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Abstract

Clustering is important for domain adaptive person re-
identification (re-ID). A majority of unsupervised domain
adaptation (UDA) methods conduct clustering on the target
domain and then use the generated pseudo labels for adap-
tive training. Albeit important, the clustering pipeline adopted
by current literature is quite standard and lacks considera-
tion for two characteristics of re-ID, i.e., 1) a single per-
son has various feature distribution in multiple cameras. 2)
a person’s occurrence in the same camera are usually tem-
porally continuous. We argue that the multi-camera distri-
bution hinders clustering because it enlarges the intra-class
distances. In contrast, the temporal continuity prior is ben-
eficial, because it offers clue for distinguishing some look-
alike person (who are temporally far away from each other).
These two insights motivate us to propose a novel Divide-
And-Regroup Clustering (DARC) pipeline for re-ID UDA.
Specifically, DARC divides the unlabeled data into multiple
camera-specific groups and conducts local clustering within
each camera. Afterwards, it regroups those local clusters po-
tentially belonging to the same person into a unity. Through
this divide-and-regroup pipeline, DARC avoids directly clus-
tering across multiple cameras and focuses on the feature
distribution within each individual camera. Moreover, dur-
ing the local clustering, DARC uses the temporal continuity
prior to distinguish some look-alike person and thus reduces
false positive pseudo labels. Consequentially, DARC effec-
tively reduces clustering errors and improves UDA. Impor-
tantly, experimental results show that DARC is compatible
to many pseudo-label-based UDA methods and brings gen-
eral improvements. Based on a recent UDA method, DARC
advances the state of the art (e.g, 85.1% mAP on MSMT-to-
Market and 83.1% mAP on PersonX-to-Market).

Introduction
This paper considers unsupervised domain adaptive person
re-identification (re-ID) task, which employs Unsupervised
Domain Adaptation (UDA) to improve (cross-domain) re-
ID. Basically, re-ID aims to retrieve all the images of the
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Figure 1: The global clustering baseline (in the first row)
is prone to two types of clustering errors. “ID split”: the
multi-camera distribution enlarges the intra-class distances
and sometimes causes a single person split into multiple
clusters. “ID switch”: some inherently look-alike person in
the same camera are merged into a single cluster, resulting
in ID switch. The proposed DARC (in the second row) re-
duces ID split and ID switch through a two-stage clustering
pipeline. “Divide”: it first divides the features into camera-
specific groups and conducts a respective local clustering
within each group. Local clustering avoids multi-camera
distribution and utilizes the temporal continuity to separate
look-alike (but different) person. “Regroup”: it compares lo-
cal clusters against each other and regroups those closely-
distributed clusters into a single one.

same identity in the database, given a query image of in-
terest. (Luo et al. 2020; Wang et al. 2019; Luo et al. 2019a;
Quan et al. 2019) When the training data and the testing data
are collected from different domains, the underlying domain
gap stands out as a prominent challenge. An effective ap-
proach to mitigate the domain gap is Unsupervised Domain
Adaptation (UDA). UDA adapts the deep model to recog-
nize the unlabeled target domain and thus improves cross-
domain re-ID without additional annotations.

A popular family (Fu et al. 2019; Zhang et al. 2019; Zhai
et al. 2020; Fan et al. 2018; Ge, Chen, and Li 2020; Ge et al.
2020; Dai et al. 2021a; Zheng et al. 2021; Dai et al. 2021b) of
the UDA methods is based on pseudo label learning. Using
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the already-learned deep embedding, they cluster the unla-
beled samples on the target domain and assign each cluster
with a pseudo label. These pseudo labels are then used for
training (or fine-tuning) on the target domain.

In such a pseudo-label-based UDA pipeline, the cluster-
ing quality is vital. We notice that current literature adopt
a quite standard “global” clustering pipeline. Specifically,
they calculate the pairwise distance between all the sample
pairs in the target domain to get an N×N distance matrix (N
is the total number of samples), and use the entire distance
matrix for clustering. This global clustering baseline lacks
consideration for two characteristics of the re-ID task: 1)
Multi-camera distribution: a single person has various fea-
ture distribution in multiple cameras. 2) Temporal Continu-
ity: a person’s occurrence in the same camera are usually
temporally continuous.

We argue that these two characteristics respectively bring
negative / positive impact on clustering accuracy and can
be avoided / utilized for better clustering. Specifically, the
multi-camera distribution hinders clustering because it en-
larges the intra-class distances. Thus, the instances of a sin-
gle person sometimes are split into multiple clusters, re-
sulting in the “ID split” error, as illustrated in Fig. 1 (in
the first row). In contrast, the temporal continuity is bene-
ficial for clustering because it offers clue for distinguishing
some look-alike person. As illustrated in Fig. 1 (in the first
row), two inherently look-alike person in the same camera
are merged into a single cluster, resulting in the “ID switch”
error. However, if we have the temporal prior, i.e.,these two
people are temporally far away from each other, we may eas-
ily separate them and avoid the ID switch error.

These two insights motivate us to propose a novel Divide-
And-Regroup Clustering (DARC) pipeline for re-ID UDA.
Different from the global clustering, DARC has two stages,
i.e., local clustering and cross-camera regrouping. We ex-
plain these two stages as follows:

1) Dividing and local clustering. DARC first divides all
the unlabeled samples into multiple camera-specific groups.
Each group contains the samples from an individual camera.
Within each group, DARC conducts a respective local clus-
tering. The local clustering is critical to DARC and has two
advantages, as illustrated in Fig. 1 (in the second row): First,
it reduces the ID switch errors through cooperating tempo-
ral continuity. Second, it reduces the ID split errors within
each individual camera by focusing on the local feature dis-
tribution. The detailed reasons and evidences for these two
advantages are illustrated in Methods.

2) Cross-camera regrouping. Local clustering alone does
not suffice the requirement for assigning pseudo labels. It is
because the samples of a single person are scattered across
multiple cameras, while local clustering does not facilitate
cross-camera association. To regroup the local clusters po-
tentially belonging to a single identity, DARC compares lo-
cal clusters against each other and then regroups the closely-
distributed local clusters into a single one, as illustrated in
Fig. 1 (in the second row). Although the cross-camera com-
parison incurs the multi-camera distribution problem (as in
the global clustering baseline), we show that the regrouping
operation is robust to this problem in Methods.

Through the divide-and-regroup procedure, DARC ef-
fectively reduces both ID switch and ID split errors, and
consequentially improves re-ID UDA. Importantly, DARC
is capable to accommodate many pseudo-label-based UDA
methods, and brings general improvement to these meth-
ods in a plug-and-play manner. We conduct comprehensive
experiments under seven domain adaptive re-ID scenarios
and demonstrate consistent improvement on several popu-
lar UDA methods. Based on a recent UDA method (Dai
et al. 2021b), DARC advances the state of the art with 85.1%
mAP on MSMT-to-Market and 83.1% mAP on PersonX-to-
Market

Our main contributions are summarized as follows:
• We propose a novel Divide-and-Regroup Clustering

(DARC) pipeline for domain adaptive re-ID. Different from
the global clustering pipeline, DARC takes two characteris-
tics of re-ID task into consideration and increases clustering
accuracy.
• We show that DARC is compatible to many pseudo-

label-based re-ID UDA methods and brings general im-
provement to these methods in a plug-and-play manner.
• We validate the effectiveness of the proposed DARC

with extensive experiments on multiple domain adaptive re-
ID datasets. On all these datasets, DARC achieves perfor-
mance on par with the state of the art.

Related Works
Deep person Re-ID. Most existing Re-ID methods adopt

deep network in the past few years. (Sun et al. 2018; Zhang
et al. 2018; Luo et al. 2019b; Wang et al. 2018) adopt stripe-
based methods to split the image into different parts and ex-
tract the local feature of each part. (Sarfraz et al. 2018; Wei
et al. 2017) adopt pose-based methods to extract the pose
feature of each person and estimate the relevance of pose
between different images. Strong baseline (Luo et al. 2020)
adopts effective training tricks for person ReID and proposes
the BNNeck structure to cooperate ID loss and triplet loss in
a better way. Though these methods achieve promising re-
sults in the labeled datasets, the performance drops sharply
when the learned embedding is directly transformed to un-
labeled datasets.

Clustering method for adaptive re-ID. UDA for person
re-ID is an open-set problem where the source and target
domain do not share the label space. Existing state of the
art (Fu et al. 2019; Zhai et al. 2020; Fan et al. 2018; Ge,
Chen, and Li 2020) generally pre-train the model on the
source domain and then use the already-learned deep em-
bedding to cluster the unlabeled samples on target domain.
The generated pseudo labels are then used for training on
the target domain. SSG (Fu et al. 2019) exploits the poten-
tial similarity of unlabeled samples to build multiple clus-
ters automatically and then be assigned with pseudo labels.
AD-Cluster (Zhai et al. 2020) augments person clusters in
target domains to improve the ability of distinction with
the augmented clusters. SPCL (Ge et al. 2020) proposes a
unified framework to incorporate all available information
from source and target domains. IDM (Dai et al. 2021b)
generates intermediate domains’ representations to bridge
the link between the source and target domain. Different
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Figure 2: Pipeline of the proposed DARC. “Dividing and local clustering”: Given the deep features x of the target domain,
DARC first divides all the deep features into n groups (n is the total camera number) and performs independent local clus-
tering within each camera. The local clustering has two advantages: 1) it uses temporal continuity of timestamp t to re-
duces ID switch errors and 2) it focuses on the local feature distribution within each individual camera and reduces ID split.
“Voting and regrouping”: Due to the dividing operation, each identity is naturally split into multiple local clusters. Therefore,
DARC has to regroup the local clusters potentially belonging to the same identity. To this end, DARC performs another round
of global clustering. If the majority instances in two local clusters appear in the same global cluster, we consider these two local
clusters belonging to a single identity, yielding the voting-to-regroup criterion.

from the above methods, which adopt the standard cluster-
ing pipeline, we propose a novel plug-and-play clustering
method, which can be compatible to many pseudo-label-
based UDA methods.

Learn to refine the pseudo labels. Under cross-domain
scenarios, the noise of pseudo labels is the dominant chal-
lenge to hinder the performance of UDA re-ID. Many meth-
ods propose to utilize the label-smoothing and solve the
uncertainty to refine the soft pseudo labels. MMT (Ge,
Chen, and Li 2020) learns features from the target do-
main via off-line refined hard pseudo labels and on-line re-
fined soft pseudo labels in an alternative training manner.
UNRN (Zheng et al. 2020) incorporates the uncertainty to
re-weight the samples’ contribution. NRMT (Zhao et al.
2020) proposes two networks during training to perform col-
laborative clustering. Different from all the above methods,
we consider two essential characteristics of re-ID task and
propose a novel two-stage clustering method, which reduces
two major types of pseudo label noises, i.e. ID switch from
local clustering and the ID split from cross-camera group-
ing, respectively.

Proposed Methods
Overview
Before clustering, we input the unlabeled samples (on the
target domain) into the deep model and extract the deep fea-
tures. Given the deep features, DARC performs a divide-
and-regroup clustering pipeline, as illustrated in Fig. 2.

“Dividing and local clustering”: DARC first divides all
the deep features into K groups (K is the total number of
cameras). Within each group, we conduct local clustering
based on two distances, i.e., the feature distances and the

temporal distances. Local clustering has two advantages: 1)
it utilizes temporal continuity to reduce ID switch and 2) it
focuses on the feature distribution in each individual camera
to reduce within-camera ID split (i.e., splitting the images of
a same person in a single camera into multiple clusters). The
details are to be elaborated later.

“Voting and regrouping”: Local clustering does not suffice
the requirement for assigning pseudo labels. It is because the
dividing operation naturally scatters the samples of each per-
son across multiple cameras. Therefore, DARC needs to as-
sociate the local clusters which potentially belong to a same
person. To this end, DARC merges the local clusters with
the global clustering results for cross-camera association.
Specifically, if the majority instances in two local clusters
appear in a same global cluster, we consider these two local
clusters as belonging to a single identity. In another word,
during the regrouping operation, a local cluster is dominated
by its majority samples, yielding a voting effect. We show
that this voting procedure facilitates cross-camera associa-
tion and still maintains the benefits of local clustering (low
ID switch and within-camera ID split). The details are to be
elaborated later.

With the above two stages, DARC fulfills the complete
clustering procedure and assigns pseudo labels to the unla-
beled samples. Afterwards, we may cooperate the pseudo la-
bels with any existing pseudo-label-based adaptive training
methods.

Local Clustering
Local clustering combines two types of distances, i.e., the
Euclidean distance Deuc between feature vectors and the
temporal distance Dtemp between the corresponding times-
tamps, to infer the overall distance Doverall between sample
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Figure 3: We compare two clustering errors (i.e., ID switch
and ID split) in global clustering, local clustering and the
proposed DARC. The features are extracted on Market1501
using a deep model trained on PersonX.

pairs.
The temporal distance Dtemp is defined as:

Dtemp(i, j) =

∣∣ti− t j
∣∣√

∑
m
k=1(ti− tk)2

, (1)

where Dtemp(i, j) is the temporal distance between i-th and
j-th samples, ti, t j denotes their timestamps, m denotes the
number of samples in a single camera. We normalize the
Dtemp to make the distance quadratic sum equals 1 in each
camera.

Intuitively, if the temporal distance Dtemp between two oc-
currences is large, these two occurrences are likely to belong
to different identities. We model this intuition into an overall
distance Doverall by:

Doverall = Deuc +αDtemp, (2)

where α is a hyper-parameter.
Local clustering reduces ID switch. We recall that ID

switch happens when two inherently look-alike people are
merged into a single cluster. With Doverall , if two samples are
inherently similar (small Deuc) but are temporally far away
from each other (large Dtemp), local clustering may still dis-
tinguish them with relatively large Doverall .

Local clustering reduces within-camera ID split. We fur-
ther analyze how local clustering reduces the ID split within
the same camera. Our analysis is based on the commonly-
adopted Jaccard distance. Specifically, we need to transform
the Doverall into the Jaccard distance. We revisit the standard
pipeline of such a transform as follows:

1) Given a random sample p, we achieve its k near-
est neighbors N(p,k) by ranking its Doverall . Afterwards,
we obtain the corresponding k-reciprocal nearest neighbors
R(p,k), which is formulated as:

R(p,k) = {q | (q ∈ N(p,k))∧ (p ∈ N(q,k))} (3)

2) The Jaccard distance between two samples p and q is
calculated by the Jaccard metric of their k-reciprocal sets as:

D j(p,q) = 1− |R(p,k)∩R(q,k)|
|R(p,k)∪R(q,k)|

(4)

Let us consider the ranking list of a random sample p.
We assume that q is a positive sample to p and p, q are

in the same camera. After we replace the global cluster-
ing with the local clustering, the position of q in the rank-
ing list should be raised. There are two reasons: First, some
false-positive (look-alike but different) samples become far-
ther from p. Second, the samples from other cameras are
removed from the ranking list of p. Consequentially, the k-
reciprocal nearest neighbor sets of p and q are prone to larger
overlap (Zhong et al. 2017a; Bai and Bai 2016; Ye et al.
2016), which reduces the Jaccard distance between them. In
another word, the Jaccard distance (within a single camera)
between two positive samples becomes smaller, compared
with the global Jaccard distance, resulting in higher within-
class compactness and thus reducing the risk of ID split.

Voting and Regrouping
After local clustering, each local cluster only contains sam-
ples from a single camera. To regroup the samples poten-
tially belonging to a same identity, we first perform a global
clustering and use the global clusters as the clues for associ-
ating local clusters.

We recall that the global clustering requires comparison
across different cameras and thus involves the multi-camera
distribution problem. To alleviate the problem, we devise a
“vote-to-regroup” strategy, as illustrated in Fig. 2. The key
idea of the vote-to-regroup strategy is: if most samples of
a local cluster belong to a specified global cluster Gk, we
include this entire local cluster into Gk. Similarly, if the ma-
jority of samples in two local clusters belong to the same
global cluster Gk, we associate these two local clusters as
belonging to a single identity.

We formulate the above-described criterion as follows.
Let us assume a local cluster Li and a global cluster Gk. Li
is consisted of several samples, i.e., Li = {gi

1,g
i
2, ...}. Given

the local cluster Li and global cluster Gk, we evaluate their
overlap degree P(Li→ Gk) by:

P(Li→ Gk) =
|Li∩Gk|
|Li|

(5)

where |·| denotes the number of samples in the set (local
cluster). We use P(Li → Gk) as the indicator for deciding
whether Li should be included into Gk, which is formulated
as:

Gk← Li

s.t. P(Li→ Gk)≥ δ

(6)

where δ is a threshold.
When multiple local clusters satisfy Eq. 6, we merge these

local clusters into a single Gk. After the regrouping process,
the global cluster Gk becomes different from the original
global clustering results, as shown in Fig. 2. Specifically,
some local clusters with small overlap degree are excluded
from Gk, while some local clusters with large overlap de-
gree are included into Gk. Therefore, we mark the regrouped
cluster as Rk.

The vote-to-regroup operation brings two benefits. On the
one hand, it treats each local cluster as an inseparable unit
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thus and inherits the advantage of high purity (from the local
clustering). On the other hand, the voting procedure benefits
the cross-camera aggregation with strong resistance against
camera bias. Consequentially, DARC maintains high purity
(low ID switch) and meanwhile reduces ID split.

Discussions on the clustering errors. Fig. 3 visualizes a
statistic of ID split and ID switch errors on Market-1501
dataset (Zheng et al. 2015). We use the strong baseline (Ge
et al. 2020) trained on PersonX(Sun and Zheng 2019) to ex-
tract the deep features. We note that during local cluster-
ing, each identity is separated into multiple local clusters. To
evaluate the local clustering, we adopt an ideal assumption
that local clusters are compared only within each camera.
It does not take the error of cross cameras into considera-
tion and thus indicates the lower error bound of DARC. Af-
ter we regroup these local clusters, the clustering errors in-
evitably increase over the local clustering. However, DARC
still maintains superiority (lower ID switch and ID split)
against the global clustering.

Adaptive Training with Pseudo Labels
Given the final pseudo labels, DARC conducts a following
adaptive training on the target domain. Let us assume the
loss associated with a single sample xi is L (xi). We use a
weighted sum of all the losses w.r.t. to the samples in the
mini-batch, which is formulated as:

Lbatch =
1
N

N

∑
i=1

wi ·L (xi), (7)

where N is the batch size, wi is the weight factor corre-
sponding to xi. Please note that the detailed loss function
for L can be implemented with any popular loss functions
for re-ID, e.g., the cross-entropy loss, the contrastive loss,
etc. wi denotes the weight of samples. We recall that during
the vote-to-regroup procedure, a regrouped cluster Rk might
absorb some samples which originally do not belong to the
global cluster Gk. We assign a relatively small weight factor
by setting wi = P(L→ Gk) (the overlap degree in Eq. 5) for
these samples. As for the other samples, we set their weight
factor to 1.

Experiments
Dataset
We evaluate the proposed DARC on different cross-
domain scenes with two real person datasets, i.e., Mar-
ket1501 (Zheng et al. 2015), MSMT17 (Wei et al. 2018)
and two synthetic person dataset PersonX (Sun and Zheng
2019), UnrealPerson (Zhang et al. 2021).

Implementation Details
We adopt ResNet-50 (He et al. 2016) pretrained on Ima-
geNet (Deng et al. 2009) as the backbone. We construct each
mini-batch with 64 source images (from 16 identities) and
64 target images (from 16 pseudo identities). Correspond-
ingly, the batch size is 128. We resize the image size to
256×128 and utilize random flipping, random padding and
random erasing (Zhong et al. 2017b) for data augmentation.

Methods MA→MS MS→MA
mAP top-1 mAP top-1

MMT
Oracle 43.6 69.3 82.4 92.3
Orig 22.9 49.2 75.6 89.3

DARC 24.2 50.4 78.5 90.9

SPCL
Oracle 46.7 72.7 83.5 93.1
Orig 26.8 53.7 77.5 89.7

DARC 27.3 54.9 80.9 91.7

IDM
Oracle 54.3 78.7 86.5 94.5
Orig 33.5 61.3 82.1 92.4

DARC 35.2 64.5 85.1 94.1

Table 1: DARC brings consistent improvement on popular
re-ID UDA methods. “MA” : “Market”, “MS” : “MSMT”.

The essential clustering method for the local clustering and
global clustering in DARC is DBSCAN (Ester et al. 1996).
The training optimizer is Adam with 5×10−4 weight decay.

The Effectiveness of DARC
DARC brings general improvement. We validate the appli-
cability of DARC on several popular UDA methods i.e.,
MMT (Ge, Chen, and Li 2020), SPCL (Ge et al. 2020) and
IDM (Dai et al. 2021b). For each method, we compare three
modes: 1)“Oracle” uses the ground-truth labels for adaptive
training. 2) “orig” uses the original clustering pipeline in the
corresponding literature to assign pseudo labels. 3) “DARC”
uses the proposed divide-and-regroup clustering pipeline to
assign pseudo labels. The results are summarized in Table 1.
It clearly shows that DARC consistently improves all three
UDA methods. For example, on “MSMT→Market”, DARC
improves MMT, SPCL and IDM with +2.9%, +3.4% and
+3.0% mAP, respectively. We note that IDM is a very re-
cent UDA method and achieves competitive re-ID accu-
racy under cross-domain scenario. Using IDM as the base-
line, DARC still gains considerable improvement and the
achieved performance is very competitive (e.g., 85.1% mAP
and 94.1% top-1 on “MSMT→Market”).

Comparison with the state of the art on real→ real re-ID
datasets. We compare the proposed DARC with state-of-the-
art methods using two real-person datasets, Market1501 and
MSMT17. The results are summarized in Table 2. It is ob-
served that DARC achieves competitive cross-domain re-ID
accuracy under all the two settings. Specifically, based on a
relatively early method SPCL, DARC brings substantial im-
provement and achieves competitive performance compared
with the state of the art. Based on a more recent method
IDM, DARC still brings considerable improvement and ad-
vances the state of the art. In this paper, we report 85.1% and
94.1% top-1 accuracy on “MSMT→Market”. Moreover, on
the more challenging “Market→ MSMT”, DARC achieves
64.5% top-1 accuracy.

Comparison with the state of the art on synthetic→ real
re-ID datasets. We conduct cross-domain experiments using
the synthetic PersonX and UnrealPerson for training and two
real-person datasets for testing. The comparison results be-
tween DARC and several state-of-the-art methods are sum-
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Methods Market→MSMT
mAP top-1 top-5 top-10

MMCL (Wang and Zhang 2020) CVPR20 15.1 40.8 51.8 56.7
MMT (Ge, Chen, and Li 2020) ICLR20 22.9 49.2 63.1 68.8
DG-Net++ (Zou et al. 2020) ECCV20 22.1 48.4 60.9 66.1
SPCL (Ge et al. 2020) NIPS20 26.8 53.7 65.0 69.8
Dual-Refinement (Dai et al. 2021a) TIP21 25.1 53.3 66.1 71.5
UNRN (Zheng et al. 2020) AAAI21 25.3 52.4 64.7 69.7
GLT (Zheng et al. 2021) CVPR21 26.5 56.6 67.5 72.0
IDM (Dai et al. 2021b) ICCV21 33.5 61.3 73.9 78.4
SPCL + DARC Ours 27.3 54.9 67.0 72.0
IDM + DARC Ours 35.2 64.5 76.2 80.4

Methods MSMT→Market
mAP top-1 top-5 top-10

CASCL (Wu, Zheng, and Lai 2019) ICCV19 35.5 65.4 80.6 86.2
DG-Net++ (Zou et al. 2020) ECCV20 64.6 83.1 91.5 94.3
D-MMD++ (Mekhazni et al. 2020) ECCV20 50.8 72.8 88.1 92.3
MMT (Ge, Chen, and Li 2020) ICLR20 75.6 89.3 95.8 97.5
SPCL (Ge et al. 2020) NIPS20 77.5 89.7 96.1 97.6
IDM (Dai et al. 2021b) ICCV21 82.1 92.4 97.5 98.4
SPCL + DARC Ours 80.9 91.7 97.0 98.2
IDM + DARC Ours 85.1 94.1 97.6 98.7

Table 2: Comparison with the state-of-the-arts on two benchmarks Market-1501 and MSMT17.

marized in Table 3. Based on IDM, DARC advances the new
state of the art (e.g, 83.1% mAP on “PersonX-to-Market”).
It indicates that DARC is competent for adapting the knowl-
edge learned from synthetic data to real-world testing data.

Comparison with the state of the art on unsupervised re-
ID. Some methods (i.e. OIM (Xiao et al. 2017), BUC (Lin
et al. 2019), SSL (Lin et al. 2020), HCT (Zeng et al. 2020),
SPCL (Ge et al. 2020) evaluate on the unlabeled target do-
main without access to any source domain data, yielding the
strict unsupervised re-ID. So far as we know, IDM does not
offer compatibility to unsupervised re-ID. Therefore, we use
SPCL as the baseline and summarize the unsupervised re-
ID performance in Table 4. We observe that DARC achieves
79.4% mAP and 90.6% top-1 accuracy on Market-1501, sur-
passing the prior methods by a large margin.

Analysis on the time consumption. DARC only adds small
time consumption to re-ID UDA. It is because each train-
ing epoch for UDA typically consists of a clustering proce-
dure and a sequential adaptive training, and clustering only
occupies a small proportion of the total time consumption.
For example, on “PersonX→Market”, a training epoch in
the SpCL baseline costs about 196s (adaptive training) +
26s (global clustering). DARC increase the clustering time
to 37s and maintains the adaptive training time unchanged.
Therefore, DARC only incurs about +5% additional time
consumption (222s→233s).

Ablation Study
Besides the novel divide-and-regroup framework, DARC
has several good practices, which jointly contribute to its
superiority. We investigate the contributions of the follow-

ing factors:
• Using temporal continuity for local clustering.
• Using the overlap degree as the soft weight factor of

training loss from individual samples.
The effectiveness of temporal continuity for local cluster-

ing. The temporal information in each camera is considered
to suppress the ID switch. To be intuitive, the trajectory of
the same person is likely to be consecutive in each single
camera. It is effective to distinguish negative samples when
different look-alike people appear in the same camera view
at different time. Specially, the temporal continuity is only
performed for local clustering.

We use T to denote the temporal information. As listed in
Table 5, the temporal information improves the DARC (e.g,
+1.3% mAP on “PersonX→Market”) and achieves perfor-
mance (e.g, 77.6% mAP on “PersonX→Market”).

The effectiveness of soft weight factors. During adap-
tive training, the overall training loss in a mini-batch
is a weighted sum of the losses from individual sam-
ples. The weight factor is the overlap degree (Eq. 5).
We use S to denote soft weight. In Table 5, the soft
weight factor improves the DARC (e.g, +1.1% mAP on
“PersonX→Market”) and achieves performance (e.g, 77.4%
mAP on “PersonX→Market”).

Analysis on Hyper-parameters
We analyze the impact of two important hyper-parameters,
i.e., α in the overall distance (Eq. 2) and δ in the criterion
for regrouping local clusters (Eq. 6). We employ “IDM +
DARC” to evaluate the performance on “PersonX → Mar-
ket”.
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Methods PersonX→Market PersonX→MSMT17
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10

MMT (Ge, Chen, and Li 2020) ICLR20 71.0 86.5 94.8 97.0 17.7 39.1 52.6 58.5
SPCL (Ge et al. 2020) NIPS20 73.8 88.0 95.3 96.9 22.7 47.7 60.0 65.5
IDM (Dai et al. 2021b) ICCV21 81.3 92.0 97.4 98.2 30.3 58.4 70.7 75.5
SPCL + DARC Ours 78.9 90.6 96.6 98.1 24.5 50.8 63.0 68.0
IDM + DARC Ours 83.1 93.1 97.7 98.5 32.3 61.3 73.5 78.2

Methods Unreal→Market Unreal→MSMT17
mAP top-1 top-5 top-10 mAP top-1 top-5 top-10

JVTC (Li and Zhang 2020) ECCV20 78.3 90.8 - - 25.0 53.7 - -
IDM (Dai et al. 2021b) ICCV21 83.2 92.8 97.3 98.2 38.3 67.3 78.4 82.6
IDM + DARC Ours 85.1 93.8 98.0 98.7 39.1 68.6 79.6 83.7

Table 3: Comparison with the state-of-the-arts on synthetic to real benchmarks.

Methods MS→MA
mAP top-1 mAP top-1

BUC 38.3 66.2 79.6 84.5
SSL 37.8 71.7 83.8 87.4
MMCL 45.5 80.3 89.4 92.3
HCT 56.4 80.0 91.6 95.2
SPCL 73.1 88.1 95.1 97.0
SPCL+DARC 79.4 90.6 96.6 98.1

Table 4: DARC on unsupervised re-ID.

Methods MS→MA PX→MA
mAP top-1 mAP top-1

Baseline (SPCL) 77.5 89.7 73.8 88.0
+ DARC(w/o S&T) 79.0 90.7 76.3 89.0
+ DARC(w/o T) 79.4 91.0 77.4 89.5
+ DARC(w/o S) 79.7 91.1 77.6 89.8

DARC (Full) 80.9 91.7 78.9 90.6

Table 5: Ablation studies on two components. “S”: using soft
weight factor for training losses. “T”: adding temporal dis-
tance (into the overall distance) for local clustering. “MS”
denotes “MSMT”, “PX” denotes “PersonX”, “MA” denotes
“Market”.

In Fig.4 (a), we evaluate the impact of hyper-parameter
α , which controls the weight of temporal distance in Eq. 2.
We observe that the re-ID accuracy first increases (when α

increases from 0 to 0.2) and then decreases (when α further
increases to 1.0). We set α = 0.2 as the weight factor.

In Fig.4 (b), we evaluate the impact of hyper-parameter
δ , which denotes the threshold of overlap degree in Eq. 6.
When the overlap score P > δ , we consider that the majority
of samples are within the global cluster and then include the
entire local cluster into the global one. We set δ to vary from
0.4 to 1. It is observed that the re-ID accuracy undergoes
an increase (when δ increases from 0.4 to 0.7) and then a
decrease (when δ > 0.7). Therefore, we set δ = 0.7 as the
optimized threshold for regrouping.
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Figure 4: The analysis on Hyper-parameters α and δ .

Conclusion
This paper proposes a novel divide-and-regroup clustering
(DARC) pipeline for UDA re-ID. We notice two characteris-
tics of the re-ID task: i.e. multi-camera distribution and tem-
poral continuity, which can respectively bring negative / pos-
itive impact on clustering accuracy. In response, DARC first
divides all the target samples into multiple camera-specific
groups to perform local clustering. The local clustering gains
two benefits. First, it suppresses ID switch by cooperating
temporal continuity. Second, it reduces ID split within each
individual camera by focusing on the local feature distribu-
tion. Afterwards, DARC employs a vote-to-regroup strategy
to associate local clusters across multiple cameras. Conse-
quentially, the proposed DARC reduces both the ID switch
and ID split errors. Experimental results confirm that DARC
brings general improvements to many UDA methods and
achieves state-of-the-art performance.
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