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Abstract

Recent work has shown that Binarized Neural Networks
(BNNs) are able to greatly reduce computational costs
and memory footprints, facilitating model deployment on
resource-constrained devices. However, in comparison to
their full-precision counterparts, BNNs suffer from severe ac-
curacy degradation. Research aiming to reduce this accuracy
gap has thus far largely focused on specific network architec-
tures with few or no 1 × 1 convolutional layers, for which
standard binarization methods do not work well. Because
1×1 convolutions are common in the design of modern archi-
tectures (e.g. GoogleNet, ResNet, DenseNet), it is crucial to
develop a method to binarize them effectively for BNNs to be
more widely adopted. In this work, we propose an “Elastic-
Link” (EL) module to enrich information flow within a BNN
by adaptively adding real-valued input features to the subse-
quent convolutional output features. The proposed EL mod-
ule is easily implemented and can be used in conjunction with
other methods for BNNs. We demonstrate that adding EL to
BNNs produces a significant improvement on the challenging
large-scale ImageNet dataset. For example, we raise the top-1
accuracy of binarized ResNet26 from 57.9% to 64.0%. EL
also aids convergence in the training of binarized MobileNet,
for which a top-1 accuracy of 56.4% is achieved. Finally, with
the integration of ReActNet, it yields a new state-of-the-art
result of 71.9% top-1 accuracy.

Introduction
Convolutional Neural Networks (CNNs) have led to a series
of breakthroughs for a variety of visual tasks (Krizhevsky,
Sutskever, and Hinton 2012; Long, Shelhamer, and Darrell
2014; Ren et al. 2015; Toshev and Szegedy 2014; Zhu et al.
2016b). However, the challenge of resource constraints in
terms of latency and memory storage is often faced when
deploying CNNs on mobile or embedded devices. Previous
work (Cai et al. 2017; Jacob et al. 2018; McKinstry et al.
2019; Jain et al. 2020; Shuang Wu and Shi 2016; Sung, Shin,
and Hwang 2015; Yang et al. 2019; Zhou et al. 2016) has
demonstrated that quantizing the real-valued weights and
activations of CNNs into low-precision representations can
reduce memory footprint while still achieving good perfor-
mances. This class of methods allows fixed-point arithmetic
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Figure 1: Example images illustrating the same features on
full-precision ResNet26 (2nd column), Bi-Real-ResNet26
(3rd column) and our proposed EL-ResNet26 (4th column).

to be applied, which substantially accelerates inference and
reduces energy costs. Taken to an extreme, both the weights
and the activations can be represented with binary tensors
{-1, +1}. Such networks are termed Binarized Neural Net-
works (BNNs) (Courbariaux et al. 2016). In BNNs, arith-
metic operations for convolutions can be replaced by the
more efficient xnor and bitcount operations.

However, BNNs suffer from significant accuracy degrada-
tion as a result of information loss at each binarized layer. To
conduct binarization, a real-valued signal is passed through
the Sign activation, which eliminates the signal’s amplitude
and retains only its sign information. Because this process
is irreversible, information loss increases with each layer of
the BNN. Therefore, a central challenge to improving BNN
accuracy is the reduction of this information loss.
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Figure 2: Diagram of the Elastic-Link module. ⊕ denotes
element-wise summation. The process of applying the scal-
ing factor to activations is depicted within the dashed box,
indicating that it is omitted in some cases for better per-
formance. GetScale and ApplyScale operations refer to
XNOR-Net (Rastegari et al. 2016).

One approach seeks to minimize the quantization error
between the real-valued and binary forms of the weights and
activations. (Rastegari et al. 2016) utilizes scaling factors
to reduce the euclidean distances between the two forms.
More recently, (Liu et al. 2018) employs a sophisticated
fine-tuning strategy from a full-precision network with cus-
tomized gradient approximation methods. (Liu et al. 2018)
additionally proposes a shortcut connection to forward the
real-valued activation, drastically reducing the extent of in-
formation loss. However, these methods apply best to net-
works which consist primarily of 3×3 or 5×5 convolutions,
such as AlexNet (Krizhevsky, Sutskever, and Hinton 2012),
VGGNet (Simonyan and Zisserman 2015) and Basic-Block
ResNet (He et al. 2016).

Performing binarization with the above methods on net-
works in which 1×1 convolutions play a crucial role - for ex-
ample, GoogleNet (Szegedy et al. 2015), Bottleneck ResNet
or efficient networks with separated convolutions (Howard
et al. 2017) - causes substantially greater accuracy degrada-
tions. 1 × 1 convolutions fuse information across channels
and are already used to reduce computational cost via di-
mensionality reduction. We hypothesize that the marginal
information loss from binarization is the proverbial last
straw. (Howard et al. 2017) observed that the training or
fine-tuning of binarized MobileNet fails to even converge,
giving credence to this hypothesis.

In order to make binarization more widely applicable, we
introduce an effective and universal module named “Elastic-
Link” (EL). In order to compensate for the loss incurred by
binarization, we adaptively add the real-valued input fea-
tures (i.e. the features before feeding into the binarization
function) to the output features of the subsequent convolu-
tion to retain the original real-valued signal. Liu et al. (Liu
et al. 2018) demonstrated that adding extra shortcut connec-
tions, implemented by an element-wise summation, on the
Basic-Block ResNet (He et al. 2016) produces considerable
improvement in accuracy. This can be viewed as a special
case of our proposed EL in which the input and output have

the same shape. To generalize this finding, we develop a
method to enable feature addition even if the feature size
is changed by the convolution. EL uses a Squeeze or Ex-
pand operation to align the feature sizes between the input
and the output. Furthermore, we do not simply perform a di-
rect summation after the Squeeze or Expand operation, but
rather learn a scaling factor to balance the relative extents
of preserving the real-valued information and convolutional
transformation, unifying these mechanisms and fusing them
in a learnable, light-weight manner. EL is applicable to any
architecture without structural limitations. To better visual-
ize the effects of information preservation, we illustrate the
feature-maps of a full-precision model, a Bi-Real model and
our model with EL separately in Fig. 1. The feature maps of
our EL model show clear object contours and the retention
of important information for recognition, with less noise.
By contrast, the foreground and background in the Bi-Real
model are not as easily discriminated. We believe that the
EL module benefits information flow in the binarized neural
networks.

Moreover, as shown in Fig. 2, the design of the EL mod-
ule is simple and can be directly applied to existing modern
architectures. To assess the effectiveness of EL, we conduct
extensive experiments on the ImageNet dataset. We outper-
form the current state-of-the-art result with a top-1 accuracy
of 68.9%. We also contribute comprehensive ablation stud-
ies and discussions to further understanding of the intrinsic
characteristics of BNNs.

Related Work
Quantized Weights with Real-Valued Activations. Re-
stricting weights to be either +1 or -1 allows the time-
consuming multiply-accumulate (MAC) operations to be
replaced with simple addition operations. Recent stud-
ies (Courbariaux, Bengio, and David 2015; Rastegari et al.
2016) rely on this insight and employ the straight-through
estimator (STE) (Bengio, LšŠonard, and Courville 2013) to
tackle non-differentiability in the back-propagation of gra-
dients during training. Courbariaux et al. proposed Bina-
ryConnect (Courbariaux, Bengio, and David 2015) which
drastically decreases computational complexity and storage
requirements while achieving good results on the CIFAR-
10 and SVHN datasets, but lacks experiments on large-scale
datasets like ImageNet (Russakovsky et al. 2015). In Bina-
rized Weight Networks (BWN) (Rastegari et al. 2016), the
full-precision weights are binarized during each forward and
backward pass on the fly, updating only the full-precision
weights. BWN achieves a notable accuracy increase, espe-
cially on large-scale classification tasks. Finally, TWN (Li,
Zhang, and Liu 2016) and TTQ (Zhu et al. 2016a) use
ternary instead of binary weights {−α−, 0, α+} to pass
more information.
Quantized Weights and Activations. Another approach
which has recently gained popularity restricts both the
weights and the activations to {-1, +1}. This allows the
convolutional operations to be completely replaced by the
efficient xnor and bitcount operations (Courbariaux et al.
2016; Rastegari et al. 2016), thus gaining extreme efficiency.
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XNOR-Net (Rastegari et al. 2016) is one of the most rep-
resentative works of this approach and achieved remark-
able accuracy with various networks. Bi-Real net (Liu et al.
2018) introduced additional shortcuts to retain the informa-
tion of the real-valued activations, so as to alleviate infor-
mation loss from binarization. The paper additionally intro-
duced a custom gradient approximation method with a so-
phisticated fine-tuning strategy to further increase accuracy.
Recently, Bethge et al. (Bethge et al. 2019) demonstrated
that the said fine-tuning strategy and gradient approximation
methods are not necessary for training BNNs - even with-
out these, the authors achieved superior accuracy training
from scratch with the simple straight-through estimator. An-
other method proposed to counteract the information degra-
dation phenomenon is the linear combination of multiple bi-
nary weights to approximate full-precision weights, as in-
troduced by ABC-net (Lin, Zhao, and Pan 2017). Finally,
TBN (Wan et al. 2018) takes ternary inputs{-1, 0, +1} and
binary weights with scale factors {−α, α}, demonstrating
the method on both image classification and object detec-
tion tasks.

Methodology
In this section, we first revisit the standard process for
training BNNs, then subsequently introduce a novel mod-
ule, “Elastic-Link” (EL), to reduce the information loss in
BNNs. Lastly, we demonstrate the EL module on Bottle-
neck ResNet (He et al. 2016) and MobileNet (Howard et al.
2017).

Gradient Approximation
It is standard to use the Sign function to binarize a CNN.
Real values are converted to the binary set of {-1, +1} by
the following equation:

Sign(x) =

{
+ 1 if x ≥ 0

− 1 otherwise
(1)

where x refers to a real-valued weight or input/activation.
To facilitate training, binarization is typically executed on
the fly and only the real-valued weights are updated by the
gradients, as described in (Courbariaux et al. 2016; Raste-
gari et al. 2016). During inference, the real-valued weights
are unused and binary weights are used as a drop-in replace-
ment.

In the backward pass, since the Sign function is non-
differentiable everywhere, an approximation is used. In this
work, we follow the conventional “straight through estima-
tor” (STE) (Bengio, LšŠonard, and Courville 2013) unless
otherwise stated. The approximated gradient in STE is for-
mulated as:

∂Sign(x)

∂x
=

{
1 if − 1 ≤ x ≤ 1

0 otherwise
(2)

Scaling Factor for Weights and Activations
As proposed in XNOR-Net (Rastegari et al. 2016), a binary
convolutional operation can be given as follows:

BinConv (A,W) ≈ (Sign (A)⊗ Sign (W))⊙Kα
(3)

where A ∈ Rc×h×w is the real-valued input activa-
tion and W ∈ Rc×kh×kw is the real-valued convolutional
kernel. Here (c, h, w, kh, kw) refer to number of in-
put channels, input height, input width, kernel height, and
kernel width respectively. ⊗ denotes the efficient XNOR-
Bitcounting operation (Rastegari et al. 2016) that replaces
the time-consuming arithmetic operations.

α is a scaling factor given by a vector L1-Normalization
α = 1

n∥W∥ℓ1, which helps minimize the L2 error between
the real-valued weights and the binary weights with scalar
coefficient α. K is a two-dimensional scaling matrix for
the input activation, whose shape corresponds to the con-
volutional output. It is given by setting each element with
the same principle as α. XNOR-Net concluded that α is
more effective than K, which can even be entirely ignored
for simplicity due to the relatively small improvement re-
alized. Similarly, Liu et al. (Liu et al. 2018) and Lin et
al. (Lin, Zhao, and Pan 2017) validated the effectiveness of
α across various networks and datasets. Recently, Bethge
et al. (Bethge et al. 2019) found that these scaling factors
did not result in accuracy gains when BatchNorm (Ioffe and
Szegedy 2015) is applied after each convolutional layer. In
our experiments, we did observe the same experimental phe-
nomenon with the Basic-Block ResNet, which is constructed
with only 3 × 3 convolutions. However, we find that this
principle holds only for 3 × 3 convolutions. When binariz-
ing 1× 1 convolutions, the scaling factor is still effective, as
elaborated upon in Sec. .

Elastic-Link
Inspired by the shortcut connection mechanism, we use an
element-wise summation operation to add real-valued input
features to the output features generated by a binary con-
volution. In our Elastic-Link module, instead of an identity
shortcut, we apply either a Squeeze or an Expand operation
when a convolution alters the feature shape. A diagram of
our proposed Elastic-Link module is shown in Fig. 2. For-
mally, let Xr denote the real-valued input feature where
Xr ∈ RHi×Wi×Ci . We binarize Xr through a Sign activa-
tion function and obtain the binary Xb. Next, a binary con-
volution and standard BatchNorm are applied to obtain the
convolutional output feature Y n

r ∈ RHo×Wo×Co .
In order to compensate for the information loss, we add

the real-valued input Xr to the normalized convolutional
output Y n

r . If the input size is equal to the convolutional out-
put size, an identity shortcut connection with element-wise
summation is applied as proposed in Bi-Real net (Liu et al.
2018). However, this condition is rarely true. In practice, a
convolution operation usually changes the number of chan-
nels, and occasionally changes the height and width as well.
In the channel-reduction case, we design a Squeeze opera-
tion in which the real-valued input Xr is split into multiple
groups along the channel axis without overlap. The number
of channels for each group is ⌈Ci

Co
⌉. We additionally zero-

pad the features on input Xr to ensure that Ci can be exactly
divided by Co. Next, we sum these feature groups together to
yield the squeezed features which will be of the same shape
as Y n

r . To reduce the effect of amplitude increase from the
summation, and to offer a self-balancing tradeoff between
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information preservation and transformation, we divide the
squeezed feature by a learnable scalar γ initialized as the
number of groups. We take a similar approach for the chan-
nel expansion case. In an Expand operation, the real-valued
input feature is repeated several times and then concatenated
to match the feature size of the convolutional output. The ex-
panded feature is correspondingly divided by same learnable
factor of γ. Finally, the output of the Squeeze or Expand op-
eration is added to the convolutional output feature Y n

r , giv-
ing the overall output of the binarized convolution module.
If spatial downsampling is required, a 2 × 2 max-pooling
with stride 2 is applied before Squeeze or Expand to ensure
spatial compatibility. The Elastic-Link module is formulated
as follows:

EL (Xr,W, γ) = BN (BinConv (Xr,W))

+SEI (Xr, γ)
(4)

Where Xr refers to the real-valued input activation and
W refers to the convolutional weight. BN and Sign refer to
the BatchNorm and Sign function respectively. SEI refers
to Squeeze, Expand or Identity operation, depending on
the ratio of input and output channels. γ is the aforemen-
tioned learnable parameter that balances information preser-
vation and transformation. We initialize γ by the following
equation and optimize it through back-propagation:

γ =


⌈Ci

Co
⌉, Ci >= Co

⌈Co

Ci
⌉, Ci < Co

(5)

Where Ci and Co refer to the number of channels for the
input and output of a convolution respectively. ⌈ ⌉ denote the
ceiling or round-up operation. The max-pooling operation
in the downsample case as well as the additional ReLU for
efficient networks are omitted here for clarity.
Instantiations. The Elastic-Link module easily plugs into
many modern architectures. Taking Bottleneck ResNet as
an example, we integrate the Elastic-Link module into
ResNet26 which consists of 8 bottleneck blocks. All bot-
tleneck blocks are replaced by EL-Bottlenecks, as depicted
in Fig. 3. The first convolution (of kernel size 7× 7) and the
classification layers remain full-precision to keep essential
information at the input and output of the whole network.
The downsampling shortcut in the first block of each stage,
originally a 1 × 1 convolution of stride 2, is replaced by a
2× 2 average pooling with stride 2 followed by a 1× 1 con-
volution in full-precision. By integrating an EL module into
the first 1 × 1 convolution of each Bottleneck block, more
full-precision information flows to the middle 3 × 3 con-
volution, which is essential for capturing features at larger
receptive fields.

Next we apply the EL module to efficient networks com-
posed of separable convolutions. To the best of our knowl-
edge, efficient networks have so far been considered incom-
patible with binarization. MobileNet (Howard et al. 2017)
is one of the most representative efficient architectures.
By adding Elastic-Link to each pointwise convolution and
depthwise convolution (see Fig. 3), we are able to overcome

1x1 ConvBN

ScaleSign

Sign

3x3 ConvBN

Sign

1x1 ConvBN

MaxPooling

Squeeze

Expand

AvgPooling

1x1 ConvBN

Sign

Expand

BN

Sign

BN

MaxPooling
DWConv

PWConv

ReLU

ReLU

Figure 3: Schema of EL-Bottleneck module (Left) and EL-
MobileNet module (Right).

the non-convergence problem typically encountered in train-
ing binarized MobileNet. We additionally find that keeping
the ReLU activation achieves better performance. Similar to
the ResNet case, we keep the first convolution, classifier and
downsample components at full-precision.

Computational Complexity
For the Elastic-Link module to be considered practical, it
must offer a good tradeoff between improved performance
and additional computational burden. To illustrate the in-
creased complexity associated with the Elastic-Link mod-
ule, we compare Bi-ResNet50 with EL-ResNet50. The ad-
ditional computational cost incurred by the EL module orig-
inates from the γ scaling after the Squeeze, Expand or Iden-
tity operation as well as the element-wise summation of each
1 × 1 convolution, because the Squeeze and Expand can be
implemented with address mapping without any overhead.
In total, EL-ResNet50 requires an extra ∼8M FLOPs over
Bi-ResNet50’s ∼300M FLOPs for a single forward pass
with an input image of 224× 224, corresponding to a 2.6%
increase. The number of FLOPs is computed as described
in (Liu et al. 2018). For a practical comparison, we use
the BMXNet library (Yang et al. 2017) on an Intel Core
i7-9700K CPU to measure the actual time taken. Bi-Real-
ResNet50 takes on average 22.2 ms for a single forward pass
(over 10 runs), compared to 22.9 ms for our proposed EL-
ResNet50. We believe that this small additional cost is justi-
fied by the increase in model performance.

Experiments
In this section, we conduct extensive evaluations to demon-
strate the effectiveness of Elastic-Link for binarized neural
networks on the large scale image classification task Im-
ageNet (Russakovsky et al. 2015). ImageNet is challeng-
ing and often used to validate the performance of proposed
methods in BNNs. The dataset consists of about 1.28 mil-

945



lion training images and 50 thousand validation images, an-
notated for 1000 classes.

Training Details
During training, we perform binarization on-the-fly in the
forward pass and follow the STE gradient approximation
strategy. Input images are resized such that the shorter edge
is 256 pixels, then randomly cropped to 224 × 224 pixels,
followed by a random horizontal flip. Mean channel subtrac-
tion is used to normalize the input. All networks are trained
from scratch using the Adam optimizer without weight de-
cay normalization. The entire training process consists of
100 epochs with a mini-batch size of 256. The initial learn-
ing rate is set to 1e-3 and decreases after the 50th and 80th
epochs by a factor of 10 each.

During inference, we center-crop patches of size 224 ×
224 from each image on the validation set and report the
top-1 accuracy for comparison.

Effect of Scaling Activation
We have previously discussed (in Sec. ) the importance of
the scaling weights and activations in binarized neural net-
works. Scaling is intended to mitigate the differences be-
tween the distributions of full-precision tensors and their
binary counterparts. However, we obverse that scaling only
the weights results in a minimal increase of accuracy when
training from scratch, as previously observed in (Bethge
et al. 2019). We expect that scaling the activations will
greatly improve performance.

To investigate the effects of the scaling factor K on acti-
vations, we conduct experiments on Bi-Real nets - binarized
ResNet26 with an additional shortcut at the middle 3×3 con-
volution of each block - here named S-ResNet26 for conve-
nience. ResNet26 is constructed from a set of homogenous
Bottleneck blocks which each comprises three convolutions:
a first 1×1 channel-reduction convolution to reduce compu-
tation burden, a middle 3 × 3 convolution to capture spatial
information, and a final channel-expansion 1×1 convolution
to align the channel count with the input features for residual
connection.

The experimental results are shown in Table 1. Applying
the scaling factor to only the first channel-reduction con-
volution of each bottleneck block results in a top-1 accu-
racy of 59.8%, a significant increase over the original 58.7%
wherein no scaling factors are applied. When scaling is also
applied to the other two convolutions of each block, a slight
accuracy drop is observed. Based on this phenomenon, we
speculate that the scaling factor for activations facilitates
optimization of the channel-reduction convolution. Noting
that improper application of the scaling factor can cause ad-
verse effects, we apply scaling on only the first (channel-
reduction) convolution of each block in our subsequent ex-
periments on Bottleneck ResNet.

Integration with Basic-Block ResNet
We next apply the EL module to the Basic-Block ResNet
to validate its benefits. A Basic-Block is constructed by two
successive isomorphic convolutions, and thus a feature pass-
ing through the block maintains its shape, except where

downsampling is applied. In a Basic-Block, the EL module
resolves to the identity shortcut connection as proposed in
Bi-Real nets (Liu et al. 2018). The binarized ResNet model
constructed using Basic-Blocks with the EL module is al-
most the same as the Bi-Real net in terms of model architec-
ture. However, the Bi-Real net utilizes a multi-stage fine-
tuning strategy and the custom differentiable approxima-
tion ApproxSign, whereas the EL models are trained from
scratch with simple STE. As can be observed in the results
listed in table 3, both EL-ResNet18 and EL-ResNet34 are
superior to their Bi-Real variants by a margin of 2.2% and
1.0% in top-1 accuracy respectively, demonstrating that a
simple training schedule suffices to achieve a well-trained
binarized model.

Integration with Bottleneck ResNet
We next investigate the effectiveness of the proposed EL
module on Bottleneck ResNet. Using the activation scaling
strategy reported above, we obtain a strong baseline on S-
ResNet26. Subsequently, we apply the EL module to each
bottleneck block (see Fig. 3) and conduct extensive ablation
studies. The results are reported in Table 2 and we can ob-
verse the following phenomena:

- From the result of model EL1, EL2 and EL3, we can see
that applying Elastic-Link on more convolutions within
a network can monotonically bring benefits (59.8% →
61.8% → 62.1% → 63.2%), demonstrating the effec-
tiveness of the EL module.

- Comparing model EL3 with EL4, when the original
residual shortcuts are removed throughout the network,
there is a significant drop of top-1 accuracy from 63.2%
to 59.2%. This proves that although EL provides more in-
formation via the additional connection for each convo-
lution, residual connections are still essential to forward
primitive uncompressed information.

- Comparing model EL6 with EL3, allowing γ to be
learnable further increases the top-1 accuracy from
63.2% to 64.0%.

- From the results of models EL5 and EL6, it can be ob-
served that EL is compatible with the scaling factor strat-
egy and achieves better accuracy when used with other
techniques.

We term EL6 in Table 2 as EL-ResNet26, and this is
constructed using EL-Bottleneck (see Fig. 3). Including EL
with learnable γ in the convolutional layers results in dra-
matic gains, increasing top-1 accuracy by an absolute value
of 4.2%.

Results on Deeper and Efficient Networks
In order to validate the generalizability of the EL module,
we apply it to deeper networks, such as ResNet50 (He et al.
2016), which are rarely reported in existing literature. The
results in Table 3 shows that EL-ResNet50 (65.6% top-1 ac-
curacy) is superior to the Bi-Real-ResNet50 (62.7% top-1
accuracy) by a significant margin, proving that the EL mod-
ule maintains strong performance even as the network grows
deeper.
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Ks Ki Ke Top-1
58.7

✓ 58.5
✓ ✓ 59.3
✓ ✓ 59.8
✓ ✓ ✓ 59.4
✓ 59.8

Table 1: Top-1 accuracy (%) of S-ResNet26 variants on Im-
ageNet. Ks, Ki and Ke mean applying activation scaling
to the first convolution (channel-reduction), middle convo-
lution (spatial) and last convolution (channel-expansion) of
each bottleneck block respectively.

Ks ELs ELi ELe Id. γl Top-1
Baseline ✓ ✓ 59.8
EL1 ✓ ✓ ✓ 61.8
EL2 ✓ ✓ ✓ ✓ 62.1
EL3 ✓ ✓ ✓ ✓ ✓ 63.2
EL4 ✓ ✓ ✓ ✓ 59.2
EL5 ✓ ✓ ✓ ✓ ✓ 63.6
EL6 ✓ ✓ ✓ ✓ ✓ ✓ 64.0

Table 2: Top-1 accuracy (%) of binarized ResNet26 with
different configurations of EL on the ImageNet validation
set. ELs, ELi and ELe denotes applying Elastic-Link to
the first convolution (channel-reduction), middle convolu-
tion (spatial) and the last convolution (channel-expansion) of
each bottleneck block respectively. Id. means keeping resid-
ual connections, and γl means setting γ to be learnable in the
EL module.

We next demonstrate the efficacy of the EL module on
MobileNet. This is much more challenging as separable con-
volutions are weak at capturing spatial features. More con-
cretely, the depthwise convolutions lack inter-channel in-
formation, while the pointwise convolutions which are ex-
pected to perform the inter-channel aggregation are particu-
larly sensitive to information loss. As such, binarizing a Mo-
bileNet causes serious degradation in the network’s ability to
extract strong features. We add additional shortcut connec-
tion on depthwise convolutions and also perform the multi-
stage fine-tuning strategy as discussed in Bi-Real net (Liu
et al. 2018). However, this binarized MobileNet still failed
to converge in its training loss. Subsequently, we included
the EL module into MobileNet (see Fig. 3), and obtained the
results shown in Table 3. The EL module not only enabled
convergence, but also achieved an excellent performance of
56.4% top-1 accuracy, a strong baseline for future work on
binarized efficient networks.

Comparison with the State-of-the-Art
Finally, in order to demonstrate the superiority of our pro-
posed EL in BNNs, we compare our results with other work
on binary weights and activations. The main results on Im-

ageNet are listed in Table 3. We demonstrate that binarized
networks integrating with our EL module obtain consider-
able gains and also achieve the best performance against
previous methods. At the same time, our approach integrates
well with the Real-to-Binary (Brais, Bulat, and Tzimiropou-
los 2020) approach, which is important for practical applica-
tions. Remarkably, we also integrated EL with the state-of-
the-art result ReActNet-C (Liu et al. 2020) with top-1 accu-
racy of 71.4% on the Reduction block by replacing the du-
plicate activation parts with our EL modules. We obtained a
new state-of-the-art result with a top-1 accuracy of 71.9%.

Discussion
Effect of Binary 1× 1 Convolution
An EL module propagates the real-valued input signal with-
out a change of receptive field regardless of the change in
channel depth. Similarly, a 1 × 1 convolution linearly fuses
inter-channel information also without a change of recep-
tive field. Our experiments have comprehensively demon-
strated the effectiveness of the EL module as a solution
to the information loss incurred by binary 1 × 1 convolu-
tions. We next investigate whether the EL module is effec-
tive outside of 1 × 1 convolutions. We set up a comparison
on S-ResNet26 by replacing the first convolution (channel-
reduction) of each block with the following alternatives: 1)
a full-precision convolution, 2) an EL module and 3) an EL
module without the inner 1 × 1 convolution. The result in
Table 4 shows that the model with the complete EL mod-
ule reaches almost the accuracy of the model with the full-
precision convolution. Removing the 1×1 convolution from
the EL module still results in an absolute 1.2% improvement
in top-1 accuracy. We therefore conclude that between the
two mechanisms of fusing inter-channel information by bi-
nary 1× 1 convolution and forwarding real-valued informa-
tion, the latter is more crucial to improve accuracy in BNNs.

The Role of the γ Factor
The learnable factor γ for the EL module controls the pro-
portion of information fusion between the real-valued input
features and the convolutional output features. In order to
investigate the behavior of the γ factor, we study the dis-
tribution of γ from EL-ResNet26 with respect to the depth
within the model. Fig. 4 illustrates the value changes of all
16 γ across 8 EL-Bottleneck blocks after training. Relative
to their initial values, all the γ in the EL module that were
applied to the channel-reduction convolutions with kernel
size 1 × 1 increased significantly. This indicates that less
original information is retained as input into the subsequent
spatial convolution. In contrast, the γ values in the EL mod-
ule that were applied to the channel-expansion convolutions
slightly decreased, indicating that more information from
previous spatial convolution is forwarded to the next block.
This phenomenon is within expectations because if all the
original information before a convolution is forwarded, the
said convolution would be of relatively little utility as a fea-
ture transformer. It is also worth noting that all γ applied
to the channel-reduction convolutions in which downsam-
pling occurred increased substantially during training (i.e.

947



Bottleneck Block Efficient Block Basic Block
RN26 RN50 MobileNet RN18 RN34

Full-Precision 72.5 75.9 70.6 69.3 71.5
XNOR (Rastegari et al. 2016) 52.1 54.2 Not Converge 51.2 53.2
ABCNet (Lin, Zhao, and Pan 2017) 45.2 52.9 Not Converge 42.7 52.4
TBN (Wan et al. 2018) - - - 55.6 58.2
Bi-Real (Liu et al. 2018) 57.8 62.7 Not Converge 56.4 62.2
BinaryE (Bethge et al. 2019) 57.9 61.2 Not Converge 56.7 59.5
CI-Net (Wang et al. 2019) - - - 56.7 62.4
XNOR++ (Bulat and Tzimiropoulos 2019) - - - 57.1 -
GBCN (Liu et al. 2019) - - - 57.8 -
MoBiNet (Phan et al. 2020) - - 54.4 - -
EL (Ours) 64.0 65.6 56.4 60.1 63.2
Real-to-Bin (Brais, Bulat, and Tzimiropoulos 2020) 64.8 65.9 54.8 65.4 66.1
EL† (Ours) 67.1 68.9 61.2 65.7 66.5

Table 3: Comparison of top-1 accuracy (%) on the ImageNet validation set. EL is specifically designed to improve 1×1 convo-
lution, and its superiority compared to other works is correspondingly obvious across networks constructed with Bottleneck or
Efficient Block. For reference, we also include networks built with Basic Block (which lack 1× 1 convolutions). “RN” is short
for ResNet. EL† refers to including Real-to-Bin (Brais, Bulat, and Tzimiropoulos 2020) in our proposed EL networks.

FP 1× 1 Binary 1× 1 EL− Top-1
✓ 59.4

✓ 62.0
✓ 60.6

✓ ✓ 61.8

Table 4: Top-1 accuracy (%) of various S-ResNet26 with
different forms for the first convolutions of each block (the
1 × 1, channel-reduction ones). FP 1 × 1 refers to full-
precision 1 × 1 convolution. Binary 1 × 1 refers to bina-
rized 1 × 1 convolution. EL− refers to removing the 1 × 1
convolution from the original EL module, retaining only the
Squeeze operation.

little original information is retained), as the convolutions in
these shortcuts are full-precision, and thus are able to output
more accurate information.

Conclusion
In this work, we proposed a novel Elastic-Link module for
binarized neural networks. The Elastic-Link module intro-
duces a connectivity mechanism to adaptively fuse real-
valued input features and convolutional output features re-
gardless of whether or not the feature-size is altered in the
convolution. A learnable scaling factor enables an optimized
tradeoff between information preservation and feature trans-
formation, significantly reducing information degradation in
the binarized form. The Elastic-Link module can be eas-
ily embedded into any architecture. It greatly enhances the
representational ability of BNNs, especially for networks in
which 1× 1 convolutions are indispensable, such as Bottle-
neck ResNet and MobileNet. Extensive experiments demon-
strate that binarized networks with Elastic-Link achieve con-
siderable performance gains with negligible computational

Figure 4: Learnable factor γ in all the EL module of EL-
ResNet26 on ImageNet. The red histogram indicates an in-
crease and the green histogram indicates a decrease com-
pared to the initial value after training.

overhead. Moreover, the module is compatible with other
techniques that have been shown to improve accuracy, e.g.
the application of a scaling factor to activations. Combin-
ing Elastic-Link with such techniques achieves a new state-
of-the-art result. A key challenge remaining is the observed
increase in the degree of information degradation with net-
work depth. We plan to explore more effective approaches
to counteract this phenomenon in future work.
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