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Abstract

Reasoning is a dynamic process. In cognitive theories, the dy-
namics of reasoning refers to reasoning states over time after
successive state transitions. Modeling the cognitive dynamics
is of utmost importance to simulate human reasoning capabil-
ity. In this paper, we propose to learn the reasoning dynam-
ics of visual relational reasoning by casting it as a path rout-
ing task. We present a reinforced path routing method that
represents an input image via a structured visual graph and
introduces a reinforcement learning based model to explore
paths (sequences of nodes) over the graph based on an input
sentence to infer reasoning results. By exploring such paths,
the proposed method represents reasoning states clearly and
characterizes state transitions explicitly to fully model the
reasoning dynamics for accurate and transparent visual rela-
tional reasoning. Extensive experiments on referring expres-
sion comprehension and visual question answering demon-
strate the effectiveness of our method.

Introduction
Cognitive theories reveal that reasoning is a dynamic process
where the state of the intelligent system is always changing
over time in its state space (Engelfriet and Treur 1994; Port
and Van Gelder 1995). The dynamics of reasoning is de-
scribed by sequences of reasoning states over time after suc-
cessive reasoning steps (Jonker and Treur 2002). Formally, a
reasoning state is an intermediate representation of a reason-
ing process. A transition from one reasoning state to another
reasoning state formalizes one reasoning step. Modeling the
reasoning dynamics is critical to simulate the reasoning ca-
pability of humans (Jonker and Treur 2003).

In this paper, we propose to learn the reasoning dynamics
of visual relational reasoning by casting it as a path rout-
ing task. Visual relational reasoning involves the sequential
processing of visual information such as relationships and
objects in images. Figure 1 shows the path routing for visual
relational reasoning in the context of visual question answer-
ing (VQA). In path routing, we require a reasoning model to
explore paths, i.e., sequences of nodes, over a visual graph,
whose nodes denote objects in an image and edges denote
relationships among the objects. For example, to answer the
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Figure 1: Illustrations of visual relational reasoning in the
context of visual question answering. (a) An input question,
an input image, and a graph representing the relational lay-
out of the image. We do not show all edges in the graph
for simplicity. (b) The reasoning process of typical modular
methods. (c) The reasoning process of typical graph-based
holistic methods. (d) The path routing on the graph, where
red circles and red solid arrows comprise the explored path.

question “What is the person to the left of the glasses hold-
ing?” in Figure 1 (a), the model should progressively attend
to the glasses, the person, and the kite on the graph based on
their relationships. Different from existing modular meth-
ods (Andreas et al. 2016; Johnson et al. 2017) and holistic
methods (Guo, Xu, and Tao 2019; Hu et al. 2019) that focus
on reasoning structure modeling or contextual representa-
tions learning, we focus on reasoning dynamics learning in
path routing shown in Figure 1 (d). By exploring such paths,
the reasoning states are represented clearly and the reason-
ing state transitions are characterized explicitly to enable the
modeling of the reasoning dynamics.
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To achieve this goal, we present a reinforced path rout-
ing method, which uses a reinforcement learning (RL) based
reasoning model to learn multi-step paths, for accurate
and transparent visual relational reasoning. The proposed
method regards the reasoning model as an agent that nav-
igates on a structured visual graph based on an input sen-
tence to infer the reasoning result. At each time step, the
agent uses a navigation policy to decide which node should
be selected to extend the current path. The navigation policy,
which contains a language attention and a history attention,
enables the agent to exploit language cues, history states,
and history decisions in current decision-making. The agent
will be rewarded if it finds a path based on which the correct
result is inferred.

We further introduce a pre-training strategy that warm-
starts the agent via supervised learning (SL). The strategy
encourages the agent to navigate over the graph from one
node to another node in a soft manner. In pre-training, we
progressively sharpen the probability distribution of the nav-
igation policy, to encourage the agent to gradually learn to
focus on only one node. A coverage loss is used to enforce
the model to attend to different nodes at different steps.
The pre-training strategy is thus capable of preventing the
model from degradation in the RL stage. Extensive experi-
ments on two visual relational reasoning tasks, referring ex-
pression comprehension (Hu et al. 2016; Qiao, Deng, and
Wu 2020), visual question answering (Antol et al. 2015; Wu
et al. 2017), demonstrate our method achieves accurate rea-
soning with a transparent reasoning process.

The contributions of this paper are two-fold:
1. We are the first to learn the dynamics of visual relational

reasoning by casting it as a path routing task to achieve
accurate and transparent reasoning.

2. We present a reinforced path routing method that can
learn multi-step paths without any additional annotation.
The explored paths can make the reasoning processes of
our method more human-understandable.

Related Work
Visual Relational Reasoning
Existing visual relational reasoning methods for referring
expression comprehension and visual question answering
can be divided into two categories: modular and holistic.
Modular methods (Andreas et al. 2016; Johnson et al. 2017;
Hu et al. 2018; Shi, Zhang, and Li 2019; Hong et al. 2019;
Liu et al. 2019a; Chen et al. 2021) focus on reasoning struc-
ture modeling and assembles various neural modules for dif-
ferent input sentence-image pairs. They show good compo-
sitionality and interpretability in various tasks but usually
have high model complexity and inferior performance on
tasks over real-world images. Holistic methods (Hudson and
Manning 2018; Perez et al. 2018; Hu et al. 2019; Wang et al.
2019; Yang, Li, and Yu 2019a; Jing et al. 2020a; Liu et al.
2020; Liao et al. 2020; Jing et al. 2020b; Deng et al. 2021)
focus on contextual representation learning and use a sin-
gle model for different inputs. They usually stack attention
mechanisms or graph convolution operations to learn infor-
mative representations and perform reasoning in the latent

space. By contrast, our method focuses on reasoning dynam-
ics learning by casting the reasoning task as path routing.
We explicitly characterize the reasoning states and the state
transitions to learn the reasoning dynamics for accurate rea-
soning with a transparent reasoning process.

The NSM (Hudson and Manning 2019b), the XMN (Shi,
Zhang, and Li 2019), and the SGMN (Yang, Li, and Yu
2020) also build a visual graph and perform reasoning by
traversing the graph. Nonetheless, in each step of reasoning,
they weighted sum all nodes in the graph to represent the
current state. Therefore, which node contributes most to the
next step of reasoning is not clear, and the reasoning process
is hard to understand. Our method uses only one attended
node to represent the state of each step and combines the
state and historical states for the next step of reasoning. Only
the attended nodes are involved in reasoning. Thus the path
formed by the attended nodes serves as an explanation for
the reasoning process.

Reinforcement Learning
Reinforcement learning has been widely applied to vision-
language tasks such as REC and VQA. Nonetheless, most
of them use the RL as a technique to estimate gradients
of non-differentiable components to guarantee the models
can be optimized in an end-to-end manner. For example,
neural modular networks (Hu et al. 2017; Johnson et al.
2017; Mascharka et al. 2018) use the REINFORCE algo-
rithm (Williams 1992) to estimates gradients of the lay-
out generator. Tang et al. (2019) explore tree structure to
model visual context via the REINFORCE for VQA. Wu,
Xu, and Yang (2017) use the RL to learn to move and re-
shape a bounding box for one-stage REC. Different from
these methods, we model the reasoning process as a Markov
decision process and use the RL to achieve sequential rea-
soning for both REC and VQA.

Method
The proposed method learns the dynamics of visual rela-
tional reasoning by constructing a graph to represent an in-
put image and encouraging an agent to explore paths on the
graph according to an input sentence, as shown in Figure 2.
In this section, we first formally define visual relational rea-
soning as a path routing task and then illustrate the method.

Formulation
We focus on two visual relational reasoning tasks, referring
expression comprehension (REC) and visual question an-
swering (VQA). The REC task aims to localize an object
described by a referring expression L in an image I repre-
sented by a set of objectsO = {oi}Ni=1, whereN is the num-
ber of objects. The VQA task aims to provide an answer for a
natural language question L about the image I . For simplic-
ity, here we use the same notations L and I to represent the
input sentence (i.e., the referring expression/question) and
the image, respectively.

To learn the dynamics of visual relational reasoning, we
cast it as a path routing task on a visual graph G = {V,E}
representing the relational layout of the image I , where
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Figure 2: Overview of our method for visual question answering. Black arrows show the forward process. Blue arrows and green
arrows show the backward processes of supervised learning and reinforcement learning, respectively. Our method constructs a
visual graph from an input image and encodes an input question to obtain the representations of the question and words. An
agent navigates on the graph according to the question. The learned path is combined with the question to predict the answer.
A reinforcement learning loss and a supervised learning loss are used to train the agent in an end-to-end manner.

V = {vi}Ni=1 is a set of nodes corresponding to the objects
in I . E = {eij}Ni,j=1 denotes the relationships among ob-
jects. In path routing, a reasoning model learns to navigate
on the graph G according to the sentence L to infer reason-
ing results. Here we formalize the reasoning dynamics in the
context of path routing and define three concepts:

• Reasoning state. In path routing, we define the reasoning
state st, the intermediate representation of a reasoning
process, at each time step t ∈ {0, 1, ..., T} by the current
node vut

∈ V . T denotes the number of time steps for
path routing. ut ∈ {1, 2, ..., N} indicates the index of
the node at the time step t.

• State transition. The reasoning model in path routing
performs the transition from one reasoning state to an-
other reasoning state. At each time step t, the model de-
termines the next node vut+1 based on the current node
vut to obtain the next state st+1.

• Reasoning dynamics. After the path routing, a path
pT = {vu1

, vu2
, ..., vuT

} is explored on the visual
graph. Thus the reasoning dynamics d = {s1, s2, ..., sT },
a time-indexed sequence of reasoning states, is deter-
mined.

By exploring paths, the dynamics of visual relational rea-
soning is supposed to be fully modeled because reasoning
states and state transitions are represented and characterized
clearly. To this end, we present a reinforced path routing
method that models path routing as a Markov Decision Pro-
cess. The sentence L and the graph G comprise the exter-
nal environment. An RL-based reasoning model serves as
the agent, whose states and actions correspond to reasoning
states and state transitions, respectively. In the following, we
illustrate how we devise, reward, and optimize the reasoning
model for visual relational reasoning.

Model
Feature Encoding For a visual graph G = {V,E}, we
represent a node vi via a local feature li ∈ Rdl encoding
the appearance information, and a spatial feature bi ∈ Rdb
encoding its location and size. The two features are concate-
nated and projected into a common space Rd via a linear
mapping as vi = Wv[li; bi], where Wv ∈ Rd×(dl+db),
and

[
· ; ·
]

denotes the concatenation operation of two vec-
tors. We use a fully-connected graph to represent the image,
which means there is an undirected edge eij between each
pair of nodes vi and vj . We do not obtain the representation
of eij as its representation is not used in path routing.

For a sentence L which contains a sequence of M words
{wk}Mk=1, we use a Bi-LSTM (Schuster and Paliwal 1997)
to encode the sequence and project it into the common space
to obtain a sentence-level representation L ∈ Rd. The word
representation wk ∈ Rd of a word wk is obtained by con-
catenating corresponding forward and backward hidden vec-
tors and projecting it into the common space. Note that we
use bold letters to denote the representations of correspond-
ing non-bold letters throughout this paper.

Policy Network In path routing, the agent is supposed to
determine which node should be added to extend the current
path. A navigation policy πnav is introduced for the agent.
At each time step t, the policy generates a probability dis-
tribution over all the nodes based on the current state st.
The representation of the state is obtained via st =Wsvut ,
where vut is the representation of the current node and the
Ws ∈ Rd×d is a learnable matrix. For the initial state s0,
we calculate a mean node representation by averaging all
node representations to represent it. We use an attention-
based neural network to parameterize the policy network (as
shown in Figure 3), which is introduced in the following.

Firstly, a language attention is introduced to enable the
agent to focus on different parts of the sentence at different
time steps. The agent uses the attention mechanism based

1124



History

CommandLanguage  
Attention

Current
State

Joint 
Embedding

History 
Attention

History States

…
…

Action

Sentence & Words

…
…

Figure 3: Architecture of the policy network. It uses a lan-
guage attention to generate a textual command by focusing
on important words, and a history attention to fuse the his-
tory nodes according to the command and the current state.
The history embedding, the command, and the state are com-
bined for action prediction.

on current state st and the sentence-level representation L
to generate a command embedding:

ct =W0

M∑
k=1

αLt,kwk,

αLt,k = Softmaxk
(
W1(wk ◦W t

2σ(W3[L; st]))
)
,

(1)

where ◦ denotes the dot product operation of two vectors and
σ denotes the RELU activation function.wk is the represen-
tation of the k-th word in L. W0 ∈ Rd×d, W1 ∈ Rd×d,
W t

2 ∈ Rd×d and W 3 ∈ Rd×2d are learnable matrices.
Specifically, W t

2 denotes a single learnable matrix for each
iteration t. The obtained command embedding serves as an
instruction for models to perform state transitions.

Then, based on the command and the current state, we
fuse the history states via a history attention to generate the
history embedding:

ht =
t−1∑
i=1

αHt,iW4si,

αHt,i = Softmaxi (W5si ◦W6[ct; st]) ,

(2)

where W4 ∈ Rd×d, W5 ∈ Rd×d and W6 ∈ Rd×2d are
learnable matrices.

Finally, the state representation, the command embed-
ding, and the history embedding are fused as a joint embed-
ding gt = [ct; st;ht] to obtain the next state. Concretely,
the agent computes the probability of each node for being
selected to extend the current path as

αnav
t,i = Softmaxi (W7gt ◦ (W8[st;vi] +W9ηt,i)) , (3)

where W7 ∈ Rd×3d, W8 ∈ Rd×2d and W9 ∈ Rd×1 are
learnable matrices. The vi is the representation of the i-th
node. The vector ηt =

∑t−1
j=0α

nav
j is the accumulated prob-

ability distribution of previous time steps to enable the agent
be aware of the history decisions. The action at is sampled
from the distribution to obtain the next node vut+1

.

Output Module For each sentence, we use an existing
language POS tagging method, the Spacy tool (Honnibal
and Montani 2017), to obtain the part-of-speech (POS) tag
of each word in it. Then we derive the number of steps T
for path routing of the sentence by computing the number
of nouns in it. The final state is thus sT . For REC, we di-
rectly output the final node vuT

as the predicted object for
an input referring expression L. For VQA, we build a sim-
ple task-specific output module, an answer classifier. The
answer classifier projects the inputs into a probability dis-
tribution over all possible answers as αans =Wans[sT ;L],
where αans denotes the output probability distribution and
Wans ∈ RNa×2d denotes a learnable matrix. Na is the
number of answers. The answer with the highest probabil-
ity â is regarded as the predicted answer.

Reward The ultimate goal of the agent is to infer reason-
ing results that match the objective of the reasoning task.
For REC, the objective is achieved if the final node vuT

is
the same as the ground-truth node vgt, while the objective
of VQA is achieved if the predicted answer â is exactly the
ground-truth answer agt. According to whether the objective
is achieved, we devise an accuracy reward

Rt =

{
10, if the objective is achieved
0. otherwise

(4)

Optimization
Recent methods using reinforcement learning in vision-
language tasks (Nguyen and Daumé III 2019; Zhou et al.
2020; Zhao, Wu, and Luo 2021; Wang et al. 2021) reveal
that warm-starting the agent with supervised learning can
guarantee a relatively good policy. However, applying this
strategy in path routing is non-trivial. Firstly, the supervi-
sion for reasoning dynamics is unavailable, thus we can not
directly optimize the policy network. Secondly, due to the
non-differentiability of the action prediction, it’s infeasible
to train the model with the supervision of reasoning results.
To address this issue, we introduce a pre-training strategy
that encourages to model to gradually learn to move from
one node to another node in a supervised learning man-
ner. Based on the pre-training strategy, a two-phase learning
strategy is developed, which is illustrated in the following.

Supervised Learning The softmax function is used to
compute the probability distribution over all actions in Eq.
(3). Generally, given the probability distribution, an RL-
based agent either uses a deterministic policy by taking the
action with the highest probability or uses a stochastic pol-
icy by randomly selecting an action. Both policies lead to
non-differentiability.

Thus we use a differentiable scaled softmax function
softmax(βx), where β > 0 is an scaling parameter, to re-
place the softmax function in Eq. (3) for the navigation pol-
icy. By increasing the scaling parameter, the function will
become more non-smooth and thus can be used to approxi-
mate the deterministic policy as (Hinton, Vinyals, and Dean
2015; Jang, Gu, and Poole 2017).

At the beginning of the supervised learning, we set β = 1
to generate the probability distribution. Based on the distri-
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bution, the representation of the next state can be obtained
by aggregating all node representations. During the training
process, we gradually increase β by setting βi = (1 + γi)λ,
where i is the current iteration number, γ and λ are two
hyper-parameters. Intuitively, we allow the agent to softly
navigate to “multiple” nodes at the beginning but enforce it
gradually learns to focus on only one node during the train-
ing process.

After T rounds of path routing, we compute the task-
specific objective of supervised learning via a cross-entropy
loss as

LSL
task = −ytask log

(
xtask

)
, (5)

where task ∈ {rec, vqa}, and ytask is an one-hot label
whose element representing the ground truth answer/object
is 1 and others are 0. xrec = αnav

T denotes the probability
distribution of the navigation policy at the final time step.
xvqa = αans denotes the probability distribution generated
by the answer classifier.

Besides, we introduce a visual coverage loss to encourage
the agent to focus on different nodes at different time steps in
supervised learning, inspired by the coverage mechanism in
text summarization (See, Liu, and Manning 2017). The loss
penalizes the attention distribution that is similar to history
distributions and is computed as

LSL
cover = µ

T−1∑
t=0

N−1∑
i=0

min(ηt,i, α
nav
t,i ), (6)

where ηt is the accumulated probability distribution of pre-
vious time steps. The coverage loss and the task-specific
loss jointly supervise the model learning and µ is a hyper-
parameter to balance the losses.

Reinforcement Learning We use a policy gradient
method, the advantage actor-critic (A2C) algorithm (Mnih
et al. 2016), to train the policy network. The gradient of re-
inforcement learning is calculated as

∇θJ(θ) =
T∑
t=1

∇θ log πnav (a
p
t | s0:t−1)

( T∑
i=t

Ri − bt
)
, (7)

where θ denotes the parameters of the policy network. bt is
the expected accumulated reward learned via a value func-
tion. A single fully-connected layer is used to map the cur-
rent state representation st to the expected reward bt. Note
that, for VQA, due to the existence of the answer classifier,
the reinforcement learning is combined with the supervised
answer classification loss to train the model in an end-to-end
manner, as shown in Figure 2.

Experiment
We apply the proposed method on two tasks, REC and VQA,
to evaluate its effectiveness. We first evaluate our method on
REC, which tests the relational reasoning capability of mod-
els. We use two REC datasets: the CLEVR-Ref+ (Liu et al.
2019b) that is a synthetic diagnostic dataset, and the Ref-
reasoning (Yang, Li, and Yu 2020) that contains real images.
The reason to choose these two datasets is that they can pro-
vide more complex referring expressions that require strong

reasoning capability. Secondly, we evaluate our method on
VQA, which tests not only relational reasoning ability but
also other capabilities such as question answering and com-
monsense reasoning. The challenging GQA dataset (Hudson
and Manning 2019a) that contains compositional questions
about real-world images is used. In the following, we illus-
trate the experimental settings and results for both tasks.

Referring Expression Comprehension
Datasets The CLEVR-Ref+ (Liu et al. 2019b) contains syn-
thetic images and automatically generated referring expres-
sions. There are a train split and a val split in the CLEVR-
Ref+ dataset. A uniform sampling strategy is employed to
guarantee the dataset is approximately unbiased. The Ref-
Reasoning dataset is a large-scale real-world dataset. It in-
cludes a train split, a val split, and a test split. The expres-
sions of these splits are generated by using diverse expres-
sion templates and functional programs over scene graphs
of images to guarantee diversity. These expressions may in-
volve multiple objects and thus require strong visual reason-
ing ability to solve.
Implementation details We use object-level features for the
two datasets because our method explicitly navigates from
one object to another. The Ref-reasoning provides the 2048-
d object-level features detected by the Faster R-CNN de-
tector (Ren et al. 2015). For the CLEVR-Ref+, we follow
the settings of (Hu et al. 2019) and use 1024-d object fea-
tures extracted from the ResNet-101 (He et al. 2016). The
ground-truth bounding boxes are used for evaluations. For
the Ref-reasoning, the hyper-parameters µ, λ and γ are set as
0.01, 0.5, and 0.01. For the CLEVR-Ref+, the three hyper-
parameters are set as 0.01, 0.5, and 0.001. The max number
of time steps is set as 4 for the Ref-reasoning and 3 for the
CLEVR-Ref+. For both datasets, the dimensions of the spa-
tial feature db and the common space d are set as 128, and
512, respectively.
Comparisons with state-of-the-art methods The results
of our method and state-of-the-art methods on the Ref-
Reasoning dataset and the CLEVR-Ref+ dataset are listed
in Table 1 and Table 2, respectively. We found from the ta-
bles that our method outperforms the others on both datasets,
which demonstrates the effectiveness of our method for REC
in both synthetic and real image datasets.

For the Ref-Reasoning dataset (from Table 1), the results
on the val split and the test split are presented. For the test
split, the results on four subsets are also listed, where dif-
ferent subsets contain expressions with different numbers
of objects. It can be seen from the table that our method
is superior to other methods in both splits. For the test
split, the improvement in the subsets with more objects is
more significant than that in the subsets with fewer objects,
which demonstrates the multi-step reasoning capability of
our method. The DGA (Yang, Li, and Yu 2019b), the CM-
RIN (Yang, Li, and Yu 2019a), and the SGMN (Yang, Li,
and Yu 2020) also build visual graphs to capture the re-
lational layout of images. The DGA and the CMRIN per-
form language-guided visual graph convolution over visual
graphs, while the SGMN performs modular reasoning over
visual graphs. Benefiting from path routing, our method is
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Methods Number of Objects Split
one two three ≥ four val test

CNN 10.57 13.11 14.21 11.32 12.36 12.15
CNN+LSTM 75.29 51.85 46.26 32.45 42.38 42.43

DGA (Yang, Li, and Yu 2019b) 73.14 54.63 48.48 37.63 45.37 45.87
CMRIN (Yang, Li, and Yu 2019a) 79.20 56.87 50.07 35.29 45.43 45.87
SGMN (Yang, Li, and Yu 2020) 79.71 61.77 55.57 41.89 51.04 51.39

Ours 81.62 62.43 56.60 43.95 52.22 53.02

Table 1: Results of our method and the state-of-the-art methods on the val split and the test split of the Ref-Reasoning dataset.

Methods Accuracy
Stack-NMN (Hu et al. 2018) 56.5

SLR (Yu et al. 2017) 57.7
MAttNet (Yu et al. 2018) 60.9

GroundeR (Rohrbach et al. 2016) 61.7
LCGN (Hu et al. 2019) 74.8

LCGN† 76.0
Ours† 77.7

Table 2: Results of our method and the state-of-the-art on the
val split of the CLEVR-Ref+ dataset. † indicates this method
uses ground-truth bounding boxes. The other methods use
grid features.

capable of achieving complex visual relational reasoning
and thus outperforms all three methods.

In the CLEVR-Ref+ dataset (from Table 2), our method
outperforms other methods. To make fair comparisons, we
train the LCGN (Hu et al. 2019) model with ground truth
bounding boxes. And our method also outperforms this
model. These results demonstrate the effectiveness of our
method for grounding complex referring expressions on syn-
thetic images.
Ablation Studies We evaluate different variants of our
model by ablating certain components to study the effective-
ness of several important components of our method. The re-
sults of those models on the test split of the Ref-Reasoning
dataset are shown in Table 3.

Firstly, we investigate the influence of the history states
and history attention in the policy network. We remove the
history attention of the policy network and obtain a model
called “Ours (w/o history attention)”. We observe the model
performs significantly worse than our full model, which
demonstrates the history states are critical in path routing for
visual relational reasoning. Similarly, by removing the term
about history decisions in Eq (3), we obtain “Ours (w/o his-
tory decisions)”. The comparisons between the model and
the full model show that the history decisions are also bene-
ficial for path routing.

Then, we study the influence of the pre-training strategy.
We train the agent from scratch and obtain a model called
“Ours (w/o pre-training)”. We find that the model performs
significantly worse than the full model, which demonstrates
that the pre-training is indispensable for path routing. The
main reason is that the visual and language inputs are noisy
and directly performing path routing without any initializa-

Methods Accuracy
Ours (w/o history attention) 48.40
Ours (w/o history decision) 52.15

Ours (w/o pre-training) 19.16
Ours (w/o scaled activation) 50.80

Ours (w/o coverage loss) 49.77
Ours (w adaptive nodes) 51.84

Ours 53.02

Table 3: Results of different variants of our model on the test
split of the Ref-Reasoning dataset.

tion may lead to collapse. By using a vanilla softmax func-
tion in pre-training, we obtain the “Ours (w/o scaled activa-
tion)”. Besides, we remove the coverage loss and obtain the
“Ours (w/o coverage loss)”. These models are also inferior
to the full model, which shows gradually learning to move
from one node to another in pre-training is beneficial.

Finally, we modify our model to let it adaptively focus
on one to three nodes based on the outputted probability
distribution. The representations of the attended nodes are
summed to obtain the state representation for further path
routing. The obtained model is entitled “Ours (w adaptive
nodes)”. We observe that although its potential capability is
stronger, its performance is only comparable with the full
model. The reason is that the dataset mainly focuses on rela-
tions of two objects rather than three or more objects (such
as “surrounded by”). We found that current datasets about
relational reasoning hardly contain samples involving rela-
tions of three or more objects.

Visual Question Answering
Datasets The GQA dataset (Hudson and Manning 2019a) is
a large-scale dataset with 140K real images and 1.7M bal-
anced questions-answer pairs. The dataset has a train split
for training, a test-dev split for validation, and a test split for
online testing. Each image in the GQA is associated with
a manually annotated scene graph describing the classes, at-
tributes, relations of objects in the image. Based on the scene
graphs, diverse compositional questions that require multi-
step reasoning are generated via a question engine.
Implementation details In our implementation, the bottom-
up-attention model (Anderson et al. 2018) is used to extract
2048-d object-level features. For each image, we keep the
top 48 bounding boxes ranked by confidence scores. The
hyper-parameters µ, λ and γ are set as 0.001, 0.5 and 0.001,
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(GT: street sign) 

sidewalk (0.5), next (0.1), what (0.06)t=1

sign (0.3), vehicle (0.24), as(0.19)t=2

sign (0.77), what (0.08), kind (0.02)t=3

t=4 ---

Language Attention Maps Path Routing

Pred: street sign

2

1

3
Question: Does the soccer player 
that to the right of the ball run on 

the green grass? (GT: yes) 
ball (0.58), run (0.15), of (0.08)t=1

player (0.65), soccer (0.12), run (0.1)t=2

player (0.31), right (0.31), that (0.12)t=3

t=4 player (0.26), that (0.19), on (0.11)

Language Attention Maps Path Routing

Pred: yes

1

2

3

4

Figure 4: Qualitative examples from the test-dev split of the GQA. For each example, the upper-left corner shows a question
and the answer of it. The lower-left corner shows the language attention maps of our method. For each language attention map,
the top-3 words with the highest attention values are shown. The right side shows the nodes during the path routing and the
predicted answer for the question. The node in the t-th time step is marked by a green rectangle with the corresponding number.

Methods Accuracy
Bottom-Up (Anderson et al. 2018) 49.74
MAC (Hudson and Manning 2018) 54.06

NMN (Andreas et al. 2016) 55.70
BAN (Kim, Jun, and Zhang 2018) 57.10

GRN (Guo, Xu, and Tao 2019) 57.04
LCGN (Hu et al. 2019) 57.07

LXMERT (Tan and Bansal 2019) 60.33
MMN (Chen et al. 2021) 60.83

NSM (Hudson and Manning 2019b) 63.17
Ours 59.43

Table 4: Results of our method and the state-of-the-art meth-
ods on the test split of the GQA dataset.

respectively. The max number of time steps is set as 4. The
dimensions of the spatial feature and the common space are
set as 96, and 512, respectively. In the supervised learning
stage, we train the model with the “all” split of questions of
the GQA and fine-tune it with the “balanced” split as (Chen
et al. 2021). In supervised learning, we also perform step-
wise supervision as (Chen et al. 2021) by training a model
with ground-truth scene graphs of the GQA dataset and ex-
ecuting knowledge distillation. The obtained model is then
used to initialize the agent for reinforcement learning.
Comparisons with state-of-the-art methods The results
of the proposed method and the state-of-the-art methods
on the test split are listed in Table 4. We observe that our
method achieves comparable performance with other meth-
ods, which demonstrates the effectiveness of our method
for answering compositional questions through complex
relational reasoning. Our method outperforms two graph-
network-based visual reasoning methods, the GRN (Guo,
Xu, and Tao 2019) and the LCGN (Hu et al. 2019), thanks
to the learning of dynamics. The main reason that we do
not surpass all the state-of-the-art is that the GQA evaluates
not only relational reasoning capability but also the question
answering. But in this paper, we mainly focus on visual rela-
tional reasoning. By contrast, most previous models are tai-
lored for the VQA task and cannot be applied in other tasks

such as REC. The NSM (Hudson and Manning 2019b) relies
on a scene graph generation model (Yang et al. 2018) and the
LXMERT (Tan and Bansal 2019) uses multiple datasets to
pre-train their model.
Qualitative Results We visualize the reasoning processes of
our method to demonstrate its transparency. Figure 4 shows
two qualitative examples from the test-dev split of the GQA.
For each example, we provide the language attention map
and the current node of each time step t in path routing. It
is shown that our method can relatively accurately focus on
nouns in questions and further localize the corresponding
objects in images. In the left example, it gradually localizes
the sidewalk, the vehicle, and the sign and then figures out
the correct answer. The overall reasoning process is almost
faithful and close to the thinking process of humans.

Conclusion and Future Work
In this paper, we have presented a reinforced path rout-
ing method for visual relational reasoning, providing a new
point of view for this area. Our method learns the dynamics
of reasoning by introducing a reasoning model to explore
paths over a visual graph based on an input sentence to infer
reasoning results. Extensive experiments demonstrate that
our method is capable of achieving accurate visual relational
reasoning with transparent reasoning processes.

The results of this work illustrate that learning the dynam-
ics is an effective and promising way to simulate human rea-
soning ability. It is worth mentioning that there are two av-
enues for further studies to learn paths consistent with the
thinking processes of humans. Firstly, we would like to in-
troduce a rollback mechanism to enable the reasoning model
back to one previous node when it navigates to a wrong
node. Secondly, we plan to curate a visual relational reason-
ing dataset with human-annotated trajectories of attention to
supervise and evaluate path routing.
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