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Abstract

Accurate 3D object detection from point clouds has become a
crucial component in autonomous driving. However, the vol-
umetric representations and the projection methods in previ-
ous works fail to establish the relationships between the lo-
cal point sets. In this paper, we propose Sparse Voxel-Graph
Attention Network (SVGA-Net), a novel end-to-end train-
able network which mainly contains voxel-graph module and
sparse-to-dense regression module to achieve comparable 3D
detection tasks from raw LIDAR data. Specifically, SVGA-
Net constructs the local complete graph within each divided
3D spherical voxel and global KNN graph through all voxels.
The local and global graphs serve as the attention mechanis-
m to enhance the extracted features. In addition, the novel
sparse-to-dense regression module enhances the 3D box esti-
mation accuracy through feature maps aggregation at differ-
ent levels. Experiments on KITTI detection benchmark and
Waymo Open dataset demonstrate the efficiency of extend-
ing the graph representation to 3D object detection and the
proposed SVGA-Net can achieve decent detection accuracy.

Introduction
With the widespread popularity of LIDAR sensors in au-
tonomous driving (Geiger, Lenz, and Urtasun 2012) and
augmented reality (Park, Lepetit, and Woo 2008), 3D ob-
ject detection from point clouds has become a mainstream
research direction. Compared to RGB images from video
cameras, point clouds could provide accurate depth and ge-
ometric information (Yu et al. 2020) which can be used not
only to locate the object, but also to describe the shape of
the object (Zhang et al. 2020). However, the properties of
unordered, sparsity and relevance of point clouds make it a
challenging task to utilize point clouds for 3D object detec-
tion directly.

In recent years, several pioneering approaches have been
proposed to tackle these challenges for 3D object detection
on point clouds. The main ideas for processing point cloud-
s data are to project point clouds to different views(Simon
et al. 2019; Chen et al. 2017; Ku et al. 2018; Liang et al.
2018; Yang, Luo, and Urtasun 2018) or divide the point
clouds into equally spaced voxels(Li 2017; Zhou and Tuzel
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2018; Yan, Mao, and Li 2018). Then convolutional neu-
ral networks and mature 2D objection detection framework-
s (Ren et al. 2015; Redmon et al. 2016) are applied to extrac-
t features. However, because projection alone cannot cap-
ture the object’s geometric information well, many method-
s(Chen et al. 2017; Wang and Jia 2019; Qi et al. 2018; Sinda-
gi, Zhou, and Tuzel 2019) have to combine RGB images in
the designed network. While the methods using only vox-
elization do not make good use of the properties of the point
clouds and bring a huge computational burden(Liu et al.
2019) as resolution increases. Apart from converting point
clouds into other formats, some works (Shi, Wang, and Li
2019; Yang et al. 2019) take Pointnets (Qi et al. 2017a,b) as
backbone to process point clouds directly. Although Point-
nets build a hierarchical network and use a symmetric func-
tion to maintain permutation invariance, they fail to con-
struct the neighbour relationships between the grouped point
sets.

Considering the properties of point clouds, we should no-
tice the superiority of graphs in dealing with the irregular
data. In fact, in the domain of point clouds for segmenta-
tion and classification tasks, the method of processing with
graphs has been deeply studied by many works (Qi et al.
2017; Bi et al. 2019; Landrieu and Simonovsky 2018; Shen
et al. 2018; Wang et al. 2019). However, few researches have
used graphs to make 3D object detection from point cloud-
s. To our knowledge, Point-GNN(Shi and Rajkumar 2020)
may be the first to prove the potential of using the graph
neural network as a new approach for 3D object detection.
Point-GNN introduces auto-registration mechanism to re-
duce translation variance and designs box merging and scor-
ing operation to combine detection results from multiple ver-
tices accurately. However, similar to ShapeContextNet (Xie
et al. 2018) and Pointnet++ (Qi et al. 2017b), the relation-
ship between point sets is not well established in the feature
extraction process and a large number of matrix operations
will bring heavy calculation burden and memory cost.

In this paper, we propose the sparse voxel-graph attention
network (SVGA-Net) for 3D object detection. SVGA-Net
is an end-to-end trainable network which takes raw point
clouds as input and outputs the category and bounding box-
es information of the object. Specifically, SVGA-Net mainly
consists of voxel-graph network module and sparse-to-dense
regression module. Instead of normalized rectangle voxels,
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we divide the point clouds into 3D spherical space with a
fixed radius. The voxel-graph network aims to construct lo-
cal complete graph for each voxel and global KNN graph for
all voxels. The local and global serve as the attention mecha-
nism that can provide a parameter supervision factor for the
feature vector of each point. In this way, the local aggregat-
ed features can be combined with the global point-wise fea-
tures. Then we design the sparse-to-dense regression module
to predict the category and 3D bounding box by process-
ing the features at different scales. Evaluations on KITTI
benchmark and Waymo Open dataset demonstrate that our
proposed method can achieve comparable results with the
state-of-the-art approaches.

Our key contributions can be summarized as follows:
• We propose a new end-to-end trainable 3D object detec-

tion network from point clouds which uses graph repre-
sentations without converting to other formats.
• We design a voxel-graph network, which constructs the

local complete graph within each spherical voxel and the
global KNN graph through all voxels to learn the dis-
criminative feature representation simultaneously.
• We propose a novel 3D boxes estimation method that ag-

gregates features at different scales to achieve higher 3D
localization accuracy.
• Our proposed SVGA-Net achieves decent experimental

results on the challenging KITTI 3D detection dataset
and Waymo Open dataset.

Related Work
Projection-based methods for point clouds. To align with
RGB images, series of works process point clouds through
projection (Chen et al. 2017; Ku et al. 2018; Liang et al.
2019). Among them, MV3D (Chen et al. 2017) projects
point clouds to bird view and trains a Region Proposal Net-
work (RPN) to generate positive proposals. It extracts fea-
tures from LiDAR bird view, LIDAR front view and RGB
image, for every proposal to generate refined 3D bounding
boxes. AVOD (Ku et al. 2018) improves MV3D by fusing
image and bird view features and merges features from mul-
tiple views in the RPN phase to generate positive proposals.
Note that accurate geometric information may be lost in the
high-level layers with this scheme.

Volumetric methods for point clouds. Another typical
method for processing point clouds is voxelization. Voxel-
Net (Zhou and Tuzel 2018) is the first network to process
point clouds with voxelization, which use stacked VFE lay-
ers to extract features tensors. Following it, a large number
of methods (Liu et al. 2020; Yan, Mao, and Li 2018; Shi
et al. 2020; Chen et al. 2019) divide the 3D space into regu-
lar grids and group the points in a grid as a whole. However,
they often need to stack heavy 3D CNN layers to realize ge-
ometric pose inference which bring large computation.

Pointnet-based methods for point clouds. To process
point clouds directly, PointNet (Qi et al. 2017a) and Point-
Net++ (Qi et al. 2017b) are the two groundbreaking work-
s to design parallel MLPs to extract features from the raw
irregular data, which improve the accuracy greatly. Taking
them as backbone, many works (Shi, Wang, and Li 2019;

Qi et al. 2018; Lang et al. 2019; Yang et al. 2019, 2020)
begin to design different feature extractors to achieve bet-
ter performance. Although Pointnets are effective to abstract
features, they still suffer feature loss between the local and
global point sets.

Graph-based methods for point clouds. Constructing
graphs to learn the order-invariant representation of the ir-
regular point clouds data has been explored in classification
and segmentation tasks (Kaul, Pears, and Manandhar 2019;
Wang et al. 2019). Graph convolution operation is efficient
to compute features between points. DGCNN (Wang et al.
2019) proposes EdgeConv in the neighbor point sets to fuse
local features in a KNN graph. SAWNet (Kaul, Pears, and
Manandhar 2019) extends the ideas of PointNet and DGC-
NN to learn both local and global information for points.
Surprisingly, few researches have considered applying graph
for 3D object detection. Point-GNN may be the first work
to design a GNN for 3D object detection. Point-GNN (Shi
and Rajkumar 2020) designs a one-stage graph neural net-
work to predict the category and shape of the object with
an auto-registration mechanism, merging and scoring oper-
ation, which demonstrate the potential of using the graph
neural network as a new approach for 3D object detection.

Proposed Method
In this section, we detail the architecture of the proposed
SVGA-Net for 3D detection from point clouds. As shown
in Figure 1, our SVGA-Net architecture mainly consists of
two modules: voxel-graph network and spare-to-dense re-
gression.

Voxel-graph Network Architecture
Spherical voxel grouping. Consider the original point
clouds are represented as G = {V,D}, where V =
{p1, p2, ..., pn} indicting n points in aD dimensional metric
space. In our practice,D is set to 4 so each point in 3D space
is defined as vi = [xi, yi, zi], where xi, yi, zi denote the co-
ordinate values of each point along the axes X, Y, Z and the
fourth dimension is the laser reflection intensity which de-
noted as si.

Then in order to cover the entire point set better, we
use the iterative farthest point sampling (Qi et al. 2017b)
to choose N farthest points P = {pi = [vi, si]

T ∈
R4}i=1,2,...N . According to each point in P , we search its
nearest neighbor within a fixed radius r to form a local vox-
el sphere:

hi = {p1, p2, ...pi, ..., pj , ... |‖ vi − vj ‖2< r} (1)

In this way, we can subdivide the 3D space intoN 3D spher-
ical voxels H = {h1, h2, ..., hN}.

Local point-wise feature. As shown in Figure 1, for each
spherical voxel hi = {pj = [xj , yj , zj , sj ]

T }j=1,2,...,t with
t points (t varies for different voxel sphere), the coordinate
information of all points inside form the input vector. We
extract the local point-wise features for each voxel sphere
by learning a mapping:

f(hi) = MLP (pj)j=1,2,...,t (2)
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Figure 1: Architecture of the proposed SVGA-Net. The voxel-graph network takes raw point clouds as input, partitions the space
into spherical voxels, transforms the points in each sphere to a vector representing the feature information. The sparse-to-dense
regression module takes the aggregated features as input as generates the final boxes information.

Then, we could obtain the local point-wise feature represen-
tation for each voxel sphere F = {fi, i = 1, ..., N}, which
are transformed by the subsequent layers for deeper feature
learning.

Local point-attention layer. Taken the features of each
nodes as input, the local point-attention layer outputs the re-
fined features F

′
= {f ′

i , i = 1, ..., N} through series of in-
formation aggregation. As shown in Figure 2, we construct
a complete graph for each local node set and KNN graph
for all the spherical voxels. We aggregate the information of
each node according to the local and global attention score.
The feature aggregation of j-th node is represented as:

f
′

j = βm · fj +
∑

k∈t(pj)

αj,k · fj,k (3)

where f
′

j denotes the dynamic updated feature of node pj
and fj is the input feature of node pj . t(pj) denotes the
index of the other nodes inside the same sphere. fj,k denotes
the feature of the k-th nodes inside the same sphere. αj,k is
the local attention score between node pj and the other nodes
inside the same sphere. βm is the global attention score from
the global KNN graph in the m-th iterations.

As shown in Figure 2 (a), we construct a complete graph
for all nodes within a voxel sphere to learn the features con-
strained by each other. In order to allow each point to attend
on every other point and make coefficients easily compa-
rable across different points, we normalize them across all
choices using the softmax function, so the local attention s-
core αj,k is calculated by:

αj,k = softmaxj(fj , fj,k) =
exp(fTj · fj,k)∑

k∈t(pj) exp(fTj · fj,k)
(4)

Global attention layer. By constructing the local com-
plete graph, the aggregated features can only describe the lo-
cal feature and do not integrate with the global information.
So we design the global attention layer to learn the glob-
al feature of each spherical voxel and offer a feature factor
aligned to each node.

(a) local complete graph (b) global KNN graph

Figure 2: Graph construction. Each node with different col-
or indicates the aggregated feature and arrows direction rep-
resents the information propagation direction with indepen-
dent attention calculations scores. (a) local complete graph:
for each node, we aggregate the information of all the nodes
within the same spherical voxel according to the attention
score. (b) global 3-NN graph: we aggregate the information
of the three nearest neighbours around each node according
to the attention score.

For the points within each hi in N 3D spherical voxel-
s H = {h1, h2, ..., hN}, we calculate the physical centers
of all voxels which are denoted as {ci}i=1,...,N . Each center
is learned by a 3-layer MLP to get the initial global feature
Fg = {fg,1, fg,2, ..., fg,N}. As Figure 2 (b) shows, we con-
struct a KNN graph for the N voxel sphere. For each node
fg,i, the attention score between node fg,i and its l-th neigh-
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bor is calculated as follows:

βm,i =
fTg,i · fg,i,l∑

l∈$(fg,i)
fTg,i · fg,i,l

(5)

where $(fg,i) denotes the index of the neighbors of node
fg,i. m is the number of the point attention layers. Eq. 5
can be regarded as a weighted summation of the K neighbor
nodes around a node, which guarantees the permutation in-
variance to the node order. And the final βm is the average
of K neighbors.

Voxel-graph features representation. The point atten-
tion operation on each spherical voxel can combine the pa-
rameter factor from both local and global, each of which
is inserted with a 2-layer MLP with a nonlinear activation
to transform each updated feature f

′

j . By stacking multi-
ple point attention layers, both local aggregated feature and
global point-wise feature can be learned. We then apply
maxpool on the aggregated feature to obtain the final fea-
ture vector.
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Figure 3: The architecture of the sparse-to-dense regression
module. Features from the voxel-graph network are pro-
cessed by series of region proposal extraction operations to
generate the final classification and regression maps.

Sparse-to-dense Regression
To process all the spherical voxel, we obtain a set of vox-
el sphere features, each of which corresponds to the spatial
coordinates of the voxels and is taken as input of the sparse-
to-dense regression module.

For each 3D bounding box in 3D space, the predict-
ed box information is represented as (x, y, z, l, w, h, θ),
where (x, y, z) is the center coordinate of the bounding
box, (l, w, h) is the size information alongside length, width
and height respectively, and θ is the heading angle. Feature
map from the voxel-graph network is processed by region
proposal regression module. The architecture of the speci-
fied sparse-to-dense regression(SDR) module is illustrated
in Figure 3.

SDR module first apply three similar blocks as (Zhou and
Tuzel 2018; Lang et al. 2019) to generate smaller the spatial
resolution from top to down. Each block consist of series of
Conv(fin, fout, k, s, p) layers, followed by BatchNorm and
a ReLU, where fin and fout are the number of input and
output channels, k, s, p represent the kernel size, stride size
and padding size respectively. The stride size is set to 2 for
the first layer of each block to downsample the feature map
by half, followed by sequence of convolutions with stride 1.
And the output of the three blocks is denoted as b1, b2, b3
respectively.

In order to combine high-resolution features with large
receptive fields and low-resolution features with small re-
ceptive fields, we concatenate the output of the second and
third modules b2, b3 with the output of the first and second
modules b1, b2 after upsampling. In this way, the dense fea-
ture range of the lower level can be well combined with the
sparse feature range of the higher level. Then a series of con-
volution operations with an upsampling layer are performed
in parallel on three scale channels to generate three feature
maps with the same scale size, which are denoted as F1, F2,
F3.

In addition, we consider that the features output of F1,
F2, F3 are more densely fit to our final goal than the original
three modules. Therefore, in order to combine the original
sparse feature map and the series of processed dense fea-
ture maps, we combine the original output b1, b2, b3 after
upsampling and F1, F2, F3 by element-wise addition. The
final output Fs is obtained by concatenating the fused fea-
ture maps after a 3 × 3 convolution layer. And Fs is taken
as input to perform category classification and 3D bounding
box regression.

Loss Function
We use a multi-task loss to train our network.
Each prior anchor and ground truth bounding box
are parameterized as (xa, ya, za, la, wa, ha, θa) and
(xgt, ygt, zgt, lgt, wgt, hgt, θgt) respectively. The regression
residuals between anchors and ground truth are computed
as:

∆x =
xgt − xa

da
,∆y =

ygt − ya
da

,∆z =
zgt − za
ha

∆w = log(
wgt

wa
),∆l = log(

lgt
la

),∆h = log(
hgt
ha

)

∆θ = sin(θgt − θa)

(6)

where da =
√

(wa)2 + (la)2. And we use Smooth L1
loss(Girshick 2015) as our 3D bounding box regression loss
Lreg .

For the object classification loss, we apply the classifica-
tion binary cross entropy loss.

Lcls=γ1
1

Npos

∑
i

Lcls(p
pos
i , 1)+γ2

1

Nneg

∑
i

Lcls(p
neg
i , 0).

(7)
where Npos and Nneg are the number of the positive and

negative anchors. pposi and pnegi are the softmax output for
positive and negative anchors respectively. γ1 and γ2 are
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positive constants to balance the different anchors, which are
set to 1.5 and 1 respectively in our practice.

Our total loss is composed of two parts, the classification
loss Lcls and the bounding box regression loss Lreg as:

Ltotal = αLcls + β
1

Npos

∑
t∈{x,y,z,l,w,h,θ}

Lseg(∆t
∗,∆t). (8)

where ∆t∗ and ∆t are the predicated residual and the re-
gression target respectively. Weighting parameters α and β
are used to balance the relative importance of different parts,
and their values are set to 1 and 2 respectively.

Experiments
KITTI. We first evaluate our method on the widely used
KITTI 3D object detection benchmark (Geiger, Lenz, and
Urtasun 2012). It includes 7481 training samples and 7518
test samples with three categories: car, pedestrian and cy-
clist. For each category, detection results are evaluated based
on three levels of difficulty: easy, moderate and hard. Fur-
thermore, we divide the training data into a training set
(3712 images and point clouds) and a validation set (3769
images and point clouds) at a ratio of about 1: 1 (Abla-
tion studies are conducted on this split). We train our model
on train split and compare our results with state-of-the-art
methods on both val split and test split. For evaluation, the
average precision (AP) metric is to compare with different
methods and the 3D IoU of car, cyclist, and pedestrian are
0.7, 0.5, and 0.5 respectively.

Waymo Open dataset. The Waymo Open Data Set (Sun
et al. 2020) is by far the largest public data set for au-
tonomous driving. There are a total of 1,000 sequences in
the dataset. The training set contains 798 sequences with ap-
proximately 158000 point cloud samples, and the validation
set contains 202 sequences with approximately 40000 point
cloud samples. Different from KITTI, which only provides
annotations in the camera’s FOV, Waymo Open Dataset pro-
vides annotations for objects throughout 360 degree. We e-
valuate our network on this large-scale dataset to further val-
idate the effectiveness of our proposed method. We adopt the
official released evaluation tools for evaluating our method,
where the mean average precision (mAP) and the mean av-
erage precision weighted by heading (mAPH) are used for
evaluation. The rotated IoU threshold is set as 0.7 for vehi-
cle detection.

Training
Network Architecture. As shown in Figure 1, in the local
point-wise feature and global attention layer, the point sets
are first processed by 3-layer MLP and the sizes are all (64,
128, 128). In the local point attention layer, we stack n = 3
local point-attention graph to aggregate the features, each
followed by a 2-layer MLP. And the sizes of the three MLPs
are (128, 128), (128, 256) and (512, 1024) respectively. Fol-
lowing (Ku et al. 2018; Zhou and Tuzel 2018; Yang et al.
2019), we train two networks, one for cars and another for
both pedestrians and cyclists.

For cars, we sample N = 1024 to form the initial point
sets. To construct the local complete graph, we choose r =

1.8m. For anchors, an anchor is considered as positive if it
has the highest IoU with a ground truth or its IoU score is
over 0.6. An anchor is considered as negative if the IoU with
all ground truth boxes is less than 0.45. To reduce redundan-
cy, we apply IoU threshold of 0.7 for NMS. For cyclist and
pedestrian, the number of the initial point sets is n = 512.
We set r = 0.8 to construct the local graph. The anchor is
considered as positive if its highest IoU score with a ground
truth box or an IoU score is over than 0.5. And an anchor is
considered as negative if its IoU score with ground truth box
is less than 0.35. The IoU threshold of NMS is set to 0.6.

The network is trained in an end-to-end manner on GTX
1080 GPU. The ADAM optimizer (Kingma and Ba 2014) is
employed to train our network and its initial learning rate is
0.001 for the first 140 epoches and is decayed by 10 times
in every 20 epoches. We train our network for 200 epoches
with a batch size of 16 on 4 GPU cards. Furthermore, we
also apply data augmentation as (Lang et al. 2019; Zhou and
Tuzel 2018) do to prevent overfitting.

Comparing with State-of-the-art Methods
Performance on KITTI test dataset. We evaluate our
method on the 3D detection benchmark benchmark of the
KITTI test server. As shown in Table 1, we compare our re-
sults with state-of-the-art RGB+Lidar and Lidar only meth-
ods for the 3D object detection and the bird’s view detection
task. Our proposed method outperforms the most effective
RGB+Lidar methods MMF(Liang et al. 2019) by (0.52%,
3.72%, 7.50%) for car category on three difficulty levels of
3D detection.

Compared with the Lidar-based methods, our SVGA-Net
can still show decent performance on the three categories.
In particular, we achieve decent results compared to Point-
GNN(Shi and Rajkumar 2020) using the same graph rep-
resentation method but using graph neural network in the
detection of the three categories. We believe that this may
benefit from our construction of local and global graphs to
better capture the feature information of point clouds. The s-
light inferiority in the two detection tasks may be due to the
fact that the local graph cannot be constructed for objects
with occlusion ratio exceeding 80%.

Performance on KITTI validation dataset. For the most
important car category, we also report the performance of
our method on KITTI val split and the results are shown in
Table 3 and Table 4. For car, our proposed method achieves
better or comparable results than state-of-the-art methods on
three difficulty levels which illustrate the superiority of our
method.

Performance on Waymo Open dataset. We evaluate our
method on both LEVEL 1 and LEVEL 2 objects and com-
pare with several top-performing methods on the Waymo
Open Dataset. As shown in Table 2, with the commonly
used 3D mAP evaluation metric, our method achieves new
73.45% and 83.52% mAP for the 3D object detection and
bird’s view detection in LEVEL 1 and outperforms PVRC-
NN significantly in LEVEL 2, which validates that our pro-
posed local and global graph representations are able to ef-
fectively capture more accurate information for improving
the 3D detection performance. The whole experimental re-
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Method Modality APcar(%) APpedestrian(%) APcyclist(%)

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard
MV3D R+L 71.09 62.35 55.12 - - - - - -

F-Pointnet R+L 81.20 70.39 62.19 51.21 44.89 40.23 71.96 56.77 50.39
AVOD-FPN R+L 81.94 71.88 66.38 50.80 42.81 40.88 64.00 52.18 46.61
F-ConvNet R+L 85.88 76.51 68.08 52.37 45.61 41.49 79.58 64.68 57.03

MMF R+L 86.81 76.75 68.41 - - - - - -
Voxelnet L 77.47 65.11 57.73 39.48 33.69 31.51 61.22 48.36 44.37
SECOND L 83.13 73.66 66.20 51.07 42.56 37.29 70.51 53.85 46.90

PointPillars L 79.05 74.99 68.30 52.08 43.43 41.49 75.78 59.07 52.92
PointRCNN L 85.94 75.76 68.32 49.43 41.78 38.63 73.93 59.60 53.59

STD L 86.61 77.63 76.06 53.08 44.24 41.97 78.89 62.53 55.77
3DSSD L 88.36 79.57 74.55 - - - - - -
SA-SSD L 88.75 79.79 74.16 - - - - - -

PV-RCNN L 90.25 81.43 76.82 - - - 78.60 63.71 57.65
Point-GNN L 88.33 79.47 72.29 51.92 43.77 40.14 78.60 63.48 57.08

SVGA-Net(ours) L 87.33 80.47 75.91 48.48 40.39 37.92 78.58 62.28 54.88

Table 1: Performance comparison on KITTI 3D object detection for car, pedestrian and cyclists.The evaluation metrics is the
average precision (AP) on the official test set. ’R’ denotes RGB images input and ’L’ denotes Lidar point clouds input.

Difficulty Method 3D mAP(IoU=0.7) BEV mAP(IoU=0.7)

Overall 0-30m 30-50m 50m-Inf Overall 0-30m 30-50m 50m-Inf

LEVEL 1

PointPillars(Lang et al. 2019) 56.62 81.01 51.75 27.94 75.57 92.10 74.06 55.47
MVF(Zhou et al. 2020) 62.93 86.30 60.02 36.02 80.40 93.59 79.21 63.09

PV-RCNN (Shi et al. 2020) 70.30 91.92 69.21 42.17 82.96 97.35 82.99 64.97
SVGA-Net(ours) 73.45 92.53 69.44 42.08 83.52 97.60 83.14 64.25

LEVEL 2 PV-RCNN (Shi et al. 2020) 65.36 91.58 65.13 36.46 77.45 94.64 80.39 55.39
SVGA-Net(ours) 66.65 91.65 66.78 39.29 80.97 95.54 81.58 60.18

Table 2: Performance comparison on the Waymo Open Dataset with 202 validation sequences for the vehicle detection.

Method Modality APcar(%)

Easy Moderate Hard
MV3D R+L 71.29 62.68 56.56

F-Pointnet R+L 83.76 70.92 63.65
AVOD-FPN R+L 84.41 74.44 68.65
F-ConvNet R+L 89.02 78.80 77.09
Voxelnet L 81.97 65.46 62.85
SECOND L 87.43 76.48 69.10

PointRCNN L 88.88 78.63 77.38
Fast PointRCNN L 89.12 79.00 77.48

STD L 89.70 79.80 79.30
SA-SSD L 90.15 79.91 78.78
3DSSD L 89.71 79.45 78.67

Point-GNN L 87.89 78.34 77.38
SVGA-Net(ours) L 90.59 80.23 79.15

Table 3: Performance comparison on KITTI 3D object de-
tection val set for car class.

sults on the large-scale Waymo Open dataset further demon-
strate the generalization ability of our proposed network.

Qualitative Results
As shown in Figure 4, we illustrate some qualitative predict-
ed bounding results of our proposed SVGA-Net on the test
split on KITTI dataset. For better visualization, we project

Method Modality APcar(%)

Easy Moderate Hard
MV3D R+L 86.55 78.10 76.67

F-Pointnet R+L 88.16 84.02 76.44
F-ConvNet R+L 90.23 88.79 86.84
Voxelnet L 89.60 84.81 78.57
SECOND L 89.96 87.07 79.66

Fast PointRCNN L 90.12 88.10 86.24
STD L 90.50 88.50 88.10

Point-GNN L 89.82 88.31 87.16
SVGA-Net(ours) L 90.27 89.16 88.11

Table 4: Performance comparison on KITTI bird’s eye view
detection val set for car class.

the 3D bounding boxes into RGB images and BEV in point
clouds. From the figures we could see that our proposed net-
work could estimate accurate 3D bounding boxes in differ-
ent scenes. Surprisingly, SVGA-Net can still produce accu-
rate 3D bounding boxes even under poor lighting conditions
and severe occlusion.

Ablation Studies
In this section, we conduct series of extensive ablation stud-
ies on the validation split of KITTI to illustrate the role of
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Figure 4: Qualitative 3D detection results of SVGA-Net on the KITTI test set. The detected objects are shown with green 3D
bounding boxes and the relative labels. The upper row in each image is the 3D object detection result projected onto the RGB
image and the bottom is the result in the corresponding point clouds.

each module in improving the final result and our parameter
selection. All ablation studies are implemented on the car
class which contains the largest amount of training exam-
ples. The evaluation metric is the average precision (AP %)
on the val set.

Effect of different design choice. In the local point at-
tention layer, we stack several local complete layers to ex-
tract aggregated features. In order to show the impact of the
number of the point attention layer, we train our network
with n varying from 1 to 4. As shown in Table 5, when
the local feature information is transmitted on the 1st to 3rd
layers, the detection accuracy is continuously improved be-
cause the features are continuously aggregated to the objec-
t itself. When n increases to 4, the detection accuracy de-
creases slightly, and we believe that the network should be
over-learning.

Furthermore, we study the importance of the global at-
tention layer in improving the detection accuracy. As shown
in Table 5, the AP values on both detection tasks are great-
ly reduced when we remove this module from the network,
which proves the importance of this design in providing
global feature information for each point.

In the middle three rows of Table 5, we aim to explore
the effect of different design in the spare-to-dense regression
module. SR is to remove the concatenation of b1, b2 with
the upsampled b2, b3 and DR is to remove the addition of bi
with Fi. Results show that only the design of sparse-to-dense
regression ranks the first in improving detection accuracy.

When constructing the KNN graph, the number ”3” in
our implementation is chosen after series of experiments on
val set, as shown in the last five rows in Table 5. When
K increases from 1 to 3, the AP value has a significant in-
crease, but when it continues to increase, the AP value does
decrease.

Running time. Our network is written in Python and im-
plemented in Pytorch for GPU computation. The average in-
ference time for one sample is 62 ms, including 14.5%(9 ms)
for data reading and pre-processing, 66.1%(41 ms) for local
and global features aggregation and 19.4%(12 ms) for final
boxes detection.

3DAPcar(%)

Easy Moderate Hard

n

1 86.77 75.37 74.19
2 88.86 78.81 78.03
3 90.59 80.23 79.15
4 89.62 79.26 77.58

w/o. o. 88.42 78.11 76.54
w. 90.59 80.23 79.15
SR 87.53 77.81 76.22
DR 88.39 78.44 76.56

SDR 90.59 80.23 79.15

k

1 76.37 69.15 68.47
2 84.53 75.61 71.92
3 90.59 80.23 79.15
4 88.91 79.22 77.86
5 86.58 76.82 75.43

Table 5: Performance comparison with different design
choice. n is the number of point-attention layers. ’w/o.’ de-
notes whether to keep the global attention layer. SDR de-
notes the sparse-to-dense regression.

Conclusions

In this paper, we propose a novel sparse voxel-graph atten-
tion network(SVGA-Net) for 3D Object Detection from raw
Point Clouds. We introduce graph representation to process
point clouds. By constructing a local complete graph in the
divided spherical voxel space, we can get a better local rep-
resentation of the point feature, and the information between
the point and its neighborhood can be fused. By construct-
ing a global graph, we can better supervise and learn the
features of points. In addition, the sparse-to-dense regres-
sion module can also fuse feature maps at different scales.
Experiments have demonstrated the efficiency of the design
choice in our network. Future work will extend SVGA-Net
to combine RGB images to further improve detection accu-
racy.
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