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Abstract

Video object detection has been an important yet challeng-
ing topic in computer vision. Traditional methods mainly fo-
cus on designing the image-level or box-level feature propa-
gation strategies to exploit temporal information. This paper
argues that with a more effective and efficient feature propa-
gation framework, video object detectors can gain improve-
ment in terms of both accuracy and speed. For this purpose,
this paper studies object-level feature propagation, and pro-
poses an object query propagation (QueryProp) framework
for high-performance video object detection. The proposed
QueryProp contains two propagation strategies: 1) query
propagation is performed from sparse key frames to dense
non-key frames to reduce the redundant computation on non-
key frames; 2) query propagation is performed from previous
key frames to the current key frame to improve feature repre-
sentation by temporal context modeling. To further facilitate
query propagation, an adaptive propagation gate is designed
to achieve flexible key frame selection. We conduct exten-
sive experiments on the ImageNet VID dataset. QueryProp
achieves comparable accuracy with state-of-the-art methods
and strikes a decent accuracy/speed trade-off.

Introduction
Object detection is one of the most fundamental and chal-
lenging problems in computer vision. Over the past decades,
remarkable breakthroughs have been made in object detec-
tion, with the advances of well-designed modules, e.g., an-
chor generator and NMS (Ren et al. 2015; Liu et al. 2016;
Tian et al. 2019). Recently, DETR (Carion et al. 2020)
and follow-up works (Zhu et al. 2020; Sun et al. 2021) re-
formulate object detection as a query-based set prediction
problem to simplify the detection pipeline. These query-
based detectors no longer require heuristic components and
have achieved comparable performance with state-of-the-art
methods.

Although promising results can be achieved on static im-
ages, it might not be suitable to directly extend image detec-
tors to videos. The reasons mainly lie in two aspects. First,
object appearances are usually deteriorated by motion or se-
vere occlusion in videos, which bring extreme challenges to
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Figure 1: mAP vs. FPS on ImageNet VID dataset. The
hollow/solid symbol represents online/offline algorithms.
Methods include FGFA (Zhu et al. 2017a), MEGA (Chen
et al. 2020), RDN (Deng et al. 2019b), DFF (Zhu et al.
2017b), DorT (Luo et al. 2019), LSTS (Jiang et al.
2020), Faster R-CNN (Ren et al. 2015) and our pro-
posed QueryProp. QueryProp outperforms all previous on-
line video detectors and strikes a decent accuracy/speed
trade-off. All methods are tested on a TITAN RTX GPU.

image detectors. Second, existing image detectors generally
depend on cumbersome stacked modules to generate accu-
rate predictions. It might be inefficient to directly perform
frame-by-frame prediction on videos using image detectors,
and the computation burden also restricts the applications of
detectors in real-world systems (Huang et al. 2017).

To address the above challenges, the core idea is to ex-
ploit temporal context in videos to boost detection perfor-
mance. Figure 1 visualizes recent progress of video detec-
tors on ImageNet VID dataset (Deng et al. 2009). As is il-
lustrated, most state-of-the-art detectors gain performance
improvement in terms of either accuracy or speed. That is,
detection accuracy is usually promoted at the expense of
speed, and vice versa. Specifically, to obtain more accurate
predictions of deteriorated frames, some methods (Zhu et al.
2017a; Deng et al. 2019b; Chen et al. 2020) adopt dense fea-
ture aggregation strategy for feature representation. In these
methods, each frame is enhanced in an undifferentiated way
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by aggregating features from its multiple adjacent frames,
and additionally brings excessive computation cost com-
pared with image detectors (e.g., Faster R-CNN (Ren et al.
2015)). To speed up video detectors, some methods (Zhu
et al. 2017b, 2018; Jiang et al. 2020) are designed to exploit
temporal continuity among video frames for acceleration. In
these methods, features of non-key frames are computed by
only propagating features from sparse key frames, therefore
avoid repetitive dense feature extraction operations on each
frame. However, it is noticeable that additional feature align-
ment modules are necessary for image-level feature propa-
gation due to the frame variations. Besides, the prediction
error of spatial offsets between features of adjacent frames
may cause representation degradation, and then leads to an
accuracy decrease. By far, it remains a challenge to obtain
an ideal accuracy/speed trade-off for video detectors.

Inspired by recent success of query-based image detec-
tors (Carion et al. 2020; Zhu et al. 2020; Sun et al. 2021), this
paper proposes an object query propagation (QueryProp)
framework to achieve efficient and effective video object de-
tection. In image detectors, object queries encode instance
information of each frame. Each object query is randomly
initialized and a multi-stage structure is then constructed to
iteratively update object features. In videos, the same ob-
jects usually appear with high probability at nearby posi-
tions between consecutive frames, so that the redundant it-
eration process can be further simplified based on video con-
tinuity. To achieve more efficient detection, our proposed
QueryProp propagates object queries from key frames to
nearby non-key frames for query initialization instead of
random initialization. Therefore, accurate detection results
can be obtained with much fewer refine modules on non-key
frames. In the meanwhile, QueryProp propagates the object
queries in the previous key frames to the current key frame,
which explores temporal relations between object queries to
further enhance feature representation. Different from tra-
ditional methods that utilized intuitive key frame selection
strategy, an adaptive propagation gate (APG) is proposed
to flexibly select key frames. The APG module estimates
the reliability of the query propagation results, and auto-
matically determines whether to select the current frame
as a key frame. In our proposed method, detection loss is
adopted to measure query propagation quality and generate
pseudo-labels to train the APG module in a self-supervised
manner. Compared with traditional methods, the proposed
QueryProp can perform effective feature propagation using
a more lightweight module.

The main contributions of this paper lie in three aspects:

• This paper is the first to propose a query-based propaga-
tion (QueryProp) method for video object detection.

• Two effective feature propagation strategies are proposed
to simultaneously simplify redundant refine the structure
and enhance feature representations, together with the
proposed APG module for adaptive key frame selection.

• Experiments on the ImageNet VID demonstrate that
QueryProp achieves comparable accuracy with the state-
of-the-art video object detectors with a much faster
speed.

Related Work
Image Object Detection
Object detection has achieved remarkable results on static
images. Mainstream detectors are anchor-based methods,
which include one-stage and two-stage detectors. One-stage
detectors directly predict the offsets of the preset anchors to
get the final results. Related works include YOLO (Redmon
et al. 2016), SSD (Liu et al. 2016), RetinaNet (Lin et al.
2017), etc. Two-stage detectors first regress the anchors to
generate the candidate regions, and then classify and regress
the RoI features for final prediction. Related works include
R-CNN (Girshick et al. 2014), Fast R-CNN (Girshick 2015),
and Faster R-CNN (Ren et al. 2015), etc. FCOS (Tian et al.
2019) and CenterNet (Duan et al. 2019) establish anchor-
free detectors with competitive detection performance. Re-
cently, DETR (Carion et al. 2020) reformulates object de-
tection as a query-based set prediction problem and re-
ceives lots of attention. Deformable DETR (Zhu et al. 2020)
introduces deformable attention module to DETR for ef-
ficiency and fast-convergence. Sparse R-CNN (Sun et al.
2021) builds a query-based detector on top of R-CNN archi-
tecture with learnable proposal boxes and proposal features.

Video Object Detection
Videos contain rich yet redundant temporal information,
which makes video object detection and image object detec-
tion quite different. Video object detection leverages tem-
poral information to boost detectors generally in two direc-
tions, efficiency, and accuracy.

To improve the efficiency of video object detection, the
main idea is to propagate image-level features across frames
to avoid dense feature extraction. DFF (Zhu et al. 2017b)
runs the expensive feature extractor on sparse key frames.
The features of key frames are warped to non-key frames
with optical flow (Dosovitskiy et al. 2015), thus reducing
computation cost and accelerating the whole framework. Im-
pression network (Hetang et al. 2017) introduces sparse re-
cursive feature aggregation to DFF for improving perfor-
mance. MMNet (Wang, Lu, and Deng 2019) utilizes mo-
tion vector embedded in the video compression format to re-
place optical flow. LSTS (Jiang et al. 2020) and PSLA (Guo
et al. 2019) propose well-designed sampling templates to
achieve feature warping. THP (Zhu et al. 2018) designs
spatially adaptive feature updating and key-frame selection
mechanisms to improve accuracy as well as speed. However,
the per-pixel motion estimation process is error-prone and
slow, which is the bottleneck for higher performance. ST-
Lattice (Chen et al. 2018) propagates bounding boxes on key
frames to non-key frames according to motion and scales.
DorT (Luo et al. 2019) uses a tracker to propagate bounding
boxes across frames.

To improve the detection accuracy in degenerated frames,
some post-processing methods have emerged in the early
stage, which are usually achieved by bounding box asso-
ciation investigation, e.g., Seq-NMS (Han et al. 2016), T-
CNN (Kang et al. 2017), (Kang et al. 2016), D&T (Fe-
ichtenhofer, Pinz, and Zisserman 2017). The recent ma-
jor solution is to aggregate features from nearby frames
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Figure 2: Overview of QueryProp. Given a video, at time step k, frame Ik is fed to feature extractor to obtain features xk. Then,
the previous key frame features xk0

and xk are fed to the adaptive propagation gate (APG), which evaluates whether to set Ik
as a new key frame. The decision is yes, and Ik is set as a key frame. xk is fed to the key detection head (five dynamic heads
and one temporal query enhance head) to generate detection results. At time step k+1, the previous key frame features xk and
xk+1 are fed to APG. The decision is no, xk+1 is fed to the non-key detection head to quickly get detection results.

to leverage spatial-temporal coherence for feature enhance-
ment. FGFA (Zhu et al. 2017a) applies optical flow to
align features and aggregates the aligned features for fea-
ture enhancement. Based on FGFA, MANet (Wang et al.
2018) adds an instance-level feature alignment module be-
sides the pixel-level feature alignment. STSN (Bertasius,
Torresani, and Shi 2018), TCENet (He et al. 2020) and
TASFA (He et al. 2022) apply deformable convolution (Dai
et al. 2017) to perform frame-by-frame spatial alignment. In-
stead of adopting a dense aggregation strategy, TCENet and
TASFA propose stride predictors to adaptively select valu-
able frames to aggregate. STMN (Xiao and Jae Lee 2018)
devises a MatchTrans module to achieve feature alignment
and aggregates features with well-designed recurrent units.
SELSA (Wu et al. 2019) and LLRTR (Shvets, Liu, and Berg
2019) use similarity measures to aggregate proposal fea-
tures to enhance object features. RDN (Deng et al. 2019b),
OGEMN (Deng et al. 2019a), and MEGA (Chen et al. 2020)
utilize relation network (Hu et al. 2018) to model object re-
lation in video to augment object features. HVR-Net (Han
et al. 2020) uses inter-video and intra-video proposal rela-
tion to improve object feature quality. However, the above
methods require multi-frame aggregation and run at a slow
speed, which is unable to meet the requirements in real-time
systems.

Method
In this section, we first briefly introduce the related query-
based image detector. Then we describe the overall architec-
ture of QueryProp, which consists of 1) object query propa-
gation for computation acceleration, 2) object query propa-
gation for query enhancement, and 3) adaptive propagation
gate for flexible key frame selection.

Query-based Image Detector
QueryProp is built on a multi-stage query-based image de-
tector. Considering the performance and memory consump-
tion of the detector, we build our method based on Sparse R-
CNN (Sun et al. 2021), which has six dynamic heads by de-
fault. Sparse R-CNN has N learnable boxes bk,0 and queries
qk,0, which are iteratively updated to fuse object features.
At stage n, the dynamic head is shown in Figure 2 and the
pipeline can be formulated as follows:

xroi
k,n = RoIAlign(xk, bk,n−1),

q∗
k,n−1 = SelfAtt(qk,n−1),

qk,n = DynConv(xroi
k,n, q

∗
k,n−1) + q∗

k,n−1,

bk,n = Reg(qk,n),

(1)

where xk is feature map, bk,n−1 and qk,n−1 are boxes
and queries from the previous stage. Dynamic head utilizes
RoIAlign (He et al. 2017) to extract RoI features xroi

k,n, and
qk,n−1 is processed by a self-attention module to generate
proposal features q∗

k,n−1. Then, a well-designed dynamic
convolution module takes q∗

k,n−1 and xroi
k,n as inputs to gen-

erate qk,n. Finally, qk,n is fed into the box regression branch
for box prediction bk,n.

QueryProp Architecture
We propose QueryProp, an object query propagation frame-
work for high-performance video object detection. Our goal
is to reduce the overall computational cost of video detec-
tion while maintaining competitive accuracy in degenerated
frames. The main idea of QueryProp is to leverage the strong
continuity among consecutive frames to carry out efficient
cross-frame object query propagation. Figure 2 illustrates
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prediction.

the overall architecture of QueryProp. Given a video, at each
time step k, frame Ik is fed to feature extractor to gen-
erate features xk. By considering the consistency between
the previous key frame features xk0 and xk, APG evalu-
ates whether to set Ik as a new key frame. The decision
is yes, and Ik is set as a key frame. xk is fed to the key
detection head, which consists of five dynamic heads and
one temporal query enhance head (TQEHead). In the TQE-
Head, queries of current frame aggregate queries from previ-
ous key frames to improve the quality of query features. The
enhanced queries are used to generate final detection results
and propagated to subsequent non-key frames. At time step
k+1, the previous key frame features xk and xk+1 are fed to
APG. The decision is no, and xk+1 is fed to the lightweight
non-key detection head. Queries and boxes from the previ-
ous key frame are utilized to initialize the current detection
head. And detection results can be quickly generated with-
out an accuracy decrease. Hence, by flexibly selecting key
frames and efficiently propagating object queries between
continuous frames, QueryProp can significantly reduce the
overall computation cost and maintain competitive accuracy.

Propagation for Computation Acceleration
To speed up video object detectors, the main idea of previous
methods is to exploit temporal context among consecutive
frames to reduce redundant computations. Specifically, the
features on the dense non-key frames are obtained by propa-
gating features from sparse key frames, thus avoiding feature
extraction on most frames. Due to the feature inconsistency
between the image-level features of adjacent video frames,
these image-level feature propagation methods require addi-
tional models for per-pixel feature alignment. For example,
some methods (Zhu et al. 2017b, 2018) utilize motion flow
based feature warping, and others (Guo et al. 2019; Jiang
et al. 2020) utilize learnable feature sampling. However, the
feature alignment models that resolve the inconsistency be-
tween the features of adjacent frames are often insufficient,
which leads to an accuracy decrease. We design an efficient
cross-frame object query propagation method to accelerate
computation. Specifically, according to the strong continu-
ity among consecutive frames, the detection head of the cur-
rent frame can be initialized with the object queries from
the previous frame. Benefiting from the reasonable initial-
ization, the detection results can be quickly obtained with
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Figure 4: Illustration of TQEHead in the key detection head.
Queries qk,5 from 5-th stage are first updated to gener-
ate qk,6. Then qk,6 separately aggregates long-term mem-
ory and short-term memory for feature enhancement. qk,6 is
sorted according to the confidence score to get qk, which is
used to update the memory feature.

a more lightweight structure instead of the commonly em-
ployed 6-stage structure.

If current frame It is a non-key frame, features xt, as well
as the queries qe

k and boxes bk of the previous key frame,
are input into the non-key detection head to quickly obtain
the detection results. The detection pipeline is illustrated in
Figure 3, and can be formulated as follows:

b′k = BoxRefiner(xt, bk, q
e
k),

xroi
k→t = RoIAlign(xt, b

′
k),

qe∗
k = SelfAtt(qe

k),

qt = DynConv(xroi
k→t, q

e∗
k ) + qe∗

k ,

ct, bt = Cls&Reg(qt).

(2)

The boxes bk are first refined with a box refiner to gener-
ate more accurate object regions, and the corrected boxes
b′k are used to generate RoI features xroi

k→t. Each query in
qe
k ∈ RN×C interacts with the corresponding RoI feature in

xroi
k→t ∈ RN×S×S×C to filter out ineffective bins in a RoI

and get the final object feature qt.
Feature interaction is implemented by the dynamic con-

volution (Sun et al. 2021). Dynamic convolution consists of
1× 1 convolutions, and qe∗

k generates the convolutional ker-
nel parameters. Particularly, the feature interaction can be
seen as a spatial attention mechanism to focus on ‘where’
is an important part in a RoI of size S × S. qe∗

k generates
the attention weights to indicate the most relative bins in a
RoI for final object location and classification. There are two
ways to implement the box refiner. The first one refines the
box through a dynamic convolution, and the second refines
the box through the detection heads between Ik and It. We
discuss these two implementations in the ablation study. The
whole pipeline does not require other models except the de-
tection modules.

Propagation for Query Enhancement
To improve detection accuracy of deteriorated frames, pre-
vious methods (Zhu et al. 2017a; Deng et al. 2019b) usually
adopt dense feature aggregation on all frames to improve
feature quality, which is quite slow. Due to the similar ap-
pearance among adjacent frames, dense aggregation is sub-
optimal. It is more efficient to aggregate features on sparse
key frames for feature enhancement and propagate the en-
hanced features to dense non-key frames.
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Therefore, we design object query propagation between
previous key frames and current key frame for query en-
hancement. As mentioned, if current frame is set as a new
key frame, we denote its features by xk and feed it to the
key detection head. The randomly initialized queries and
boxes, as well as xk, are input into five dynamic heads to
iteratively update object features (as shown in Figure 2). A
temporal query enhance head (TQEHead) then aggregates
queries of previous key frames to model temporal relation
for query feature enhancement. The details of the TQEHead
are illustrated in Figure 4. qk,5 from the 5-th dynamic head
is first updated to generate queries qk,6, which then aggre-
gates with memory features for query feature enhancement.
To enhance the quality of object features, we choose relation
module (Hu et al. 2018) to mine relations between object
queries, which characterizes the interaction between their
appearance feature and geometry. However, two objects that
have long-term temporal distance may not have effective ge-
ometry relations. Therefore, we divide the queries in mem-
ory into two categories according to the distance of temporal
dimension, long-term memory and short-term memory. The
query enhancement process can be expressed as follows:

ql
k = LongRelation(qk,6, {Lq}),

Sl
q = LongRelation(Sq, {Lq}),

qe
k = ShortRelation(ql

k, {Sl
q,Sb}),

ck, bk = Cls&Reg(qe
k),

qk = Sort(qk,6, ck),

Update(Lq,Sq,Sb, qk, bk).

(3)

All queries and boxes in M adjacent key frames are grouped
together to form the short-term memory {Sq,Sb}. Top l
queries with their scores in each frame of remaining key
frames are grouped together, and we randomly select T
queries to form the long-term memory Lq . We first use Lq

to enhance both qk,6 and Sq . Then, the enhanced short-term
memory {Sl

q,Sb} are used to enhance ql
k to generate qe

k,
which is used to generate final detection results and prop-
agated to the next frame. Finally, qk,6 is sorted according
to confidence score to get qk, which is used to update the
memory.

Adaptive Propagation Gate
An important step in our framework is to decide whether
the current frame should be set as a new key frame. Some
methods (Zhu et al. 2017b; Jiang et al. 2020) adopt fixed-
rate key frame schedulers regardless of the irregular change
of object over time. Others (Zhu et al. 2018) adopt the simple
threshold way based on motion flow to select key frames,
which cannot be optimized together with the detector.

We propose an adaptive propagation gate (APG) with a
learnable gating unit to flexibly select key frames. When the
query propagation is unreliable and hard to generate accu-
rate results, APG sets current frame as a new key frame. The
gating unit g(xk,xt) → {0, 1} receives current frame fea-
ture xt and the previous key frame feature xk as inputs. The
gate first generates residual feature rt, which represents the

difference between the current frame and the previous key
frame features xt − xk. Then rt is fed to a 3 × 3 convolu-
tion, and 4 × 4 adaptive average pooling is performed. The
flattened resulting features are linearly projected and fed to a
sigmoid function. The gate is lightweight and only requires
cheap computation for per-frame evaluation.

During training, the parameters of the gate are learned in a
self-supervised way by minimizing the binary cross-entropy
between the gating outputs and pseudo labels ygt . For each
frame Iz0 , we randomly select m adjacent frames as key
frames, denoted as {Iz1 , · · · , Izm}. The gate loss is:

Lgate =
1

m

m∑
t=1

BCE(g(xzt ,xz0), y
g
t ). (4)

The queries from key frame Izt are propagated to non-key
frame Iz0 to generate detection results, and the classifica-
tion loss is denoted as Lcls(xzt ,xz0 , cz0), where cz0 is the
groundtruth of frame Iz0 . We use the classification loss to
generate the pseudo labels:

ygt =

{
1 Lcls(xzt ,xz0 , cz0) > ϵz0 ,

0 else,
(5)

where ϵz0 determines the maximum loss required to set a
new key frame. A label 1 indicates the current key frame can
not provide enough information for the non-key frame, and
a new key frame needs to be set. A label 0 indicates the non-
key detection head can generate a reliable prediction with
the current key frame. We define ϵz0 as:

ϵz0 = βmin{Lcls(xzt ,xz0 , cz0)}mt=1, (6)

where β is a hyper-parameter that controls the trade-off be-
tween accuracy and computation costs. The smaller the β is,
the higher the frequency of key frame selection is.

Experiments
Dataset and Evaluation
We evaluate our model on the ImageNet VID (Deng et al.
2009), which consists of 3862 training videos and 555 vali-
dation videos from 30 object categories. All videos are fully
annotated with the object bounding box, object category, and
tracking IDs. We report mean Average Precision (mAP) on
the validation set as the evaluation metric.

Following the setting in (Zhu et al. 2017a), both ImageNet
VID and ImageNet DET (Deng et al. 2009) are utilized to
train our model. Since the 30 object categories in ImageNet
VID are a subset of 200 categories in ImageNet DET, the
images from overlapped 30 categories in ImageNet DET are
adopted for training.

Implementation Details
Training setup. The proposed framework is implemented
with PyTorch-1.7. QueryProp utilizes AdamW (Loshchilov
and Hutter 2018) optimizer with weight decay 0.0001. The
whole framework is trained with 8 GPUs and each GPU
holds one mini-batch. The framework is trained in two
stages. We first train the backbone and the detection heads
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Methods Online Backbone Base Detector mAP(%) FPS
FGFA (Zhu et al. 2017a) ✗ ResNet-101 R-FCN 76.3 7.1
MANet (Wang et al. 2018) ✗ ResNet-101 R-FCN 78.1 8.4
STSN (Bertasius, Torresani, and Shi 2018) ✗ ResNet-101+DCN R-FCN 78.9 -
ST-Lattice (Chen et al. 2018) ✗ ResNet-101 Faster R-CNN 79.6 20.0 (X)
SELSA (Wu et al. 2019) ✗ ResNet-101 Faster R-CNN 80.2 -
TCENet (He et al. 2020) ✗ ResNet-101 R-FCN 80.3 11.0
LLRTR (Shvets, Liu, and Berg 2019) ✗ ResNet-101 Faster R-CNN 80.6 -
RDN (Deng et al. 2019b) ✗ ResNet-101 Faster R-CNN 81.8 7.5
MEGA (Chen et al. 2020) ✗ ResNet-101 Faster R-CNN 82.9 5.5
Faster R-CNN (Ren et al. 2015) ✓ ResNet-101 Faster R-CNN 77.0 19.0
Sparse R-CNN (Sun et al. 2021) ✓ ResNet-101 Sparse R-CNN 77.3 18.0
DFF (Zhu et al. 2017b) ✓ ResNet-101 R-FCN 73.1 23.0
THP (Zhu et al. 2018) ✓ ResNet-101+DCN R-FCN 78.6 13.0 (X)
PSLA (Guo et al. 2019) ✓ ResNet-101 R-FCN 77.1 30.8 (V)
OGEMN (Deng et al. 2019a) ✓ ResNet-101 R-FCN 79.3 8.9 (X)
LSTS (Jiang et al. 2020) ✓ ResNet-101 R-FCN 77.2 23.0 (V)
QueryProp ✓ ResNet-101 Sparse R-CNN 82.3 32.5 / 26.8 (X)
QueryProp ✓ ResNet-50 Sparse R-CNN 80.3 45.6 / 36.8 (X)

Table 1: Comparison to the state-of-the-art methods on the ImageNet VID. Without special marking, the runtime is tested on a
TITAN RTX GPU. X means TITAN X, and V means TITAN V. DCN represents deformable convolution (Dai et al. 2017).

on both ImageNet DET and VID. Given a key frame Ik
and a non-key frame Ii, we randomly sample two frames
from {It}k−τ

t=k−3τ for short-term memory generation, and
two frames from {It}kt=0 for long-term memory generation.
If they are sampled from DET, all frames within the same
mini-batch are the same since DET only has images. We use
the parameters pre-trained on COCO (Lin et al. 2014) for
model initialization. The training iteration is set to 90k and
the initial learning rate is set to 2.5× 10−5, divided by 10 at
iteration 65k and 80k, respectively. After finishing the first
training stage, we start training the APG on ImageNet VID.
For each non-key frame, we randomly select m (10 by de-
fault) adjacent frames as key frames to form a training batch.
The gate is optimized in a self-supervised manner. The ini-
tial learning rate is set to 10−4 and the total training iteration
is 16k, and the learning rate is dropped after iteration 8k and
12k. The number of queries and boxes in the detection heads
is 100 by default.

Inference. Given a video frame It, the short-memory
saves the queries and boxes from the previous M (10 by
default) key frames. The long-memory saves top l (50 by
default) queries of each remaining key frame and T (500 by
default) queries are randomly selected for feature enhance-
ment. The memories are updated after the detection of each
key frame is completed.

Main Results
Table 1 shows the comparison between QueryProp and other
state-of-the-art methods. Online setting means that the cur-
rent frame can only access the information from the previous
frames during inference. QueryProp adopts an online set-
ting, which is more suitable for practical application. Ac-
cording to the online or offline setting is used in the algo-
rithm, the existing methods can be divided into two cate-
gories. Methods with offline settings usually have more ex-
cellent accuracy but slow speed, which is hard to meet the

Methods (a) (b) (c) (d) (e)
key→non-key ✓ ✓ ✓

key→key ✓ ✓ ✓
APG ✓

mAP(%) 77.3 77.2 82.3 81.8 82.3
FPS 18 33 16.9 32 32.5

Table 2: Accuracy and runtime of different methods on Im-
ageNet VID validation.

requirements in real-time systems. Current methods using
online settings usually have poor accuracy. Although they
are faster in processing time than offline algorithms, most
methods still cannot achieve real-time detection. Most of
them utilize image-level propagation for computation accel-
eration, e.g., optical flow based feature warping, learnable
feature sampling. Such per-pixel processes are quite slow
and error-prone, which is the bottleneck for higher perfor-
mance. QueryProp propagates sparse object queries across
video frames to achieve online video object detection, and
no additional modules or post-processing are required. As
shown in Table 1, QueryProp achieves the best performance
on both accuracy and speed among all online methods. And
the accuracy of QueryProp is comparable with most offline
methods. When equipped with a lightweight backbone, the
processing speed of QueryProp can achieve 45.6 FPS while
maintaining an accuracy of over 80 mAP.

Ablation Study
Effectiveness of QueryProp. To demonstrate the effect
of the proposed components in QueryProp, we conduct ex-
tensive experiments to study how they contribute to the fi-
nal performance, and the results are summarized in Table 2.
Method (a) is the single-frame baseline Sparse R-CNN using
ResNet-101. Method (b) adds query propagation from key
frame to non-key frames with key frame interval k = 10,
which boosts the speed from 18 FPS to 33 FPS and almost
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Figure 5: Illustration of four different propagation architec-
tures.

Methods baseline (a) (b) (c1) (c2) (d)
mAP(%) 75.3 69.2 72.8 73.8 75.5 75.2

FPS 22 36.4 36.4 44.5 36.4 44.5

Table 3: Accuracy and runtime of different propagation ar-
chitecture in Figure 5. Sparse R-CNN with ResNet-50 is
adopted as baseline.

no decrease in accuracy. Under similar settings, the image-
level propagation methods (Zhu et al. 2017b; Jiang et al.
2020) usually cause a significant accuracy drop. Method
(c) adds query propagation between key frames to (a) with
k = 1, which becomes a dense feature aggregation method.
Each video frame is processed as a key frame, and the accu-
racy is significantly increased while the speed is decreased.
By adding both two propagation to (a) with k = 10, the ac-
curacy and speed can be significantly improved at the same
time. After adding adaptive key frame selection to (d), the
performance of the algorithm is further improved, which can
not only maintain a fast speed, but also achieve compara-
ble accuracy with dense feature aggregation method. The
above results indicate the effectiveness of each component
in QueryProp.

Propagation architecture design. To verify the efficiency
of object query propagation design, we compare four dif-
ferent propagation architectures shown in Figure 5. With-
out special mentioning, we set key frame interval to 10 and
adopt ResNet-50 as the backbone. Method (a) only prop-
agates boxes of key frame Ik to non-key frame It, while
method (b) only propagates query features. Method (c) prop-
agates both the boxes and queries of Ik to It at the same
time. Particularly, (c1) removes the box refiner from the non-
key detection head, and (c2) uses a dynamic convolution as
the box refiner. Method (d) propagates the queries of Ik to It,
and the boxes are obtained from It−1. The non-key detection
heads between Ik and It can be seen as the box refiner of It.
The results are shown in Table 3. We can see query prop-
agation is more important than box propagation, and better
results can be achieved when the two propagation perform
collaboratively. Method (c2) can achieve higher accuracy,
but method (d) achieves a better accuracy/speed trade-off.
We use the propagation structure of (d) by default.

Methods mAP(%) FPS Avg. interval
fixed (k=5) 82.2 28.6 5

fixed (k=10) 81.8 30.8 10
fixed (k=15) 81.5 33.1 15

Adaptive (β = 1.25) 82.5 29.6 6.6
Adaptive (β = 1.5) 82.3 32.5 12.2

Table 4: Comparison of adaptive key frame selection and
fixed selection.

Methods M T mAP(%)
QueryProp

(only short-term memory)
10 0 79.1
20 0 79.4

QueryProp 10 300 80.0
10 600 80.1

Table 5: Ablation study on the short-term and long-term
memory.

Adaptive vs. fixed key frame interval. We conduct an ex-
periment to compare the adaptive key frame selection with
the fixed key frame interval method. Table 4 shows the com-
parison results. When using a fixed key frame interval set-
ting, accuracy is negatively correlated with interval while
speed is positively correlated with interval. When using our
adaptive selection setting, a better accuracy/speed trade-off
is achieved. β is a hyper-parameter in adaptive propaga-
tion gate, which controls the frequency of key frame selec-
tion. The larger β is, the smaller the average interval is. We
choose 1.5 as the default value of β.

Ablation study on the memory. Table 5 shows the results
of ablation study on short-term and long-term memory. The
experiment is based on ResNet-50 and key frame interval
of 10. To study the effect of long-term memory, we set the
long-term memory size L to 0 to remove its influence. As
shown in the table, a significant drop in accuracy is obtained
by removing the long-term memory. Gap still exists after
increasing the short-memory size. The above results show
the importance of long-term memory aggregation.

Conclusion
This paper proposes a query-based high-performance video
object detection framework, QueryProp, driven by efficient
object query propagation between consecutive video frames.
Specifically, QueryProp develops two propagation strate-
gies to reduce redundant computation and improve the qual-
ity of object features. First, object queries from the sparse
key frames are propagated to the dense non-key frames,
which reduces the expensive computation on most frames.
Second, object queries from the previous key frames are
propagated to the current key frame, which exploits tem-
poral information to improve the quality of query features.
Besides, to enable efficient query propagation, QueryProp
adopts an adaptive propagation gate to flexibly select key
frames. Comprehensive experiments prove the effectiveness
of our method. This novel solution enables such a new
framework to achieve the best performance among all on-
line video object detection approaches and strikes a decent
accuracy/speed trade-off.
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