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Abstract

Recent techniques to solve photorealistic style transfer within
deep convolutional neural networks (CNNs) generally require
intensive training from large-scale datasets, thus having lim-
ited applicability and poor generalization ability to unseen
images or styles. To overcome this, we propose a novel frame-
work, dubbed Deep Translation Prior (DTP), to accomplish
photorealistic style transfer through test-time training on given
input image pair with untrained networks, which learns an
image pair-specific translation prior and thus yields better per-
formance and generalization. Tailored for such test-time train-
ing for style transfer, we present novel network architectures,
with two sub-modules of correspondence and generation mod-
ules, and loss functions consisting of contrastive content, style,
and cycle consistency losses. Our framework does not require
offline training phase for style transfer, which has been one
of the main challenges in existing methods, but the networks
are to be solely learned during test time. Experimental results
prove that our framework has a better generalization ability to
unseen image pairs and even outperforms the state-of-the-art
methods.

Introduction
Photorealistic style transfer is one of appealing image ma-
nipulation and editing tasks, which aims to, given a pair of
images, i.e., the content and style image, synthesize an image
by transferring the style to the content. Recent approaches for
this task leverage statistics of content and style features ex-
tracted by deep convolutional neural network (CNNs) (Gatys,
Ecker, and Bethge 2016; Li et al. 2017; Ulyanov, Vedaldi,
and Lempitsky 2017), which can be divided into optimiza-
tion-based and learning-based methods. Optimization-based
methods (Gatys, Ecker, and Bethge 2016; Li and Wand 2016;
Luan et al. 2017) directly obtain a stylized image by optimiz-
ing an image itself with well-defined content and style loss
functions. As the seminal work, Gatys et al. (Gatys, Ecker,
and Bethge 2016) present the style loss function based on
Gram matrix and optimize the stylized image with the loss
function, of which many variants were also proposed (Li and
Wand 2016; Gatys, Ecker, and Bethge 2016; Luan et al. 2017).
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Since the loss function for style transfer is often non-convex,
most methods leverage an iterative solver to optimize the out-
put image itself (Li and Wand 2016; Gatys, Ecker, and Bethge
2016; Luan et al. 2017), and thus they can benefit from error
feedback for stylization. Moreover, they are limited to encode
an image translation prior on synthesized images, and thus
often generate artifacts and show limited photorealism.

In contrast, recent learning-based methods (Li et al. 2017,
2018; Gu et al. 2018; Yoo et al. 2019; Huang and Belongie
2017; Park and Lee 2019) attempt to address these limita-
tions by learning such image translation prior within networks
from large-scale datasets (Deng et al. 2009; Lin et al. 2014),
often followed by pre- or post-processing (Li et al. 2018; Yoo
et al. 2019; Huang and Belongie 2017). Since it is notoriously
challenging to collect training pairs for photorealistic style
transfer due to its subjectivity, most methods alternatively
leverage an auto-encoder to learn a decoder that captures
the translation prior (Huang and Belongie 2017; Chen and
Schmidt 2016; Li et al. 2017). However, during the training,
these methods (Li et al. 2018, 2019) do not leverage explicit
content and style loss functions, and thus may have poor
generalization ability on unseen images or styles. In addition,
adopting fixed network parameters at test-time may not ac-
count for the fact that a pair of images may require their own
prior, namely an image pair-specific translation prior.

In this paper, we explore an alternative, dubbed Deep
Translation Prior (DTP), to overcome aforementioned limita-
tions of both optimization- and learning-based methods. Our
work accomplishes this without need of intensive training
process using large-scale dataset or paired data, but through
a test-time training on given input image pair. We argue that
the translation prior does not necessarily need to be learned
from intensive learning. Instead, an image pair-specific trans-
lation prior can be captured by solely minimizing explicit
content and style loss functions on the image pair with un-
trained network for stylization. Tailored to this framework,
we formulate novel network architectures consisting of two
sub-modules, namely correspondence and generation mod-
ules, which are learned with well-designed content, style, and
cycle consistency loss functions at test time.

Our experiments on standard benchmark for photorealistic
style transfer (Luan et al. 2017; An et al. 2020), CelebA-
HQ (Liu et al. 2015), and Flickr Faces HQ (FFHQ) (Karras,
Laine, and Aila 2019) demonstrate that our framework con-
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Figure 1: Intuition of DTP: (a) conventional optimization-based methods (Li and Wand 2016; Gatys, Ecker, and Bethge 2016;
Luan et al. 2017) that optimize an output image itself at test time with explicit content loss and style loss, which often generate
artifacts and produce limited photorealism due to the lack of translation prior, (b) recent learning-based methods that require
intensive offline training from large-scale training data and use pretrained and fixed networks at test time (Huang and Belongie
2017; Li et al. 2017, 2018; Gu et al. 2018; Yoo et al. 2019), and (c) DTP that learns the untrained networks at test time on an
input image pair to capture an image pair-specific translation prior and thus provides better generalization to unseen images or
styles.

sistently outperforms the existing methods.

Related Work
Style Transfer. Traditional optimization-based methods for
style transfer (Gatys, Ecker, and Bethge 2016; Li and Wand
2016; Luan et al. 2017) using pre-trained feature extractors,
such as VGG networks (Simonyan and Zisserman 2015), can
be divided into parametric and non-parametric methods. Cate-
gorized as parametric methods, some methods (Gatys, Ecker,
and Bethge 2016; Berger and Memisevic 2016) designed
Gram matrix to capture global statistics of features. How-
ever, the loss function based on Gram matrix leads to poor
results as it captures the per-pixel feature correlations and
does not constrain the spatial layout. To address this issue,
non-parametric approaches (Li and Wand 2016; Luan et al.
2017; Aberman et al. 2018) match a style on patch-level. Cat-
egorized as non-parametric methods, some works have real-
ized style transfer inspired by an image analogy (Hertzmann
et al. 2001), which is based on dense correspondence (Shih
et al. 2014; Liao et al. 2017). STROTSS (Kolkin, Salavon,
and Shakhnarovich 2019) uses optimal transport algorithm.
The aforementioned optimization-based methods are limited
to encode an image translation prior, thus often generating
artifacts and showing limited photorealism.

On the other hand, recent learning-based methods (Chen
and Schmidt 2016; Li et al. 2017; Huang and Belongie 2017;
Gu et al. 2018; Sanakoyeu et al. 2018; Li et al. 2018; Yoo
et al. 2019; Park and Lee 2019; Liu et al. 2021) tried to solve
style transfer by data-driven ways. They mostly focused on
designing loss functions, and often included pre- or post-
processing (Li et al. 2018) to produce spatially smooth output.
For instance, contextual loss is proposed (Mechrez, Talmi,
and Zelnik-Manor 2018), which trains CNNs solely using
the content images without need of large-scale paired dataset.
Several works (Huang and Belongie 2017; Gu et al. 2018;
Yoo et al. 2019; Qu, Shao, and Qi 2019; Park and Lee 2019)
trained a decoder network with MS-COCO dataset (Lin et al.
2014) or ImageNet dataset (Deng et al. 2009), or needed
training the whole network per style (Sanakoyeu et al. 2018)
before optimization process. However, they may be biased to

the training images or styles and may not generalize well to
unseen data.

Image Prior. Deep Image Prior (DIP) (Ulyanov, Vedaldi,
and Lempitsky 2018) proves the structure of generator net-
work itself can serve as a prior for image restoration, against
the assumption that learning from large-scale data is neces-
sary to capture realistic image prior (Zhang et al. 2017), of
which many variants were proposed, tailored to solve an in-
verse problem (Burger et al. 2005; Dabov et al. 2007; Burger,
Schuler, and Harmeling 2012). SinGAN (Shaham, Dekel, and
Michaeli 2019) and SinIR (Yoo and Chen 2021) fine-tune
GAN or AE on a single input and can be applied to image
manipulation and restoration. GAN inversion (Jahanian, Chai,
and Isola 2020; Menon et al. 2020; Gu, Shen, and Zhou 2020)
aims at generating an image by solely optimizing a latent
code of pre-trained GAN given a target image. Different from
the aforementioned methods that attempts to learn an image
prior, our framework is the first attempt to learn the image
translation prior.

Methodology
Motivation
Photorealistic style transfer aims at transferring the style of
image IS to the content of image IC to synthesize a stylized
image IC←S . To achieve this, traditional methods (Li and
Wand 2016; Gatys, Ecker, and Bethge 2016; Luan et al. 2017)
focused on an image optimization technique, from which
deep convolutional features were extracted from content and
style images, denoted by FC = Φ(IC) and FS = Φ(IS)
with feature extractor Φ(·), and used to define an objective
function, consisting of content loss Lcont and style lossLstyle

functions, as in Figure. 1(a):

IC←S = argmin
I
{Lcont(Φ(I), FC) + Lstyle(Φ(I), FS)}.

(1)
Since it is often a non-convex optimization, most methods
leverage an iterative solver, e.g., gradient descent (Li and
Wand 2016; Gatys, Ecker, and Bethge 2016; Luan et al. 2017),
and thus they benefit from an error feedback to find better
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Figure 2: Network configuration of DTP. Our network consists of two sub-modules, correspondence module and generation
module. At the first, we predict a translation hypothesis by first computing the similarity between each source point and all target
points and then warping the style image and feature in a probabilistic manner. At the second, the warped feature goes through a
decoding network that generates the residual of the final stylized image.

stylized images. However, they are limited to encode an im-
age translation prior on synthesized images, and thus often
generate artifacts and limited photorealism.

To overcome these limitations, recent learning-based meth-
ods (Li et al. 2017; Huang and Belongie 2017; Li et al. 2018;
Gu et al. 2018; Yoo et al. 2019) attempt to learn such transla-
tion prior within the networks during training. Starting with
feature extraction module, they designed feature fusion mod-
ule, e.g., AdaIN (Huang and Belongie 2017) or WCT (Li et al.
2017), and trained decoder module on large-scale image data,
e.g., ImageNet (Deng et al. 2009) or MS-COCO (Lin et al.
2014), as in Figure. 1(b), which can be formulated as

ω† = argmin
ω

∑
n
Lrecon(F(FC,n, FS,n;ω), IC←S,n),

(2)
where FC,n and FS,n are features from n-th image pair and
IC←S,n is n-th stylized image sampled from massive train-
ing data. F(·;ω) is a feed-forward process with decoder
parameters ω. Lrecon is an image reconstruction loss func-
tion (Gatys, Ecker, and Bethge 2016; Liu, Breuel, and Kautz
2017; Huang et al. 2018; Park et al. 2019). In practice, since
it is notoriously challenging to collect training pairs for style
transfer, {(FC,n, FS,n, IC←S,n)}n∈{1,...,N}, due to its sub-
jectivity, most methods (Li et al. 2017; Huang and Belongie
2017; Li et al. 2018; Gu et al. 2018; Yoo et al. 2019) alterna-
tively leverage an auto-encoding setting to learn the decoder
with parameters ω to reconstruct an input image itself learned
by Lrecon(F(Φ(I);ω), I). At test time, given FC and FS , a
stylization process can be formulated as follows:

IC←S = F(FC , FS ;ω†). (3)

These methods are based on the assumption that the image
translation prior can be learned within the model itself from
massive training data. However, during the training phase,
these methods do not leverage explicit content and style loss

functions, as done in optimization methods (Li and Wand
2016; Gatys, Ecker, and Bethge 2016; Luan et al. 2017),
thus providing limited stylization performance when their
assumptions are violated, e.g., under unseen images or styles.
In addition, adopting fixed network parameters at test time
may not capture an image pair-specific translation prior.

Overview
To overcome aforementioned limitations and take the best of
both approaches, we present Deep Translation Prior (DTP)
framework. We argue that the translation prior does not nec-
essarily need to be learned from intensive learning or datasets.
Instead, an image pair-specific translation prior can be cap-
tured by solely minimizing explicit content and style loss
functions on the image pair, like what is done by conven-
tional optimization-based methods (Li and Wand 2016; Gatys,
Ecker, and Bethge 2016; Luan et al. 2017), with an untrained
network for stylization, which takes benefits of large capac-
ity and robustness of networks as in recent learning-based
methods (Li et al. 2017; Huang and Belongie 2017; Li et al.
2018; Gu et al. 2018; Yoo et al. 2019), as in Figure. 1(c),
formulated as

ω∗ = argmin
ω
{Lcont(Φ(F(FC , FS ;ω)), FC)

+ Lstyle(Φ(F(FC , FS ;ω)), FS)},
IC←S = F(FC , FS ;ω∗),

(4)

where ω∗ is overfitted to the input image pair, which encodes
the image pair-specific translation prior. Unlike conventional
optimization-based methods (Gatys, Ecker, and Bethge 2016;
Li and Wand 2016), our framework generates better styliza-
tion results while eliminating the artifacts thanks to the struc-
ture of networks that can encode the image pair-specific prior
during test-time training. In addition, unlike recent learning-
based methods (Li et al. 2017; Huang and Belongie 2017;
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Li et al. 2018; Gu et al. 2018; Yoo et al. 2019), our frame-
work does not require an intensive training for decoder, but
only requires an off-the-shelf feature extractor and untrained
generator, thus having better generalization ability to unseen
images or styles.

Tailored for such test-time training for style transfer, we
design our stylization networks in a two-stage fashion, as
illustrated in Figure. 2; on one hand, the model predicts
a translation hypothesis by first computing the similarity
between each content point and all style points by means
of the feature vectors FC and FS , called correspondence
module, and on the other, the model refines the hypothesis
through the decoder for more plausible stylization, called
generation module. Since the generated output is desired to
preserve the structure of the content image IC while faithfully
stylizing from semantically similar parts in the style image
IS , we present contrastive content loss function and style loss
function to boost the convergence of our test-time training
framework.

It should be noted that there exist similar literature for im-
age restoration tasks, e.g., Deep Image Prior (DIP) (Ulyanov,
Vedaldi, and Lempitsky 2018), that have shown that the struc-
ture of a generator network can capture a low-level image
prior by optimizing a randomly-initialized network with a
task-dependent fidelity term on a single image. To the best of
our knowledge, our framework is the first attempt to learn the
translation prior at test time for photorealistic style transfer.

Network Architecture
Correspondence Module. We first present a correspon-
dence module to measure the similarities between each point
in content feature fC and all other points in style feature fS ,
enabling generating a translation hypothesis. It is inspired
by the classical matching pipeline (Rocco, Arandjelovic, and
Sivic 2017) in that we first extract the feature vectors and
then compute the similarity between them.

Following the previous approaches for style transfer, we
first extract the deep convolution features, e.g., VGGNet (Si-
monyan and Zisserman 2015) pretrained on ImageNet (Deng
et al. 2009), as follows:

fC = Φ(IC ;ωf ) ∈ RH×W×C ,

fS = Φ(IS ;ωf ) ∈ RH×W×C ,
(5)

where H and W are spatial size, with C channels of f . ωf are
feature extraction parameters. Unlike most existing methods
that use fixed feature extraction parameters, we adaptively
fine-tune the parameters to the input image pair. We then
compute a correlation matrix M ∈ RHW×HW , of which
each term is a pairwise feature correlation such that

M(u, v) =
f̂C(u)

T f̂S(v)

∥f̂C(u)∥∥f̂S(v)∥
, (6)

where u and v represent all the points in the content and
style images, respectively. f̂C(u) and f̂S(v) are channel-wise
centralized features of fC(u) and fS(v) as

f̂C(u) = fC(u)− f̄C , f̂S(v) = fS(v)− f̄S , (7)

where f̄C is an average of fC(u) across all the points in the
content. f̄S is similarly defined. Since M(u, v) represents a
similarity between u and v, the higher, the more similar.

By using the correlation matrix M , we synthesize an
warped style feature rC←S , i.e., the style feature spatially-
aligned to the content image. The warping function can be
formulated in many possible ways, but we borrow the tech-
nique in (Zhang et al. 2020) that uses a reconstruction:

rC←S(u) =
∑

v
Ω(M(u, v)/τ)fS(v), (8)

where Ω means the softmax operator across v, and τ is a
temperature parameter.

generation module. Our generation module aims at recon-
structing an image from warped feature rC←S . We present
the decoder that has a symmetric structure of feature extractor
architecture, similar to (Li et al. 2017; Huang and Belongie
2017). This decoding process can be formulated as follows:

IC←S = F(rC←S ;ωg), (9)

where ωg is decoding parameters. As described above, the
parameters are first randomly-initialized and then learned
with explicit loss functions for style transfer at test time.

However, due to non-convexity of the loss functions for
style transfer, generating the image IC←S through the decoder
directly is extremely hard to converge. To elevate the stability
and boost the convergence, we exploit not only warped style
feature rC←S , but also warped style image RC←S , extracted
such that RC←S(u) =

∑
v Ω(M(u, v)/τ)IS(v), as a guid-

ance for style transfer, where the networks only learn the
residual for the final result as follows:

IC←S = λwF(rC←S ;ωg) + (1− λw)RC←S , (10)

where λw is a weight parameter. By leveraging such a residual
prediction, convergence of our test-time training could be
greatly improved. Moreover, it enables directly flowing the
loss gradients to both feature extractor with ωf and image
generator with ωg , which helps to boost the performance.

Iterative Formulation. Since the loss function for style
transfer, which will be discussed later, is non-convex, we
formulate our test-time training as an iterative framework
As evolving the iteration, the image I lC←S at l-th iteration
converges to better stylization results, since it is generated
from the updated feature extractor parameters ωf and decoder
parameters ωg . Since the image I lC←S is getting close to the
optimal, if the content image IC can be substituted by I lC←S
in a recurrent fashion, the iterative solver can converge faster
and boost performance. However, at early stages during op-
timization, I lC←S contains blurry regions and noises, which
prohibit using such an explicit recurrent formulation. To over-
come this limitation, we adopt a moving averaging technique
similar to (Kim et al. 2019; Schmidt et al. 2020) in a man-
ner that we smoothly substitute the content feature fC by
the output feature fC←S = Φ(IC←S ;ωf ) with a momentum
parameter m, such that

f l
C ← mf l

C + (1−m)f l−1
C←S , (11)

which is used to the current content feature.

1186



Content Style (a) (b) (c) (d) (e) (f)

Figure 3: Comparison of DTP with other methods on standard benchmark (Luan et al. 2017; An et al. 2020): Given content
and style images, stylized results are achieved by (a) Gatys et al. (Gatys, Ecker, and Bethge 2016), (b) WCT (Li et al. 2017),
(c) WCT2 (Yoo et al. 2019), (d) STROTSS (Kolkin, Salavon, and Shakhnarovich 2019), (e) SinIR (Yoo and Chen 2021), and
(f) Ours. Compared to others, our model generates realistic results while successfully transferring both global and local style
information and preserving structure. Our model does not require any mask, pre- or post-processing.

Loss functions
Content Loss. In photorealistic style transfer, the structure
of content image should be preserved on the output image,
and thus the content loss is generally defined as the feature
difference between the content image IC and the generated
image IC←S , e.g., ∥fC − fC←S∥2. However, this content loss
does not consider other pixels, thus making the result blurry
and inducing the trivial solution when the features are simul-
taneously trained as in our test-time training. To overcome
this, we revisit infoNCE loss (Oord, Li, and Vinyals 2018)
to set the pseudo positive samples between content image IC
and generated image IC←S . We first encode the feature stacks
as used in (Chen et al. 2020; Park et al. 2020a), compiling
stacks of features {f l

C} and {f l
C←S}, where l ∈ {1, ..., LC}.

We define the exponential of inner product function of two
vectors to express the equation more comfortably.

s(f, g) = exp
((
fT g/∥f∥∥g∥

)
/τ

)
, (12)

where τ is a temperature parameter. Our final content loss is
then defined as follows:

Lcont = −
∑
l

∑
u

log

(
s(f l
C(u), f

l
C←S(u))∑

v s(f
l
C(u), f

l
C←S(u))

)
. (13)

Style Loss. We additionally adopt style loss functions. Un-
like parametric methods (Gatys, Ecker, and Bethge 2016;
Li et al. 2017; Chen and Koltun 2017; Li et al. 2018; Yoo
et al. 2019) that enforce the style loss globally, we adopt the
style loss similar to non-parametric methods (Li and Wand
2016; Kim et al. 2019) for getting detailed results which are
more suitable for photo realistic style transfer. Similar to the
content loss, the style loss is defined in a multi-scale manner.
Our style loss is defined as below:

Lstyle =
∑

l

∑
v
∥Ψ(f l

C←S(v))−Ψ(f l
S(NN(v)))∥2F ,

(14)
for l ∈ {1, ..., LS}. ∥ · ∥2F denotes a Frobenius norm. NN(v)
is the index of the patch in Ψ(fS) that is the nearest patch of
Ψ(fC←S(v)).

Cycle Consistency Loss. To improve the stability during
training, we further present cycle consistency loss as a reg-
ularization which enforces the stylized feature r should be
back-warped to the original feature f well, defined such that

rS =
∑
u

Ω

(
M(u, v)

τ

)∑
v

Ω

(
M(u, v)

τ

)
fS(v). (15)

rC is similarly defined. Then the cycle consistency loss Lcyc

is bidirectionally defined as

Lcyc =
∑
u

{∥fC(u)−rC(u)∥2F+∥fS(u)−rS(u)∥2F }. (16)

Total Loss. Finally, the total loss can be summarized such
that L = λcLcont + (1 − λc)Lstyle + λcycLcyc, where λc,
λw and λcyc represent loss adjusting hyperparameters.

Experiments
Implementation Details
We first summarize implementation details in our framework.
For feature extractor, we used the ImageNet (Deng et al.
2009) pre-trained VGG-19 (Simonyan and Zisserman 2015)
network. We set the temperature parameter τ as 0.07 and
weight parameter λw as 1/9. We also empirically set momen-
tum parameter m as 0.4. λc = 1/5 and λcyc = 1 were used
to adjust loss functions. We set the learning rates as 1e−4. We
conduct experiments using a single 24GB RTX 3090 GPU.
The network occupies memories about 6GB. We optimize our
network over 1000 iterations, which takes about 150 seconds.
The pair of content and style images are bilinearly resized to
the size of 256×256 in our experiment.

Experimental Setup
We used three kinds of datasets to evaluate our method,
including standard datasets for photorealistic style trans-
fer (Luan et al. 2017; An et al. 2020), CelebA-HQ (Liu et al.
2015), and Flickr Faces HQ (FFHQ) (Karras, Laine, and
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Figure 4: Comparison of DTP with other methods on CelebA-HQ dataset (Liu et al. 2015) and FFHQ dataset (Karras, Laine, and
Aila 2019): Given content and style images, translation results are achieved by (a) Gatys et al. (Gatys, Ecker, and Bethge 2016),
(b) STROTSS (Kolkin, Salavon, and Shakhnarovich 2019), (c) Swapping Autoencoder (Park et al. 2020b), (d) CoCosNet (Zhang
et al. 2020), (e) SinIR (Yoo and Chen 2021), and (f) Ours. The results show that our networks can translate local features as well
as global features from both structure and style. Note that CoCosNet (Zhang et al. 2020) was trained on CelebA-HQ, including
segmentation masks, and Swapping Autoencoder (Park et al. 2020b) was trained on FFHQ.

Photo-R. CelebA-HQ FFHQ
Methods PE↓ SSIM↑ PE↓ SSIM↑ PE↓ SSIM↑
Gatys et al. 3.09 0.44 4.37 0.66 1.97 0.69
WCT 2.48 0.22 - - - -
WCT2 1.99 0.70 - - - -
STROTSS 3.23 0.37 1.81 0.60 1.65 0.66
Swap. AE 2.92 0.22 0.89 0.60 1.13 0.58
CoCosNet - - 1.56 0.43 - -
SinIR 1.00 0.84 1.56 0.84 1.28 0.93
DTP, λc=4/5 1.36 0.75 0.79 0.86 1.4 0.93
DTP, λc=1/5 1.09 0.82 0.47 0.96 1.21 0.98

Table 1: Quantitative evaluation on standard benchmark for
photorealistic style transfer (Luan et al. 2017; An et al. 2020),
CelebA-HQ (Liu et al. 2015), and FFHQ (Karras, Laine, and
Aila 2019).

Aila 2019). We compared our method with recent state-of-
the-art style transfer methods, such as Gatys et al. (Gatys,
Ecker, and Bethge 2016), WCT (Li et al. 2017), WCT2 (Yoo
et al. 2019), STROTSS (Kolkin, Salavon, and Shakhnarovich
2019), SinIR (Yoo and Chen 2021). We also compared with
image-to-image translation tasks, such as CoCosNet (Zhang
et al. 2020), and Swapping Autoencoder (Park et al. 2020b).
It should be emphasized that learning-based style transfer
methods (Li et al. 2017; Yoo et al. 2019) and image-to-image
translation methods (Zhang et al. 2020; Park et al. 2020b) are
trained on tremendous training data, while our method just
trains the networks at test time with a pair of images.

Experimental Results
Qualitative Evaluation. In this section, we evaluated pho-
torealistic style transfer results of our method compared
with state-of-the-art methods, with respect to two aspects,
including synthesized image quality and semantic consis-
tency. Qualitative results are shown in Figure. 3 and Fig-

ure. 4. Our generated results are realistic and contain both
global-local style features while successfully preserving the
structure from the contents. Traditional optimization-based
method (Gatys, Ecker, and Bethge 2016) shows poor synthe-
sis quality. Learning-based methods (Li et al. 2017; Yoo et al.
2019) that use fixed decoder parameters at test time. Since
both kinds of methods do not consider translation prior, they
show limitations in preserving fine details and make artifacts.

Unlike these, our approach has shown high generalization
ability to any unseen input images. On the other hand, while
Swapping Autoencoder (Park et al. 2020b) was trained with
a large-scale dataset, but limited to generating plausible re-
sults, our results show competitive, even better, results. Our
success in fine details of both style and content can be found
in Figure. 4, where our method produces the most visually
appealing images with more vivid details. For example, the
top right shows the closest skin color from style and the exact
same texture of hair from content as well as overall clarity
outperform the state-of-the-art methods.

Quantitative Evaluation. We further evaluate our method
with the quantitative results as in Table. 1 on photorealistic
style transfer examples, CelebA-HQ dataset, and Flicker-
Faces dataset (FFHQ) with metrics of Pieapp (Prashnani et al.
2018) (PE) and Structural Similarity (SSIM) (Wang et al.
2004). Pieapp is a reference-based quality assessment used
for semantic consistency. SSIM index is an error measure-
ment which is computed between the original content images
and stylized images. Here, we do not measure WCT (Li et al.
2017) and WCT2 (Yoo et al. 2019) on CelebA-HQ and FFHQ
since WCT requires pre-training on each task. Similarly, since
CoCosNet (Zhang et al. 2020) has been trained on example-
based image-to-image translation task, we do not evaluate
it on photorealistic style transfer examples. We also show
the effect of changing weight λc of content and style loss. In
the results, our model significantly outperforms most of the
methods on photorealistic examples under the both evalua-
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Content Style w/o WF w/o WI w/o FMA w/o Lcyc w/o G. Module. Ours

Figure 5: Ablation study on priors, cycle consistency loss, generation module and feature moving average: Warped features (WF)
and images (WI) help generation module to contain translation prior in the feature and image level. Feature moving average
(FMA) helps to converge to better solution and Lcyc stabilizes test-time optimization. Generation module (G. Module) helps to
learn translation prior better.

tion metrics. In particular, our results with λc = 1/5 tend to
show better quantitative results, since smaller λc produces
results with more similar structure to content image, which
we analyze in more detail in the supplementary material.
Also, results on CelebA-HQ are very close to best metrics.
The results indicate significant performance gains with our
method in all metrics. Interestingly, though our method is
designed for style transfer, our architecture also works on
image-to-image translation task.

Ablation Study
In order to validate the effectiveness of each component in
our method, we conduct a comprehensive ablation study. In
particular, we analyze the effectiveness of warped feature
and image, cycle consistency loss Lcyc, feature moving av-
erage, and generation module in Figure. 5. To validate the
effect of the warped feature and image in our model, we
conduct ablation experiments by replacing the warped fea-
ture with random Gaussian noise and eliminating the residual
connection with warped image. Without the warped feature,
it fails to preserve edges while the result without the warped
image fails to capture any style information. We also vali-
date the influence of cycle consistency loss, which makes the
optimization process more stable. Feature moving average
makes the synthesized image more vivid because the previ-
ous synthesized feature can give guidance for content and
style feature correlation. Without the generation module, the
output cannot converge to the optimal result. With all these
components, our work is more effective in resulting style
relevant outputs while preserving content clearly.

User Study
We also conducted a user study on 80 participants to evaluate
the quality of synthesized images in the experiments with the
following questions: “Which do you think has better image
quality / similar content to content image / style relavance
to style image?”. On photorealistic style transfer examples,
CelebA-HQ (Liu et al. 2015) and FFHQ dataset (Karras,

Gatys et al. STROTSS WCT WCT2 Swapping AE CoCosNet SinIR Ours

0%

FFHQ

CelebA-         
HQ

Photo-
R.

25% 50% 75% 100%
(a)

0% 25% 50% 75% 100%

FFHQ

CelebA-         
HQ

Photo-
R.

(b)
0%

FFHQ

CelebA-         
HQ

Photo-
R.

25% 50% 75% 100%
(c)

Figure 6: User study results: (a) image quality, (b) content
relevance, and (c) style relevance.

Laine, and Aila 2019), our method ranks the first in every
cases, which can be found in Figure. 6.

Conclusion
In this paper, we proposed, for the first time, a novel frame-
work to learn the style transfer network on a given input im-
age pair at test time, without need of any large-scale dataset,
hand-labeling, and task-specific training process, called Deep
Translation Prior (DTP). Tailored for such test-time training
for style transfer, we formulate overall networks as two sub-
modules, including correspondence module and generation
module. By training the untrained networks with explicit loss
functions for style transfer at test time, our approach achieves
better generalization ability to unseen image pairs or style,
which has been one of the major bottlenecks of previous
methods. Experimental results on a variety of benchmarks
and in comparison to state-of-the-art methods proved that
our framework outperforms the existing optimization- and
learning-based solutions.
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