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Abstract

Assessing the performance of Generative Adversarial Net-
works (GANs) has been an important topic due to its practical
significance. Although several evaluation metrics have been
proposed, they generally assess the quality of the whole gen-
erated image distribution. For Reference-guided Image Syn-
thesis (RIS) tasks, i.e., rendering a source image in the style
of another reference image, where assessing the quality of a
single generated image is crucial, these metrics are not ap-
plicable. In this paper, we propose a general learning-based
framework, Reference-guided Image Synthesis Assessment
(RISA) to quantitatively evaluate the quality of a single gen-
erated image. Notably, the training of RISA does not require
human annotations. In specific, the training data for RISA are
acquired by the intermediate models from the training proce-
dure in RIS, and weakly annotated by the number of models’
iterations, based on the positive correlation between image
quality and iterations. As this annotation is too coarse as a
supervision signal, we introduce two techniques: 1) a pixel-
wise interpolation scheme to refine the coarse labels, and 2)
multiple binary classifiers to replace a naı̈ve regressor. In ad-
dition, an unsupervised contrastive loss is introduced to effec-
tively capture the style similarity between a generated image
and its reference image. Empirical results on various datasets
demonstrate that RISA is highly consistent with human pref-
erence and transfers well across models.

Introduction
Reference-guided Image Synthesis (RIS) aims to utilize
Generative Adversarial Networks (GANs) (Goodfellow
et al. 2014) to modify the style of a source image to that of
a reference image. As described in recent image translation
works (Lee et al. 2018; Huang et al. 2018; Choi et al. 2020),
style refers to the unique appearance of a single image, while
the underlying spatial structure is defined as content. Style
also coincides with the definition of texture in some other
works (Park et al. 2020). Nowadays, generative models are
widely deployed to provide various RIS services, such as
modifying a user’s facial features to that of a super star, or
changing a building’s original appearance to another.

*Corresponding author.
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Intelligence (www.aaai.org). All rights reserved.

To enhance user experience in RIS applications, it is of
great practical significance to quantitatively evaluate the im-
ages generated by GANs. Although several sample-based
GAN evaluation metrics have been proposed (Xu et al.
2018), e.g., Kernel MMD (Gretton et al. 2012), Inception
Score (IS) (Salimans et al. 2016), Mode Score (MS) (Che
et al. 2016), Wasserstein distance and Fréchet Inception Dis-
tance (FID) (Heusel et al. 2017), they mainly focus on as-
sessing the whole generated image distribution. In specific,
the discrepancy between feature distributions of real and
generated images is computed as a quality measure.

However, these metrics are not applicable to evaluate a
single generated image. In interactive RIS applications, a
user may submit one source image (or a pair of source im-
age and reference image) at a time and expects to obtain a
satisfying generated image. Unfortunately, due to the notori-
ously unstable training procedure of GANs, it is challenging
to guarantee that each generated image is synthesized with
high quality, especially when the source image and the ref-
erence image have a large style discrepancy.

Hence, it is important to design an assessment metric for
a single image in RIS to improve user experience. Once
the quality of each generated image could be effectively
assessed, we could simultaneously deploy several different
models to generate images for a task and automatically ren-
der the image of the highest quality score to users. If all these
images are synthesized with low quality, we could refuse to
provide any image. However, recent works on single image
assessment are either designed to report the average quality
score with dozens of images (Shaham, Dekel, and Michaeli
2019) or not able to capture the style similarity between a
generated image and its reference (Bosse et al. 2016; Talebi
and Milanfar 2018; Zhang et al. 2018a; Gu et al. 2020).

In this paper, we propose a general learning-based
framework, Reference-guided Image Synthesis Assessment
(RISA), through which the quality of a single generated im-
age can be effectively assessed. As illustrated in Figure 1,
given a generated image and its reference image, RISA first
extracts their style codes via the style encoder. Then the dif-
ference of style codes is calculated as the input of multiple
binary classifiers. Finally, the quality score is obtained by
averaging the predictions of all classifiers.

RISA works in a weakly supervised scheme, i.e., it does
not require any human annotations. As illustrated in Figure
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Figure 1: The pipeline of the proposed Reference-guided Image Synthesis Assessment (RISA). RISA consists of a style encoder
and multiple binary classifiers. Given a generated image Ig and its reference image Ir, RISA first utilizes the style encoder to
extract their style codes zg and zr, respectively. Then the discrepancy (L1 difference) between zg and zr is calculated and fed
into multiple binary classifiers. Finally, quality score is given by averaging the predictions of all classifiers.

2, the generated image quality generally increases with train-
ing iterations during the GAN training procedure. Therefore,
we leverage images generated by intermediate models as the
training data for RISA, and consider the number of model’s
training iterations as a pseudo quality label. Note that a naı̈ve
implementation of this idea leads to degenerated solutions,
due to that the supervision signal is too coarse, as shown
by the results in Table 3. To address this issue, we adopt a
pixel-wise interpolation technique to generate images with
different quality levels instead of directly utilizing images
synthesized by intermediate models during the stable stage.
To further suppress the label noise, we deploy multiple bi-
nary classifiers rather than a naı̈ve regressor.

Moreover, RISA is optimized by a novel objective, con-
taining 1) a weakly supervised loss to fit the quality label
using binary cross entropy, 2) a contrastive loss to effec-
tively capture the style similarity between a generated im-
age and its reference image and 3) a supremum loss to learn
the style consistency between two style-preserving augmen-
tation views of a same real image.

We evaluate the effectiveness of RISA on various datasets.
Compared with existing single image quality assessment
metrics, empirical results demonstrate that our method
achieves higher consistency with human preference, and
transfers well across different models.

Related Work
Reference-guided image synthesis. In the context of neural
style transfer, reference-guided image synthesis aims to ren-
der a source image in the style of a reference image. Gatys,
Ecker, and Bethge (2015, 2016) utilize feature statistics of
deep neural network to capture the style of an image for
the first time. Huang and Belongie (2017) propose AdaIN to
implement arbitrary style transfer. More recently, StarGAN
(Choi et al. 2018) and StarGAN v2 (Choi et al. 2020) learn
mapping between multiple domains with a single generator.
MSGAN (Mao et al. 2019) proposes mode seeking regular-
ization to resolve the mode collapse problem. DRIT (Lee
et al. 2018), MUNIT (Huang et al. 2018) and Swapping Au-
toencoder (Park et al. 2020) focus on the style and content
disentanglement in the feature space.
Image Quality Assessment (IQA). According to the avail-

ability of reference, IQA methods are generally divided into
three categories: 1) Full-Reference IQA (FR-IQA) refers to
estimating the quality of natural images with references.
Widely-used FR-IQA metrics include MS-SSIM (Wang,
Simoncelli, and Bovik 2003), SSIM (Wang et al. 2004),
PSNR (Huynh-Thu and Ghanbari 2008), FSIM (Zhang
et al. 2011) and LPIPS (Zhang et al. 2018a). 2) Reduced-
Reference IQA (RR-IQA) tackles situations where the refer-
ence image is not fully accessible. Representative methods
are local-harmonic based algorithm (Gunawan and Ghan-
bari 2003) and grouplet-based algorithm (Maalouf, Larabi,
and Fernandez-Maloigne 2009). 3) No-Reference IQA (NR-
IQA) assesses distorted image without any reference. Early
works include support vector regression based methods
(Moorthy and Bovik 2010, 2011) and probability based
methods (Mittal, Soundararajan, and Bovik 2012). With the
prevalence of deep learning, massive of network architec-
tures (Bosse et al. 2016; Liu, Van De Weijer, and Bagdanov
2017; Talebi and Milanfar 2018; Lin and Wang 2018; Ren,
Chen, and Wang 2018; Pan et al. 2018; Lim, Kim, and Ra
2018; Zhang et al. 2018b, 2021) are proposed. Unfortu-
nately, most of the existing IQA methods aim to assess the
quality of natural images, while they are limited when deal-
ing with generated images.

Generative adversarial network assessment. Several sam-
ple based methods have been proposed to assess GAN per-
formance (Xu et al. 2018). Among them, Fréchet Inception
Distance (FID) (Heusel et al. 2017) is the most popular met-
ric. There are also other proposed metrics like Kernel MMD
(Gretton et al. 2012), Inception Score (IS) (Salimans et al.
2016), Mode Score (MS) (Che et al. 2016), and Wasserstein
distance. Note that all these methods measure the deviation
between the deep features distribution of generated images
and that of real images. Single Image FID (Shaham, Dekel,
and Michaeli 2019) aims to compare internal patch statistics
difference between generated images and a single reference
image, which also focuses on assessing the quality of a gen-
erated image distribution. To assess a single generated im-
age, GIQA (Gu et al. 2020) is proposed as a NR-IQA metric
from both learning-based and data-based perspectives. How-
ever, it can not evaluate whether the generated image inherits
the style of its reference image.
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Figure 2: Visualizations and Fréchet Inception Distance (FID) variations of StarGAN v2 on CelebA-HQ dataset with the
increase of training iterations. The first column shows the source image and the reference image of a specific image synthesis
task, while remaining columns are images generated by intermediate models at different training iterations. The parentheses
above each generated image gives FID score at corresponding training iterations.

Methodology
In this section, we first introduce the architecture of our
RISA framework. Then we describe how to obtain labeled
training data. Finally, our novel objective is presented.

Learning-based Framework
Given a triplet of {{Ig, Ir}, y}, where Ig and Ir refer to a
generated image and its reference image, respectively, and
y ∈ [0, 1] is the target quality score, RISA aims to assess the
quality of Ig according to Ir as a score s(Ir, Ig) under the
supervision of y. As shown in Figure 1, RISA consists of a
style encoder and multiple binary classifiers.
Style encoder. Following StarGAN v2 (Choi et al. 2020),
we implement a convolutional neural network (CNN) with
six pre-activation residual blocks (He et al. 2016) and one
fully connected layer as our style encoder fE. Given an input
image I , a style encoder learns to extract the style-specific
attributes and represents them as the style code z. In our
pipeline, we first encode Ig and Ir into zg and zr respec-
tively. Then to guarantee the symmetry of RISA, we calcu-
late the absolute value of element-wise subtraction |zg − zr|
as the difference of the style codes zg and zr and use it as
the input of multiple binary classifiers.
Multiple binary classifiers. A straightforward solution to
fit the target quality score y is to adopt a naı̈ve regressor.
Unfortunately, empirical results illustrate that a naı̈ve re-
gressor fails to converge in the setting where training im-
ages are coarsely annotated (Table 3). This is partially due
to the image quality gap within the same iteration. To ad-
dress this issue, inspired by previous works (Liu et al. 2016;
Gu et al. 2020), we train a learning-based network with K
binary classifiers instead of a regressor to learn the gen-
erated image quality score. To be specific, the k-th binary
classifier is trained for classifying whether the image qual-
ity score (from 0 to 1) is greater than a certain threshold
Tk, where Tk = (k − 1)/K, k = 1, 2, · · · ,K. Denote pk as
the predicted probability of k-th binary classifier. The final
predicted score of RISA is the mean of the prediction vec-
tor p(Ir, Ig) = [p1, p2, · · · , pK ] as shown in Figure 1. As a
supervision signal of p(Ir, Ig), the target quality score y is

(a) Ideal case

Quality

Iterations

Interpolation
Ideal sample

Initial
Stage

Stable
Stage

(b) Real cases

Quality

Iterations

Interpolation
Hard sample

Initial
Stage

Stable
Stage

Easy sample

Figure 3: An illustration of the image quality variation dur-
ing the GAN training procedure. (a) shows an ideal case that
the vanilla annotation method works well, while (b) indi-
cates two cases that the vanilla annotation method is not
suitable. Our proposed pixel-wise interpolation (red lines)
can refine the annotations in all these settings.

converted to a binary label vector t(Ir, Ig)=[t1, t2, · · · , tK ]
according to whether it is greater than Tk. For example, if we
set K to 5, then the target quality score y = 0.6 will be con-
verted to [1, 1, 1, 0, 0]. In our experiments, we set K=16.

Data Preparation
Based on the positive correlation between the quality of gen-
erated image and the number of training iterations, we use
images generated by intermediate models from GAN train-
ing procedure to train RISA and consider the number of
training iterations as a weak annotation. To refine this an-
notation, we propose a pixel-wise interpolation technique.
Coarsely labeled synthesized images. Figure 2 illustrates
that the quality of generated images generally evolves with
training iterations, in terms of both the visualization effect
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and FID. Based on this, a vanilla method to obtain training
images for RISA is utilizing intermediate models in GAN
training to synthesize images. Then each generated image
Ivanillag is annotated by the number of its corresponding
model iterations. To meet the scale of RISA’s output, we
normalize the annotations into the range [0, (K − 1)/K] as
yvanilla. Here we suppose even synthesized by a converged
model, the generated image is still not as perfect as a real
image. In our experiments, we only annotate the different
views of a same real image with the highest quality score 1,
where the views are produced via style-preserving augmen-
tation, such as scaling, cropping and clipping.

This vanilla method is reasonable for ideal cases as Fig-
ure 3(a), where the quality of the generated images mono-
tonically increases with iterations. However, in real cases,
it is unsuitable. As illustrated in Figure 3(b), the whole
GAN training process could be separated into two succes-
sive stages, namely the initial stage and the stable stage.
Empirically, we recommend the elbow point of FID curve
as an appropriate stage boundary. During the initial stage,
the quality of generated images all improves rapidly as ideal
cases. However, during the stable stage, the quality of easy
samples becomes stable and invariant after a few iterations,
and the quality of hard samples presents an oscillatory con-
vergence. As a result, the number of model iterations can not
represent the image quality during the stable stage.
Pixel-wise interpolation. To tackle this problem, we intro-
duce a pixel-wise interpolation technique (red lines in Figure
3) as an estimation approach to capture the quality changes
during the stable stage. Given a pair of source image and ref-
erence image, we observe that the image generated by an in-
termediate model with iterations around the stage boundary
have lower quality than the image synthesized by a finally
converged model at the end of the whole GAN training pro-
cedure. For simplicity, {{I lowg , Ir}, ylow} refers to the for-
mer, and {{Ihighg , Ir}, yhigh} denotes the latter. To produce
images with quality between I lowg and Ihighg , we implement
linear interpolation in the pixel space:

I interg = ϵIhighg +(1− ϵ)I lowg , yinter = ϵyhigh+(1− ϵ)ylow,
(1)

where I interg and yinter represent the interpolated image and
its quality score, respectively. ϵ ∈ (0, 1) is an interpolation
factor. By varying ϵ, we could generate a series of images
with different quality between the quality of I lowg and Ihighg .

A natural question to ask is why pixel-wise interpolation
is effective to generate images of different quality. As illus-
trated in Figure 2, during the stable stage, generated images
could all preserve the content of their source images per-
fectly and maintain the style of their reference images gener-
ally. The model mainly focuses on improving the generation
of detailed textures. Pixel-wise interpolation with different ϵ
could estimate these local texture variations while have no
influence on the global structure and texture. Empirical re-
sults in Table 4 also indicate the performance improvements
gained from the pixel-wise interpolation technique.

As a summary, generated images in RISA’s training data
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Figure 4: RISA’s training objective. It contains a weakly su-
pervised loss, a contrastive loss and a supremum loss.

are synthesized as:

Ig =

{
Ivanillag , during the initial stage;

I interg , during the stable stage.
(2)

Training Objective
As illustrated in Figure 4, our training objective includes
three terms: 1) a weakly supervised loss to learn the pseudo
quality score, 2) an unsupervised contrastive loss to effec-
tively capture the style similarity between a generated image
and its reference image, and 3) a supremum loss to learn the
style consistency of two augmented views from a real image.
Weakly supervised loss. We implement the weakly super-
vised loss term utilizing the binary cross entropy:

Lsup(p(Ir, Ig), t(Ir, Ig))

=
∑K

k=1
(tk log pk + (1− tk) log(1− pk)),

(3)

where p(Ir, Ig) and t(Ir, Ig) refer to the prediction vector
and the binary label vector, respectively, and their index is
ignored for simplicity (the same below).
Contrastive loss. We employ the contrastive loss to capture
the style similarity between a generated image and its ref-
erence image, which is essential to the generalization abil-
ity of our framework. In specific, we produce two views
Ĩr1 , Ĩr2 of reference image Ir via data augmentation. To pre-
serve style-relevant information, the augmentation opera-
tions only consist of scaling, cropping and clipping. Then
they are fed to our framework for producing the predic-
tion vectors p(Ĩr1 , Ig), p(Ĩr2 , Ig) and the prediction scores
s(Ĩr1 , Ig), s(Ĩr2 , Ig). We treat p(Ĩr1 , Ig) and p(Ĩr2 , Ig) as a
positive pair and minimize the distance of them. Thus the
positive part of constrastive loss is expressed as:

Lpos(p(Ĩr1 , Ig), p(Ĩr2 , Ig)) = ∥p(Ĩr1 , Ig)− p(Ĩr2 , Ig)∥22,
(4)

where ∥ · ∥22 denotes the squared Euclidean norm.
In addition, we consider s(Irneg , Ig) and s(Irpos , Ig) as a

negative sample and a positive sample, respectively, where
Irpos

could be Ĩr1 or Ĩr2 and Irneg refers to a randomly se-
lected reference image. To enlarge the difference between
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CelebA-HQ AFHQ Yosemite Church Bedroom
StarGAN v2 MSGAN Swap Autoencoder

NIQE 60.09±0.99% 60.12±0.97% 52.18±1.39% 54.48±2.39% 54.37±6.01%
Deep-IQA 50.22±4.66% 60.57±3.55% 53.27±0.58% 54.17±5.69% 50.32±4.34%
NIMA 52.39±0.65% 58.17±3.68% 47.82±3.33% 54.18±2.82% 48.00±2.27%
GMM-GIQA 52.25±1.79% 68.82±2.52% 57.09±1.14% 70.95±2.35% 64.42±4.27%
KNN-GIQA 50.94±7.25% 70.16±1.84% 49.82±1.48% 50.90±2.57% 49.67±1.18%
SSIM 55.01±1.60% 57.57±3.25% 45.45±3.61% 64.67±5.24% 77.51±4.11%
MS-SSIM 52.98±1.01% 61.77±5.52% 44.37±1.09% 60.78±1.62% 67.13±5.39%
PSNR 51.81±2.52% 55.47±2.36% 44.73±3.58% 65.56±2.37% 77.53±3.82%
FSIM 56.75±4.58% 61.17±5.52% 51.09±0.59% 58.68±2.01% 56.38±2.28%
LPIPS 54.86±1.18% 75.41±2.02% 57.45±0.99% 66.77±1.48% 71.15±1.57%
SIFID 57.76±1.55% 69.27±1.55% 58.55±3.42% 69.18±3.92% 72.81±1.75%
RISA(ours) 70.54±1.84% 80.36±1.44% 64.36±1.79% 73.96±2.83% 83.55±3.37%

Table 1: Consistency (in %) with human judgments (50% indicates a random guess). The training data for RISA and the samples
for human judgments are generated by the models with the same architecture.

the negative sample and the positive sample, the negative
part of the contrastive loss is defined as:

Lneg(s(Irneg , Ig), s(Irpos , Ig))

=max(0, s(Irneg , Ig)− γs(Irpos
, Ig)),

(5)

where γ is a penalty factor to control the restraint strength.
We set γ=0.5 in our experiments.
Supremum loss is introduced as a supplement of the weakly
supervised loss in which the pseudo quality score is strictly
less than 1. Since different views of a reference image in
contrastive loss preserve the style-relevant information, the
quality score of Ĩr1 and Ĩr2 should be the highest score 1.
Therefore, as an additional supervision signal, a supremum
loss is represented as:

Lsupre(p(Ĩr1 , Ĩr2),1) =
∑K

k=1
log pk, (6)

where 1 denotes a vector of ones with length K.
Full objective. To sum up, our full objective is given as:

L =Lsup(p(Ir, Ig), t(Ir, Ig))

+ λpLpos(p(Ĩr1 , Ig), p(Ĩr2 , Ig))

+ λnLneg(s(Irneg , Ig), s(Irpos , Ig))

+ λsLsupre(p(Ĩr1 , Ĩr2),1).

(7)

In our experiments, we set λp, λn and λs to 1 for simplicity.

Experiments
In this section, we start by introducing the experimental
setup. Then extensive results are reported to demonstrate the
effectiveness and generalization ability of RISA. In addition,
we carefully analyze each components of RISA and com-
pare different training configurations as ablation studies.

Experimental Setup
Datasets and genarative models. We conduct our experi-
ments on five datasets: Yosemite (Zhu et al. 2017), CelebA-
HQ (Karras et al. 2017), AFHQ (Choi et al. 2020), LSUN
Church and Bedroom (Yu et al. 2015), all at the resolution

of 256× 256. For multi-domain GAN training, we separate
Yosemite into two domains of summer and winter, CelebA-
HQ into two domains of male and female and AFHQ into
three domains of cat, dog, and wildlife.

Following the original papers, we train DRIT (Lee et al.
2018) and MSGAN (Huang et al. 2018) on Yosemite and
CelebA-HQ, StarGAN v2 (Choi et al. 2020) on CelebA-HQ
and AFHQ, and Swap Autoencoder (Swap AE) (Park et al.
2020) on CelebA-HQ, LSUN Church and Bedroom.
Implementation details. For each generative model, we
first choose 7 intermediate models (DRIT and MSGAN
trained for 1, 10, 20, 40, 80, 200 and 1200 epochs, StarGAN
v2 trained for 1k, 2k, 4k, 6k, 8k, 10k and 100k iterations
and Swapping Autoencoder trained for 100k, 200k, 500k,
1M, 2M, 5M and 25M images), each of which is utilized to
synthesize 1k images. Then we execute the pixel-wise inter-
polation using the last two models mentioned above, e.g.,
models at 10k and 100k iterations for StarGAN v2, with
ϵ = 0.1, 0.2, · · · , 0.9. We synthesize 1k interpolated images
under each ϵ. Finally, for each dataset, 16k images with 16
different quality scores (k/16, k = 1, 2, · · · , 15) is obtained
as the training images.

RISA is implemented in PyTorch (Paszke et al. 2019). The
batch size is set to 4 and the model is trained for 100 epochs
using a single NVIDIA RTX 2080Ti GPU. We use the Adam
(Kingma and Ba 2014) with β1 = 0 and β2 = 0.99. The
weight decay and the learning rate are set to 10−4. The
weights of all modules are initialized using He initialization
(He et al. 2015) and all bias are set to zero.
Human evaluation. To compare the effectiveness of dif-
ferent metrics, we test the consistency of each metric with
human judgments through various binary classification ex-
periments. In specific, each testing sample is a triplet con-
sisting of a reference image and two generated images syn-
thesized by different generative models. Human observers
are required to independently select the generated image of
higher quality according to the reference image. To guar-
antee the experiments are nontrivial, the generative models
are either two intermediate models during the stable stage
(Table 1, 2) or directly two converged models with differ-
ent architectures (Table 2). Samples that all observers reach
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CelebA-HQ Yosemite
DRIT MSGAN MSGAN-Swap AE StarGAN v2-Swap AE DRIT DRIT-MSGAN

NIQE 50.59±3.05% 48.77±4.44% 53.46±4.01% 46.97±4.69% 51.18±0.20% 55.13±3.54%
Deep-IQA 50.58±1.43% 46.60±4.37% 41.51±0.89% 51.14±2.90% 45.25±3.15% 53.53±5.51%
NIMA 49.42±3.02% 54.14±1.63% 58.28±1.19% 47.73±3.80% 52.35±5.03% 54.17±9.43%
GMM-GIQA 56.93±2.21% 59.49±5.23% 58.07±4.00% 49.81±1.87% 60.96±3.01% 60.90±5.94%
KNN-GIQA 51.46±4.48% 51.47±0.79% 53.67±2.14% 52.65±2.19% 51.17±2.82% 50.64±4.53%
SSIM 49.15±3.68% 52.93±1.30% 58.49±2.24% 55.49±5.11% 51.49±2.06% 48.40±2.97%
MS-SSIM 48.26±5.23% 56.35±1.71% 62.26±2.24% 59.47±3.60% 50.29±0.21% 45.19±2.08%
PSNR 50.58±2.36% 57.31±6.02% 66.04±4.39% 57.01±2.56% 49.39±4.63% 47.44±1.20%
FSIM 45.37±3.56% 58.29±0.73% 58.70±3.14% 53.22±6.05% 47.32±3.16% 54.49±2.76%
LPIPS 56.65±0.18% 64.15±1.79% 67.30±4.62% 60.04±1.49% 64.49±0.86% 57.37±0.45%
SIFID 55.78±1.94% 62.43±3.49% 62.89±1.36% 57.77±4.51% 64.51±4.39% 55.13±4.73%
RISA(ours) 65.32±4.26% 70.73±1.20% 72.75±0.59% 68.94±1.63% 67.45±2.66% 63.46±2.36%

Table 2: Cross-model consistency (in %) with human judgments. “Cross-model” indicates that the training data for RISA and
the samples for human judgments are generated by the models with differenet architectures. To be specific, for CelebA-HQ
and Yosemite, the generative models to synthesis RISA’s training images are StarGAN v2 and MSGAN, respectively. The
generative models used for human judgments are either intermediate models at different training iterations during the stable
stage, e.g., DRIT, or two converged models with different architectures, e.g., MSGAN-Swap AE.

a consensus on (about 400 samples per setting) are used to
evaluate metrics. We report the average consistency and the
standard deviations by dividing samples into 3 equal parts.
Baselines. We compare our methods with 11 baselines:
NR-IQA methods: NIQE (Mittal, Soundararajan, and
Bovik 2012) calculates the distance between the multivariate
Gaussian model of the test image and a natural scene statistic
model as a quality measure. Deep-IQA (Bosse et al. 2016)
uses a deep network to assess the quality of various patches
randomly sampled from the test image. NIMA (Talebi and
Milanfar 2018) assesses the quality of images using a CNN
trained with massive labeled images. GIQA (Gu et al. 2020)
assesses an image from both learning-based and data-based
perspectives. The recommended GMM-GIQA and KNN-
GIQA are adopted in our experiments.
FR-IQA methods: SSIM (Wang et al. 2004) measures the
discrepancy of two images’ luminance, contrast and struc-
ture. MS-SSIM (Wang, Simoncelli, and Bovik 2003) calcu-
lates the image’s SSIM in multiple scales. PSNR (Huynh-
Thu and Ghanbari 2008) considers the ratio between the
maximum possible power of a signal and the power of cor-
rupting noise. FSIM (Zhang et al. 2011) is a variation of
SSIM, using different weights to represent the importance
of different regions in image. LPIPS (Zhang et al. 2018a)
trains evaluation networks using 3 methods (named lin, tune
and scratch). SIFID (Shaham, Dekel, and Michaeli 2019)
applies FID by viewing features of a image as a distribution.

Results
A quick evaluation. We conduct an intuitive evaluation
to verify the effectiveness of RISA. In particular, for each
dataset, we manually select a series of images with visible
quality gaps and utilize RISA to assess them. Empirical re-
sults in Figure 5 illustrate that images of higher quality can
get a higher score via RISA, and vice versa.
Performance comparisons. Table 1 demonstrates the con-
sistency of metrics with human judgments on various
datasets and generative models, and we highlight the best
performance in bold. From the results, our proposed RISA
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Figure 5: A quick evaluation on images with visible quality
gaps. The left two columns are the source and reference im-
ages, and the right four columns show images generated by
different models. The value above each generated image is
the quality score assessed by RISA.

is more consistent with human judgments than other image
assessment methods. Visualizations in Figure 6 also indicate
that our proposed method could assess the quality of a gen-
erated image according to its reference image.

In addition, we report the favorable generalization perfor-
mance of RISA in Table 2, where the RISA’s training images
and the human judgement samples are synthesized by gener-
ative models with different architectures. Moreover, the set-
tings in Table 2 can be further divided into two categories,
according to the samples are generated by multiple interme-
diate models (single-model settings) or synthesized by two
different converged models (double-model settings). Com-
pared with baselines, results in single-model settings indi-
cate that RISA transfers well across different models. Fur-
thermore, results in double-model settings demonstrate that
RISA effectively chooses the image with higher style simi-
larity to its reference image.
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CelebA-HQ
StarGAN v2 StarGAN v2-Swap AE

Naı̈ve Regressor N/A N/A
+ Multi-Classifiers 67.78±2.84% 53.22±2.98%
+ Contrastive Loss 69.52±1.00% 61.36±2.82%
+ Supremum Loss 70.54±2.47% 68.94±1.93%

Table 3: Consistency (in %) with human judgments corre-
sponding to various components. The generative model uti-
lized to build training set for RISA is StarGAN v2.

For baselines, the assessment of NR-IQA methods only
leverage the generated image. They are not able to evaluate
the image’s style similarity to its reference image. Although
FR-IQA methods calculate the discrepancy between the an
image and its reference image, empirical results indicate that
they are less suitable to measure the style similarity.

Ablation Study
Effectiveness of various components. We examine each
individual component in our framework in Table 3, where
each component is cumulatively added to a naı̈ve regressor.
We find that only with a naı̈ve regressor, RISA fails to con-
verge and gives the same prediction for all samples because
the quality labels of training images are too coarse. In the
“StarGAN v2” setting, it is intriguing that simply applying
multiple binary classifiers instead of a naı̈ve regressor makes
RISA achieve a competitive performance compared with the
standard setting. It demonstrates that the multiple binary
classifiers effectively suppress the label noise. In the “Star-
GAN v2-Swap AE” setting, since the two generated images
are synthesized by two powerful converged models, the style
similarity is a more important aspect to assess. We can find
that the contrastive loss is critical to capture the style simi-
larity. In addition, using the supremum loss also lead RISA
to achieve higher consistency with human preference.
Effectiveness of pixel-wise interpolation. Table 4 com-
pares the performance of different ways to build the training
set for RISA. As the samples used for human judgments are
generated by intermediate models during the stable stage,
it is natural to compare the setting that the training images
are totally generated using models during the stable stage
(Stable Stage Only) with the standard setting. To verify the
effectiveness of pixel-wise interpolation, we also conduct an
experiment which is trained on images generated by mod-
els from both the initial stage and the stable stage (+ Initial
Stage). Empirical results show that combining images of low
quality and of high quality promotes RISA to assess more
accurately and refining the coarse labels with pixel-wise in-
terpolation further improves RISA’s performance.

Discussion
Assessing a single reference-guided synthesized image is an
area of great practical significance but lacks of the research.
Although our novel RISA framework performs well on var-
ious datasets and settings, there are still opening problems
need to be further explored. RISA regards the generated im-
age’s style similarity to its reference image as a more signifi-
cant component to assess, while ignores the content similar-

CelebA-HQ
StarGAN v2 StarGAN v2-Swap AE

Stable Stage Only 61.10±4.45% 60.42±2.19%
+ Initial Stage 66.04±3.45% 63.07±1.23%
+ Interpolation 70.54±2.47% 68.94±1.93%

Table 4: Consistency (in %) with human judgments corre-
sponding to different ways of building the training set. Star-
GAN v2 is utilized to build the training set for RISA.

Gen II

RISA Baseline

Gen IRef Gen IIGen IRef 

Figure 6: Compared with the most competitive baseline
on each dataset (NIQE for CelebA-HQ, LPIPS for AFHQ,
SIFID for Yosemite, GMM-GIQA for Church, and PSNR
for Bedroom), RISA achieves better performance on select-
ing the generated image with higher quality.

ity to its source image. Although trained with few iterations,
a generative model can synthesize the image which main-
tains the content (or spatial structure) of its source image
perfectly as shown in Figure 2. In contrast, the style-relevant
textures are continuously evolving through the whole train-
ing procedure. In addition, prior works (Gatys, Ecker, and
Bethge 2015, 2016; Huang and Belongie 2017; Huang et al.
2018) also support our opinion since they mainly focus on
designing effective objectives to render the style.

Conclusion
In this paper, we propose RISA, a learning-based frame-
work to assess a single reference-guided synthesized im-
age. Notably, RISA works in a weakly supervised scheme
without any human annotations. In specific, the training im-
ages are generated by intermediate models in RIS training
and the corresponding labels are annotated by the number of
models’ iterations. To suppress the label noise, we propose
a pixel-wise interpolation technique and adopt multiple bi-
nary classifiers. Moreover, an unsupervised contrastive loss
is introduced to effectively capture the style similarity. Com-
pared with existing single image assessment metrics, RISA
achieves higher consistency with human preference on var-
ious datasets and transfers well across models. We believe
that our work will contribute to improving user experience in
real-world RIS applications and motivate future researches
on developing more effective assessment metrics.

759



Acknowledgements
This work is supported in part by the National Science and
Technology Major Project of the Ministry of Science and
Technology of China under Grant 2018AAA0100701, the
National Natural Science Foundation of China under Grants
61906106 and 62022048, and Beijing Academy of Artificial
Intelligence (BAAI).

References
Bosse, S.; Maniry, D.; Wiegand, T.; and Samek, W. 2016. A
deep neural network for image quality assessment. In ICIP.
Che, T.; Li, Y.; Jacob, A. P.; Bengio, Y.; and Li, W. 2016.
Mode regularized generative adversarial networks. arXiv
preprint arXiv:1612.02136.
Choi, Y.; Choi, M.; Kim, M.; Ha, J.-W.; Kim, S.; and Choo,
J. 2018. Stargan: Unified generative adversarial networks
for multi-domain image-to-image translation. In CVPR.
Choi, Y.; Uh, Y.; Yoo, J.; and Ha, J.-W. 2020. Stargan v2:
Diverse image synthesis for multiple domains. In CVPR.
Gatys, L.; Ecker, A. S.; and Bethge, M. 2015. Texture syn-
thesis using convolutional neural networks. In NeurIPS.
Gatys, L. A.; Ecker, A. S.; and Bethge, M. 2016. Image style
transfer using convolutional neural networks. In CVPR.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In NeurIPS.
Gretton, A.; Sejdinovic, D.; Strathmann, H.; Balakrishnan,
S.; Pontil, M.; Fukumizu, K.; and Sriperumbudur, B. K.
2012. Optimal kernel choice for large-scale two-sample
tests. In NeurIPS.
Gu, S.; Bao, J.; Chen, D.; and Wen, F. 2020. Giqa: Generated
image quality assessment. In ECCV.
Gunawan, I. P.; and Ghanbari, M. 2003. Reduced-reference
picture quality estimation by using local harmonic ampli-
tude information. In London Communications Symposium.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Delving deep
into rectifiers: Surpassing human-level performance on ima-
genet classification. In ICCV.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Identity map-
pings in deep residual networks. In ECCV.
Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; and
Hochreiter, S. 2017. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. In NeurIPS.
Huang, X.; and Belongie, S. 2017. Arbitrary style transfer
in real-time with adaptive instance normalization. In ICCV.
Huang, X.; Liu, M.-Y.; Belongie, S.; and Kautz, J. 2018.
Multimodal unsupervised image-to-image translation. In
ECCV.
Huynh-Thu, Q.; and Ghanbari, M. 2008. Scope of valid-
ity of PSNR in image/video quality assessment. Electronics
letters.
Karras, T.; Aila, T.; Laine, S.; and Lehtinen, J. 2017. Pro-
gressive growing of gans for improved quality, stability, and
variation. arXiv preprint arXiv:1710.10196.

Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Lee, H.-Y.; Tseng, H.-Y.; Huang, J.-B.; Singh, M.; and Yang,
M.-H. 2018. Diverse image-to-image translation via disen-
tangled representations. In ECCV.
Lim, H.-T.; Kim, H. G.; and Ra, Y. M. 2018. VR IQA NET:
Deep virtual reality image quality assessment using adver-
sarial learning. In ICASSP.
Lin, K.-Y.; and Wang, G. 2018. Hallucinated-IQA: No-
reference image quality assessment via adversarial learning.
In CVPR.
Liu, T.-J.; Liu, K.-H.; Liu, H.-H.; and Pei, S.-C. 2016. Age
estimation via fusion of multiple binary age grouping sys-
tems. In ICIP.
Liu, X.; Van De Weijer, J.; and Bagdanov, A. D. 2017.
Rankiqa: Learning from rankings for no-reference image
quality assessment. In ICCV.
Maalouf, A.; Larabi, M.-C.; and Fernandez-Maloigne, C.
2009. A grouplet-based reduced reference image quality as-
sessment. In 2009 International Workshop on Quality of
Multimedia Experience.
Mao, Q.; Lee, H.-Y.; Tseng, H.-Y.; Ma, S.; and Yang, M.-
H. 2019. Mode seeking generative adversarial networks for
diverse image synthesis. In CVPR.
Mittal, A.; Soundararajan, R.; and Bovik, A. C. 2012. Mak-
ing a “completely blind” image quality analyzer. IEEE Sig-
nal Processing Letters.
Moorthy, A. K.; and Bovik, A. C. 2010. A two-step frame-
work for constructing blind image quality indices. IEEE Sig-
nal Processing Letters.
Moorthy, A. K.; and Bovik, A. C. 2011. Blind image qual-
ity assessment: From natural scene statistics to perceptual
quality. IEEE Transactions on Image Processing.
Pan, D.; Shi, P.; Hou, M.; Ying, Z.; Fu, S.; and Zhang, Y.
2018. Blind predicting similar quality map for image quality
assessment. In CVPR.
Park, T.; Zhu, J.-Y.; Wang, O.; Lu, J.; Shechtman, E.; Efros,
A. A.; and Zhang, R. 2020. Swapping autoencoder for deep
image manipulation. arXiv preprint arXiv:2007.00653.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. In NeurIPS.
Ren, H.; Chen, D.; and Wang, Y. 2018. RAN4IQA: Restora-
tive adversarial nets for no-reference image quality assess-
ment. In AAAI.
Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Rad-
ford, A.; and Chen, X. 2016. Improved techniques for train-
ing gans. In NeurIPS.
Shaham, T. R.; Dekel, T.; and Michaeli, T. 2019. Singan:
Learning a generative model from a single natural image. In
ICCV.
Talebi, H.; and Milanfar, P. 2018. NIMA: Neural image as-
sessment. IEEE Transactions on Image Processing.

760



Wang, Z.; Bovik, A. C.; Sheikh, H. R.; and Simoncelli, E. P.
2004. Image quality assessment: from error visibility to
structural similarity. IEEE Transactions on Image Process-
ing.
Wang, Z.; Simoncelli, P. E.; and Bovik, C. A. 2003. Multi-
scale structural similarity for image quality assessment. Sig-
nals, Systems and Computers, 2004. Conference Record of
the Thirty-Seventh Asilomar Conference.
Xu, Q.; Huang, G.; Yuan, Y.; Guo, C.; Sun, Y.; Wu, F.; and
Weinberger, K. 2018. An empirical study on evaluation
metrics of generative adversarial networks. arXiv preprint
arXiv:1806.07755.
Yu, F.; Zhang, Y.; Song, S.; Seff, A.; and Xiao, J. 2015.
LSUN: Construction of a Large-scale Image Dataset using
Deep Learning with Humans in the Loop. arXiv preprint
arXiv:1506.03365.
Zhang, L.; Zhang, L.; Mou, X.; and Zhang, D. 2011. FSIM:
A feature similarity index for image quality assessment.
IEEE Transactions on Image Processing.
Zhang, R.; Isola, P.; Efros, A. A.; Shechtman, E.; and Wang,
O. 2018a. The unreasonable effectiveness of deep features
as a perceptual metric. In CVPR.
Zhang, W.; Ma, K.; Yan, J.; Deng, D.; and Wang, Z. 2018b.
Blind image quality assessment using a deep bilinear convo-
lutional neural network. IEEE Transactions on Circuits and
Systems for Video Technology.
Zhang, W.; Ma, K.; Zhai, G.; and Yang, X. 2021.
Uncertainty-aware blind image quality assessment in the
laboratory and wild. IEEE Transactions on Image Process-
ing.
Zhu, J.-Y.; Park, T.; Isola, P.; and Efros, A. A. 2017. Un-
paired image-to-image translation using cycle-consistent ad-
versarial networks. In ICCV.

761


