10) is oscil-
lating. For example, the optimal perturbation size is 0.05 for
attacking the EST (10) model. EST (1) and two-channel (1)
have only one temporal bins, thus the attack success rates
increase continuously.

Table 3 shows the attack success rates for the EST (10)
with respect to data frequency and perturbation size. Data
frequency is determined by the repeated movements of an
event camera. We decrease the data frequency by half by
using the first half of the time and normalizing the time to
one. Our results show that the perturbation size is inversely
proportional to the number of temporal bins B and data fre-
quency.

Adversarial Training on the Event-based Data

In this subsection, we use the proposed attack algorithm to
train networks on the perturbed features. The goal of this
adversarial training is to produce networks that perform well
both on the original events and adversarial events. We started
on the pretrained model and trained the models for 5 epochs
with ADAM optimizer with initial learning rate of 0.00001.
Each model is trained with original events and adversarial

1243

Attack i i .
m} None  Shifting  Shifting & generating

84.99 2.99 0
80.67 52.79 22.86

Original
Adversarial

Table 4: The top-1 accuracy (%) of the EST (5) model
against untargeted attacks. The adversarial training model
is trained with original events and adversarial events.

From

T EST (10) Voxel grid (10)  EST (1)
EST (10) - 27.51 27.51
Voxel grid (10) 27.47 - 46.85
EST (1) 0.72 0.86 -

Table 5: The attack success rate (%) of untargeted transfer
attacks against EST (10), voxel grid (10), and EST (1).

events. Table 4 shows the robustness of each model to the
attack methods. The results demonstrate that the adversarial
training model improves the robustness on the adversarial
events compared to the original model.

Transferability of Adversarial Events

We feed adversarial events of EST (10), EST (1), and voxel
grid (10) models to other models. Each model is trained with
different weight initialization. Table 5 shows that adversarial
events of EST (1) transfer to other models. However, adver-
sarial events of EST (10) and voxel grid (10) hardly transfer
to the EST (1). As the EST (10) and voxel grid (10) have
smaller temporal scale in each temporal bin, the adversarial
events of each temporal bin are merged into the larger tem-
poral scale of the EST (1). Thus, the perturbations are elim-
inated in the EST (1). On the contrary, adversarial events of
EST (1) perturbs the EST (10) and voxel grid (10) along all
temporal bins without elimination.

Conclusion

To the best of our knowledge, we generated adversarial
events to fool the event-based deep learning models for
the first time. Our attack algorithm shifts the original event
times and generates additional adversarial events. For shift-
ing events, we set the perturbation size relative to the data
frequency and temporal scales of the model. Additional ad-
versarial events boost the attack performance for most mod-
els. Our experimental results show that the proposed algo-
rithm can find adversarial events with an average of 97.95%
for untargeted attack (refer to Table 1). We hope this work
can provide a guideline for future adversarial event research.
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