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Abstract

In recent years, we have seen significant steps taken in
the development of self-driving cars. Multiple compa-
nies are starting to roll out impressive systems that work
in a variety of settings. These systems can sometimes
give the impression that full self-driving is just around
the corner and that we would soon build cars without
even a steering wheel. The increase in the level of auton-
omy and control given to an AI provides an opportunity
for new modes of human-vehicle interaction. However,
surveys have shown that giving more control to an AI in
self-driving cars is accompanied by a degree of uneasi-
ness by passengers. In an attempt to alleviate this issue,
recent works have taken a natural language-oriented ap-
proach by allowing the passenger to give commands
that refer to specific objects in the visual scene. Nev-
ertheless, this is only half the task as the car should also
understand the physical destination of the command,
which is what we focus on in this paper. We propose an
extension in which we annotate the 3D destination that
the car needs to reach after executing the given com-
mand and evaluate multiple different baselines on pre-
dicting this destination location. Additionally, we intro-
duce a model that outperforms the prior works adapted
for this particular setting.

1 Introduction
Many companies are in the race to be the first to develop
fully self-driving cars. It is expected that once this technol-
ogy matures, manufacturers might entirely remove the steer-
ing wheel. While some enthusiasts are eagerly waiting for
this day, surveys (Othman 2021; Deruyttere, Milewski, and
Moens 2021; Schoettle and Sivak 2014) have indicated that
an average person is wary of relinquishing physical control
of the car. However, it was found that the notion of being
able to give spoken commands that can change the behav-
ior of the vehicle tends to make people much more at ease
(Deruyttere, Milewski, and Moens 2021).

In recent years, researchers have investigated systems
where passengers can give commands to self-driving cars.
For instance, (Vasudevan, Dai, and Van Gool 2021; Chen
et al. 2019) consider navigational commands such as “Take
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the first left and at the red building turn right. Afterwards,
drive to the white building”. On the other hand, Talk2Car
(Deruyttere et al. 2019) considers commands that abruptly
change the driving dynamics in the imminent future, such
as “Let me out near my friend with the red shirt on the
left”. The two former datasets feature graph-based naviga-
tion at a city level, where each node represents an individual
street scene. The latter dataset takes a lower level approach
and focuses on predicting objects referred to by the com-
mand within an individual street scene, without addressing
the navigational aspects of executing the command.

Taking the same low-level approach, we focus on the en-
vironment within the observable vicinity of the current lo-
cation and extend the Talk2Car dataset with the 3D physical
destination for each given command. This extension is in-
teresting as it requires models to interpret spatial language
in a 3D visual context. The works of (Dendorfer, Osep, and
Leal-Taixé 2020; Mangalam et al. 2020) suggest that it is
also beneficial to first predict the end goal of a path be-
fore starting to navigate. Therefore, we focus on predicting
the end destination given the passenger command (an exam-
ple is given in Figure 1), after which, in a practical setting,
one of the many already existing systems could be tasked
with safely navigating to it within the dynamic environment
(Messaoud et al. 2020).

Additionally, indicating the destination as understood
from the command offers additional visual insight to the pas-
senger in their interaction with the car. It may also alleviate
a degree of uneasiness that comes with the absence of direct
physical control. To the best of our knowledge, our dataset is
the first of its kind where a model needs to predict the phys-
ical, 3D destination of the self-driving car of the passenger
that has given a command. We will refer to the car in which
the passenger is as ego car from now on. In this paper, we
investigate if existing models are adequate enough to per-
form well on this task. In addition to this, we propose a new
model called PDPC for this destination task which outper-
forms our evaluated baselines. Our proposed model uses a
feature pyramid network to predict distributions at different
feature levels and finally aggregates them into a distribution
mixture. The contributions in this paper are the following:

• We introduce an expansion, Talk2Car-Destination, for
the Talk2Car dataset (Deruyttere et al. 2019) where we
annotate the possible destinations in the physical world
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(a) Frontal View (b) Top-down View

Figure 1: Visualization of the predictions made for the task at hand. The issued command here is “Oh no I’m on the wrong
lane, change lanes so I drive behind the car in front”. On the left, we have visualized the predicted destination of the command
as a heatmap in the physical world and the referred object with a green bounding box. On the right, we have the prediction on
a top-down view of the scene (under the purple dots). The red rectangle is our location, the green rectangle is the predicted
object referred to by the command, and the gray rectangles are the other detected objects. The purple dots are the ground truth
destinations. Prediction made with our proposed model from Sect 4.4.

for a given command, i.e., where the ego car should be
after it has executed the command.

• We evaluate multiple baselines on our expansion and
show that the dataset is challenging.

• We propose a novel method called Physical Destination
Predictor for Commands that achieves state-of-the-art
results compared to our evaluated baselines and outper-
forms them by as much as 32% in certain measures.

The Talk2Car-Destination dataset is available at https:
//github.com/ThierryDeruyttere/Talk2Car-Destination. An
extended version of the paper is available on arXiv (Grujicic
et al. 2021).

2 Related Work
In this section, we describe previous works on future pre-
diction relevant for the destination prediction task featured
in the Talk2Car-Destination dataset. Moreover, our task re-
quires to detect the object referred to by the command and
the 3D locations of objects in the physical world, and hence,
we also list the relevant works on query understanding and
3D object detection.

2.1 Future Prediction
Future prediction features a broad range of different tasks,
such as future image segmentation prediction (Luc et al.
2017), future action prediction (Rodriguez, Fernando, and
Li 2018), to future frame prediction (Liu et al. 2018). The
task of predicting the future location of a moving object in
the physical world featured in the works of (Lee et al. 2017;
Yagi et al. 2018; Makansi et al. 2019) is conceptually re-
lated to our task of predicting the car’s end location after
executing the command. As the future is often uncertain, it
is beneficial that the model predicts multimodal distributions
of the destination location. Makansi et al. (2019) tackle this
task with an approach based on Mixture Density Networks
(MDN). However, they observe that the Mixture Density

Networks are prone to experiencing mode collapse. To over-
come this, they propose an adaptation to the Winner-Takes-
All loss (Guzman-Rivera, Batra, and Kohli 2012) where they
only update the top-k hypotheses while decreasing the value
of k over time. Subsequently, they fit the mixture distribu-
tion to the estimated hypotheses through soft assignments.
A problem with the aforementioned solution is the need
for defining the number of mixture components a priori. To
overcome this limitation, RegFlow (Zieba et al. 2020) avoids
making any assumptions on the underlying distribution by
using Continuous Normal Flows (CNF) (Chen et al. 2018),
thus decreasing the number of distribution parameters.

Another relevant future prediction task is trajectory pre-
diction, where the models are tasked with jointly predicting
the future location of the object and the path to it (Narayanan
et al. 2021; Liang et al. 2020; Mohamed et al. 2020). Den-
dorfer, Osep, and Leal-Taixé (2020) propose GoalGAN,
which first encodes the trajectory of pedestrians with an
LSTM before passing the encoded trajectory to an encoder-
decoder architecture that takes the top-down view of the
scene as input. The output of the encoder-decoder is a proba-
bility map of the pedestrian’s future locations.This informa-
tion is passed to the next module that predicts the possible
path towards this goal. Their model uses a GAN to predict
if the generated trajectories come from the same distribution
as the ground truth trajectories. Another example is PEC-
Net (Mangalam et al. 2020) where the future destination is
modeled using a CVAE (Lee et al. 2017), by first encoding
the past trajectory of the object and passing it to the CVAE,
without the use of visual features of the image. Then, along
with the predicted destination, the model predicts the trajec-
tory by applying social pooling (Alahi et al. 2016). This pa-
per utilizes the components from GoalGAN, PECNet, and
RegFlow as the baselines on our new dataset. We opt for
RegFlow over (Makansi et al. 2019) as the training code of
their model was not available.
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2.2 Query Understanding
Our task requires the model to find the referred object of the
command (Visual Grounding) and predict the car’s end loca-
tion after executing the command (Spatial Language Inter-
pretation). In Visual Grounding (Hu et al. 2016; Deng et al.
2018; Akbari et al. 2019), the model receives a query, an
image, and potentially a set of objects. The model is asked
to predict the object in the image referred to by the query.
A popular approach for joint reasoning over the query and
vision is the use of Transformers (Dai et al. 2020; Kamath
et al. 2021; Du et al. 2021). Multi-step reasoning models
(Hudson and Manning 2018; Deng et al. 2018) and modular
models (Yu et al. 2018) that reason over image and/or ob-
jects have also been popular. In this paper we use a similar
model to (Rufus et al. 2020).

With regards to grounding text to physical locations,
Lourentzou, Morales, and Zhai (2017) focus on predicting
physical geographic origins of Twitter posts, while Grujicic
et al. (2020) localize medical text referring to anatomical
concepts to their corresponding physical locations in the hu-
man body. Finally, (Collell, Deruyttere, and Moens 2021)
have also worked on understanding the implicit spatial rela-
tionships of queries and objects.

Focusing on the domain of autonomous-driving, the work
of Sriram et al. (2019) presents a dataset of natural language
instructions and trajectories in a synthetic environment. Our
dataset, on the other hand, features command and destina-
tion annotation in the natural, non-simulated environments.
In a work concurrent to ours, Rufus et al. (2021) introduce a
dataset built on top of the Talk2Car which features destina-
tion annotations in the frontal camera view. In contrast, our
work focuses on destinations in the car’s 3D environment, in
which the physical layout and distances can be considered.

2.3 3D Object Detection
The locations of other objects in the scene give impor-
tant cues for predicting the final destination in the physical
world. Therefore, aside from predicting the referred object,
an essential step in our task is the accurate prediction of 3D
bounding boxes of the objects visible in the frontal view.
A popular approach to this task is to use LIDAR/RADAR
point clouds (Zhou and Tuzel 2018; Lang et al. 2019; Engel-
cke et al. 2017; Zheng et al. 2021). For instance, Yin, Zhou,
and Krähenbühl (2021) use LIDAR to predict 3D objects by
first predicting the center of each object in a top-down point
cloud view. Afterwards, the model regresses the centers to
the object’s 3D size, orientation, and velocity. In the second
stage, it refines the predicted attributes. Lang et al. (2019)
perform 3D object detection by aggregating voxels into ver-
tical columns, also called pillars. Afterwards, 2D convolu-
tions are applied on said pillars to predict 3D objects.

In addition to using point clouds to predict 3D bounding
boxes, there are approaches that rely on image data alone.
This is known as monocular 3D object detection (Chen et al.
2015; Roddick, Kendall, and Cipolla 2018). An example of
such a method is FCOS3D (Wang et al. 2021), which is
very similar to the CenterNet (Zhou, Wang, and Krähenbühl
2019) architecture. It predicts 3D bounding boxes by creat-
ing a feature pyramid network of an image, and then, at each

level and cell of the feature map, it predicts the 3D attributes
of objects. In this work, we use FCOS3D to predict 3D ob-
ject locations.

3 Dataset
In this paper, we extend the Talk2Car dataset (Deruyttere
et al. 2019) which is built on top of the nuScenes dataset
(Caesar et al. 2020) and features driving scenes from Boston
(right-hand traffic) and Singapore (left-hand traffic) in dif-
ferent lighting (night vs day) or weather conditions (sun vs
rain). In addition to the 360 degrees camera view, it also
contains LIDAR/RADAR point clouds. Talk2Car adds un-
restricted natural language commands that refer to a specific
object in a street setting, and consists of 8349, 1163, and
2447 samples in the training, validation, and test sets. We
extend the Talk2Car dataset by having three annotators per
each command indicate the physical end position of the car
after executing the command in the top-down view (Figure
3) together with the true intent of the command i.e., the in-
tent of the command “park next to the tree” is “park”. For
the true intent of the command, the annotators received a set
of predefined options to choose from and the final annota-
tion was determined in a majority vote among three annota-
tors. In case of no majority, additional annotators were asked
to indicate the intent until a majority was reached. The an-
notation process was performed using a custom annotation
interface created with EasyTurk (Krishna 2019), hosted on
Amazon Mechanical Turk.

In addition to the annotation, we also normalized the data
for easier training. We first rotated all top-down views (as
seen in Figure 3(b)) in such a way that the ego car is always
facing directly right. The resolution of the frontal camera
view images is 1600 × 900. We normalize the sizes of the
top-down views such that they correspond to physical map
regions of 120× 80 meters in size, with the ego car located
seven meters from the left boundary and halfway along the
height of the top-down view. The resulting resolution of the
top-down views is 1200× 800, i.e., distance of ten pixels in
the top-down view corresponds to the distance of one meter.

We removed the commands that referred to objects out-
side such a map patch, which was the case in 0.51% of the
samples. This process resulted in 8301, 1159, and 2439 sam-
ples in the train, validation, and test set. The average distance
from the center of the ego car to the destination is 26.54 me-
ter. In Figure 2 we display a heatmap of the destinations.
Each sample consists of a command, frontal and top-down
view, ground-truth 3D object annotations from the NuScenes
dataset, three different destination annotations, as well as the
annotated intent of the command.

We dub this extension Talk2Car-Destination. The statis-
tics from the original Talk2Car dataset (Deruyttere et al.
2019) regarding the driving locations, weather conditions,
times of day etc. apply to Talk2Car-Destination as well.

4 Methods
We formally define the destination prediction task as fol-
lows: given an image of the frontal view of the car I, a com-
mand q and the representation of the top-down view con-
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Figure 2: Destination distribution of the Talk2Car-
Destination dataset. This heatmap represents the destina-
tions 50 meters in front of the ego car and 20 meters to the
right and left of the ego car.

taining the road layout L, the model is asked to predict a
distribution P of the destination the car needs to reach in or-
der to execute the command. We first extract the locations
of the objects around the ego car using a 3D object detec-
tor. As we later demonstrate in Sect. 6.3, the location of the
object indicated by the command is highly indicative of the
the final destination. Therefore, we also formulate the task
of referred object detection, where given the command and
the set of object proposals obtained from a 3D object detec-
tor, we predict the object referred by the command. Figure 4
presents the flowchart of our approach. Focusing on the des-
tination prediction, we decouple it from the already estab-
lished task of referred object detection on Talk2Car (Deruyt-
tere et al. 2019). The predicted referred object and the 3D
object proposals are subsequently provided as input to the
destination prediction model during the training and evalua-
tion phases. We do not utilize ground-truth annotation from
either NuScenes or Talk2Car during training, as they would
be unavailable in a deployed setting. In the following sub-
sections, we describe our main building blocks. We use the
following notation: vectors are represented as a and their
size Rd1 where d1 is the size. Matrices are denoted as M
and their size Rd1×d2 where d1 and d2 are the size of the
first and second dimensions. The layers of multi-layer per-
ceptrons (MLP) are indicated between square brackets, e.g.
[W d1×d2,W d2×d3] denotes a two layer MLP.

4.1 3D Object Detector
The availability of LIDAR in the Talk2Car-Destination
points towards the use of LIDAR-based 3D object detectors,
given the effectiveness such an approach has demonstrated
in previous works. However, in our case, we require accurate
bounding boxes for the visible objects in the frontal view of
the car, which are the focus of the given commands. From
preliminary experiments, we found the use of LIDAR-based
methods to be inadequate for our use case. The reason is
twofold. First, we observed that when projecting the predic-
tions of the LIDAR-based method to the frontal image, there
was often a substantial shift between the projected bound-
ing boxes and the objects. This is likely due to the different
speeds at which the camera and LIDAR sensors capture data,
as well as the positioning offset between the camera and the
LIDAR sensor, causing both temporal and spatial parallax.
Second, the objects referred to by the commands tend to be

at greater distances from the ego car. We find that after 70
meters, the LIDAR-based object detector abruptly becomes
unable to detect objects accurately. In contrast, the perfor-
mance drop of monocular-based detectors at larger distances
tends to be less dramatic.

We performed a comparison between FCOS3D (Wang
et al. 2021), and CenterPoint (Yin, Zhou, and Krähenbühl
2021), where we evaluated the average distance between the
ground-truth location of the referred object and the closest
3D object proposal. We found that FCOS3D achieves an av-
erage discrepancy of 1.50 meters, which is a significant im-
provement over the 2.64 meters of CenterPoint as the latter
does not output predictions at distances greater 70 meters.

We therefore opt for a monocular 3D object detector,
which we found to be more suitable for our task in the light
of aforementioned limitations of LIDAR-based approaches.
More specifically, we use FCOS3D as, at the time of writing,
it is one of the highest performing vision-only 3D object de-
tectors on nuScenes with publicly available code (Contribu-
tors 2020).

4.2 Referred Object Detector
From our data and preliminary experiments, we observe that
the object referred to by the command is often in relation
to the destination of the car, and that the information on the
referred object location is central for predicting the destina-
tion of the command. For instance, to execute the command
“Park next to the man on the bench”, the system ought to
know where the “man on the bench” is before predicting
the parking location. We train a referred object detector to
indicate which object the command relates to and feed the
predicted referred object and other detected objects as the
input to the destination prediction model.

We notice that the use of the features from the object
detector was left unexplored by the previous works on
Talk2Car, all of which relied on using pre-trained image
feature extractors and then optionally fine-tuning them. In
the vein of (Anderson et al. 2018), we evaluate the bene-
fits of directly using the object features R1536 of FCOS3D
as local object representations in the referred object detec-
tion task by feeding these features as input to the model
used in the work of (Rufus et al. 2020). The model uses
a Sentence-BERT (Reimers and Gurevych 2019) to create
a R768 command embedding, which is then passed through
the following MLP: [W 768×1024, ReLU, W 1024×1024]. The
extracted visual features from FCOS3D of size R1538, which
contain the concatenated outputs of all prediction heads, ex-
tracted at the activation map location corresponding to the
predicted bounding box, are passed through the following
MLP: [W 1538×1024, ReLU, W 1024×1024]. Finally, we com-
pute the dot product between command and the visual fea-
tures of each object and construct a probability distribution
over object proposals by performing the softmax operation
on the products.

4.3 Layout Encoding
We construct a top-down layout representation (L∗), lever-
aging the road information, the ego car position, the top-
down view projections of all FCOS3D detected objects in
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(a) Frontal View (b) Interactive Top-down View

Figure 3: An example from our annotation tool that was made with EasyTurk (Krishna 2019), given the command “get behind
this silver SUV” and the Talk2Car object that it refers to (indicated with a yellow bounding box), the annotators were asked to
indicate the destination in the interactive top-down view. The annotated destination is the cyan rectangle visible in the frontal
view and the cyan rectangle behind the yellow rectangle in the top-down view.

FCOS3D

Input

Joe said to meet him near the sidewalk,
park near him.

Top-down

Frontal

Command
Sentence-

BERT

Sentece 
Embedding

3D
bounding

boxes

Object
Features

...
Referred
Object

Detector

PDPC

Output

...

Predicted 
Destination
Distribution

Project to 
frontal view

Figure 4: The above image depicts the flow of the architecture used in this paper. As input, we require a top-down image of
the road, a car’s frontal image, and a (written) command. The frontal image is passed through a monocular 3D object detector
(i.e., FCOS3D) to extract 3D bounding boxes and object features. The command is passed through a sentence encoder (i.e.,
Sentence-BERT). The embedded sentence and object features are then passed through a Referred Object Predictor (Sect. 4.2)
to predict the object referred by the command. Afterward, the predicted referred object, together with the sentence embedding,
the 3D bounding boxes, and the top-down image are passed through our proposed destination predictor (Sect. 4.4) to finally
predict a destination distribution on the top-down image. This distribution can also be projected to the frontal view as seen in
the image. The red car on the top-down image represents the ego car. The black arrow indicates the driving direction. The green
rectangle is the predicted referred object. Gray objects are other detected objects.
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3D, as well as the prediction of the object referred to by
the command. The layout representation takes a form of a
3D tensor, with 3 channels reserved for the road information
(an RGB image representing the lanes and the road layout),
1 channel reserved for the ego car (a binary grayscale im-
age with a white polygon representing the car at the position
of the ego car), 1 channel reserved for the referred object
bounding box, and one channel per each object class, as de-
tected by the 3D object detector, where each channel con-
tains a binary grayscale image with white polygons at the
positions of the top-down view projections of the detected
3D bounding boxes of objects of it corresponding class.

4.4 Destination Predictor
In this subsection, we describe our proposed destination pre-
dictor which we dub Physical Destination Predictor for
Commands (PDPC). We opt for a fully convolutional and
spatial-based approach, where the destination distribution is
modeled as a mixture distribution, where a distribution mix-
ture component is predicted at every location in the extracted
spatial feature maps.

Our method receives a command and a top-down layout
augmented with the detected object locations and the re-
ferred object (Sect. 4.3) in the current visual scene as in-
put. We pass the layout through a Feature Pyramid Network
(FPN) to extract feature maps RC×Wi×Hi at four different
scales with C, Wi, and Hi being the number of channels
(256 in our case), width and height of a feature map at scale
i, respectively. The different scales share a series of fully
convolutional blocks that process the feature maps into a
set of spatial features at each grid location. We use stride
of 1, kernel size of 3 and padding of 1 in order to preserve
the size of the original feature map. Then, a multi-layer per-
ceptron [W 768×512, ReLU,W 512×C ] is used to project the
command embedding to the same size as the channel dimen-
sion of the convolutional block. Afterwards, a dot product
between the projected command and the channel dimension
of the feature maps is performed to produce a R1×Ws×Hs

tensor. A softmax operation is then used to get a probability
distribution over the spatial cells to produce a weights ten-
sor that indicates which cells align more with the command.
Finally, we multiply the feature map RC×Wi×Hi with this
weights tensor. Another shared series of fully convolutional
blocks is applied on the attended feature maps at each scale,
after which the task specific convolutional heads, also shared
across different scales, are used to predict the offset between
the grid location and the distribution mean, as well as the
standard deviation and mixture weight for each Gaussian
mixture component. We aggregate the mixture components
from each location at each scale level into one large density
mixture with

∑S
i=1 Wi × Hi components, which we fit to

the destination samples. The distribution of the destination
y, given the layout encoding L∗ (Sect 4.3) and command c
is therefore represented with a Gaussian mixture:

p(y|L∗, c) =
S∑

i=1

Wi,Hi∑
w=1,h=1

πiwhϕ (y|µiwh, siσiwh) (1)

where S is the number of resolution scales, while Hi and
Wi represent the height and the width of the feature map
at the i-th scale. The Gaussian mixture component ϕ at the
location h,w in the i-th scale is parametrized by its mean
µiwh ∈ R2 and standard deviation σiwh ∈ R2, while πihw

represents its mixture weight. We use softmax to normalize
the mixture weights such that

∑S
i=1

∑Wi,Hi

w=1,h=1 πiwh = 1.
For each location in low resolution scale grids [w, h], we
keep track of the corresponding spatial location in the input
layout, lihw = [w′, h′], where w′ and h′ are computed as
w′ = wki +

⌊
ki

2

⌋
and h′ = hki +

⌊
ki

2

⌋
and ki represents

the down-sampling rate at scale i. At each location, the net-
work directly predicts the mixture weights and the standard
deviation, as well as the offset oihw, after which the mean
is computed as µihw = oihw + lihw. Predicting the offset
from the corresponding physical location, as opposed to di-
rectly predicting the mean, allows for a regularized model to
predict small offsets within the immediate neighborhood of
each grid cell. At each resolution scale, the predicted stan-
dard deviation is multiplied by a learnable parameter si, al-
lowing the network to adjust the variance of the Gaussian
components for each resolution scale.

Our model uses Negative Log Likelihood (NLL) to mini-
mize the log probability of the ground truth destinations un-
der the predicted Gaussian Mixture, or in other words we
minimize:

Lj = − log (p(yj |L, c)) (2)
where for N different destinations provided by differ-

ent annotators we minimize 1
N

∑N
j=1 Lj . The benefit of our

model over (Makansi et al. 2019) is that we do not require to
a priori define how many components we want. Our model
predicts a component in each cell in the spatial grid and can
learn to give certain components very low weights, and ef-
fectively ignore them, if needed.

5 Experiments
In this section we explain the performed experiments, the
evaluation measures and the baselines.

5.1 3D Object Detector
We train FCOS3D (Wang et al. 2021) only on the Talk2Car
training scenes to predict bounding boxes as they do not
overlap with the scenes from the Talk2Car validation or test
sets. We use the default parameters provided by the authors.

5.2 Referred Object Detector
Our referred object detector uses a Sentence-BERT
(Reimers and Gurevych 2019) to compute the command em-
bedding, whose parameters remain fixed during training.

We evaluate this model by measuring the Intersection over
Union (IoU) between between the boxes of the predicted and
ground truth objects. If IoU > 0.5, we consider the predicted
object to be correct. We refer to this as IoU0.5. The IoU is
defined as:

IoU =
Area of Overlap between two boxes

Area of Union of the two boxes
. (3)
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Model IoU0.5 # Params (M)
(Dai et al. 2020) 0.710 683.80
(Luo et al. 2020) 0.691 194.97

(Rufus et al. 2020) 0.686 366.50
Sentence-BERT+FCOS3D 0.701 166.29

Table 1: The IoU0.5 of different models on the Talk2Car
test set. The first three models are the previous state-of-the-
art models for reference. The “Sentence-BERT+FCOS3D”
model is the referred object predictor described in Sect. 4.2
and is based on (Rufus et al. 2020) but uses the extracted
object features from FCOS3D.

5.3 Destination Prediction Measures
To evaluate the performance of the destination prediction
models on our dataset, we use the following three measures:

• Average Displacement Error (ADE): Sample average of
the average distance between the samples of the pre-
dicted destination distribution from the closest ground
truth destination. Measured in meters [m].

• Median Displacement Error (MDE): Sample median of
the average distance between the samples of the pre-
dicted destination distribution from the closest ground
truth destination. Measured in meters [m].

• Prediction Accuracy with threshold k meters (PAk):
measures the rate of predicting the destination within the
radius of k meters around the ground truth destination.

5.4 Command Encoding
The command is processed by using the pre-trained
Sentence-BERT (Reimers and Gurevych 2019), where the
input command is tokenized and fed through the model,
and the command representation is obtained by computing
the mean of the output token representations. The Sentence-
BERT is trained on the combination of SNLI (Bowman et al.
2015) and MultiNLI datasets (Williams, Nangia, and Bow-
man 2017) to perform the Natural Language Inference (NLI)
task of predicting semantic labels for annotated sentence
pairs, and has been shown to perform well on a variety of
downstream tasks that require high quality sentence repre-
sentations in a wide range of semantic domains.

5.5 Baselines
To evaluate Talk2Car-Destination and our proposed model,
we implemented or adapted the following baselines.

SinglePoint The layout tensor encoded using ResNet18
(He et al. 2016) to a vector of R1024, concatenated with the
sentence-BERT command embedding of R768 is fed through
a multi-layer perceptron (MLP) that regresses the input to
two-dimensional destinations.

UnimodalNormal Predicts the destination distribution
given the layout tensor and the command after encoding
them as in SinglePoint. We model the distribution as a bi-
variate Gaussian, by predicting the distribution mean and
covariance matrix. We minimize the negative log-likelihood

(NLL) of the target destinations under the predicted distri-
bution.

MDN Predicts destination distribution similarly to Uni-
modalNormal, except that we model distribution as a mix-
ture of bi-variate Gaussian distributions. For each compo-
nent, we predict the mean, covariance matrix and the mix-
ture weight. We minimize the NLL of the target destinations
under the predicted Gaussian mixture.

NonParametric The distribution of the destinations is
modeled as a histogram over possible locations in a grid,
where each grid cell corresponds to a physical location in
the top-down view. We minimize the cross-entropy between
the predicted distribution over grid cells. The locations in
the grid where the cells correspond to ground truth destina-
tion locations have the value 1.0 and 0.0 otherwise. We treat
the rows and columns of the grid independently to keep the
output dimensionality low.

Adapted RegFlow (Zieba et al. 2020) FlowNet (Doso-
vitskiy et al. 2015) is used to encode the top-down view in
R1024. Next, we pass the sentence-BERT command embed-
ding through a linear layer of W 768×768 and then concate-
nate it to the layout encoding. The remainder of the model is
unchanged and a hypernetwork is used to train a continuous
normalising flow (CNF) model to output a distribution. This
model is trained by minimizing the NLL of the CNF.

Endpoint VAE (Mangalam et al. 2020) We adapt the
endpoint prediction components of PECNet, which is a tra-
jectory prediction model that takes a goal-conditioned ap-
proach, where the model first predicts the trajectory end-
point and, subsequently, the trajectory. We utilize the End-
point VAE, which is the model component that performs the
endpoint prediction, and adapt it for our task of destination
prediction. In PECNet, the Endpoint VAE encodes the past
trajectory and the ground truth endpoint into a latent desti-
nation distribution during training. The decoder is then fed a
sample drawn from the latent distribution, and the past tra-
jectory representation outputs predicted endpoints. During
inference, the latent samples are drawn from a zero-mean
isotropic Gaussian. We adapt this approach to our setting by
replacing past trajectory encoding with the representation of
the spatial layout from the ResNet-18 and the command em-
bedding obtained from the Sentence-BERT.

Adapted GoalGAN (Dendorfer, Osep, and Leal-Taixé
2020) GoalGAN has a RoutingModule to predict the path,
a GoalModule to predict the destination and a MotionEn-
coder to predict the last locations of the objects. We remove
the MotionEncoder as we do not require it. Then, our top-
down layout tensor is processed in an encoder-decoder ar-
chitecture with as output a probability map over the image.
After the encoder stage, we introduce the command to the
encoded feature map by concatenating it along the chan-
nel dimension, after which a convolutional layer is used to
project it to a lower dimension. The RoutingModule is kept
as-is but we set the length of the path to one instead of N as
to predict the destination. We keep the GAN as-is.
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Method ADE [m] MDE [m] PA2[%] PA4 [%]
Random Point 43.98± 0.12 44.24 0.28± 0.00 0.97± 0.00

Random Road Point 37.38± 0.17 37.35 0.81± 0.01 2.60± 0.03
Pick Ego Car 25.62± 0.32 21.61 0.00± 0.00 0.00± 0.00

Random Object 28.02± 0.23 26.77 1.11± 0.06 4.62± 0.14
Pick Referred Object 9.04± 0.18 6.07 6.60± 0.50 27.96± 0.91

SinglePoint 8.15± 0.34 5.52 13.41± 1.38 35.88± 1.94
NonParametric 9.65± 0.36 6.72 12.81± 0.64 31.22± 1.20

UnimodalNormal 8.16± 0.32 5.61 17.61± 0.92 38.86± 1.44
MDN 8.08± 0.32 5.30 16.82± 1.34 38.42± 1.48

Adapted GoalGAN 8.65± 0.40 5.31 22.60± 1.20 43.09± 1.56
Endpoint VAE 7.84± 0.34 5.22 16.38± 1.34 38.83± 1.86

Adapted RegFlow 17.79± 0.36 15.89 13.01± 0.70 32.23± 0.70
PDPC - Base (Ours) 8.21± 0.36 5.05 28.45± 1.28 47.56± 1.52

PDPC - Top-64 Components (Ours) 7.96± 0.36 4.61 28.97± 1.30 48.42± 1.56
PDPC - Top-32 Components (Ours) 7.82± 0.38 4.39 29.88± 1.36 49.51± 1.64

PDPC Base - NoRef (Ours) 13.95± 0.40 11.15 11.25± 0.52 25.19± 0.94

Table 2: ADE, MDE, PA computed for 2m and 4m thresholds (PA2 and PA4, respectively). The results of our model are denoted
with PDPC. The error bars represent 95% confidence intervals.

(a) PDPC - No referred object information - Frontal (b) PDPC - No referred object information - Top-down

(c) PDPC - With referred object - Frontal (d) PDPC - With referred object - Top-down

Figure 5: The issued command was: “The man standing closest to the road is coming with us. Park next to him”. This image
shows the heatmaps of the model that does not use the information of the referred object prediction (top row) versus the model
that uses this information (bottom row). The red car on the top-down view is the ego car. The purple dots are the ground
truth destination. The gray boxes represent other detected objects. The green rectangle in the top-down and in the frontal view
indicates the referred object. In the top row, the model outputs heatmaps at different locations with increasing probability near
objects of the same type as the referred object. In contrast, the model in the bottom row can pinpoint where it needs to output
its heatmap as it has information about the referred object.
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6 Results
6.1 3D Object Detector
FCOS3D achieves a mean Average Precision (mAP) of
30.73 on the Talk2Car test set scenes. Additionally, we eval-
uate the quality of predictions on the referred object detec-
tion task. We project the top-32 confidence scoring predic-
tions to the frontal view and evaluate the rate at which at
least one sample achieves an IoU ≥ 0.5 with the ground
truth referred object in the Talk2Car test set. We find that
such a bounding box exists in 92% of the cases which is the
same as with the bounding boxes of (Deruyttere et al. 2020),
and therefore, no substantial increase in IoU is expected
solely from improved bounding box predictions. The aver-
age distance between the 3D bounding box of the ground
truth referred object and their 3D predicted bounding is 1.7m
on the Talk2Car test set.

6.2 Referred Object Detectors
Table 1 showcases that our model outperforms two out of
three state-of-the-art models on the referred object detection
task in Talk2Car. Comparing to (Rufus et al. 2020), on which
we based our detector, we observe a relative improvement of
2% in IoU0.5 while having less than half the parameters.

6.3 Destination Prediction
In Table 2, we find that our model for destination predic-
tion significantly outperforms all baselines in terms of PA2,
PA4, and MDE. We also find that our model manages to
generate 47.56% of its samples in a radius of 4m (roughly
the length of a small passenger vehicle) from the nearest
ground truth destination. We also see that the median dis-
tance of our base model is 5.05m which is 3.4% lower than
our closest competitor. As evident from the discrepancy be-
tween the ADE and MDE scores, our model, as well as other
baseline models such as the Endpoint VAE and GoalGAN,
tend to produce large outliers more often than simpler base-
lines like UnimodalNormal and MDN. However, in an infer-
ence setting, our model can be easily adapted by using the
top-K components in terms of their mixture weight magni-
tude, and re-normalizing the mixture weights. This signifi-
cantly reduces the number of outliers, and when the number
of mixture components is thus set to 32 during inference, our
model outperforms all baselines in terms of the ADE as well.
This is a very desireable feature of our model, which gives
it a significant advantage over other competing models.

Influence of Referred Object for Destination Prediction
From the last entry in Table 2, it can be seen that the re-
ferred object information is crucial for the model’s ability to
predict the destination accurately. The model PDPC (Base)
- NoRef, which is the same as the PDPC (Base), with the
distinction of not being provided with the predicted referred
object as an additional input (normally provided to all base-
lines), achieves considerably inferior results. Figure 5 shows
the difference between using or not using the referred object
information during training. As the command refers to a per-
son, the model without the referred object information, and
for which the referred object was encoded as just another ob-
ject of its particular class in the input layout tensor, tends to

predict high probabilities near all persons on the top-down
view. The model that does have the referred object informa-
tion available, on the other hand, manages to pinpoint the
correct destination in front of the man on the right, standing
closest to the road. In general, we see that the model learns
to adhere to very general traffic rules, keep to the road, and
perform rudimentary commands without the referred object
information. However, with the referred object information,
it manages to pinpoint the correct destination.

7 Conclusion
In this paper, we propose a new challenging spatial lan-
guage understanding extension to Talk2Car called Talk2Car-
Destination, where a model needs to predict the ego car’s
destination in the physical 3D world after receiving a pas-
senger command, i.e., “Park next to the man on the bench”.
To handle these types of commands, a referred object de-
tector is also required. Our proposed referred object de-
tector outperforms some of the state-of-the-art models on
Talk2Car while using considerably fewer parameters. We
also show that our Talk2Car-Destination task is not triv-
ial by evaluating multiple baselines and (modified) existing
state-of-the-art models. Hence, we believe this new dataset
can be used as a benchmark for exciting future research.
Additionally, we propose the Physical Destination Predic-
tor for Commands (PDPC), which predicts distribution pa-
rameters at each feature map location at different resolu-
tion scales, and aggregates them into a distribution mixture.
PDPC achieves a relative increase in performance of 32%
for PA2 and 15% on PA4 and 16% in MDE. In this work,
we focused on the top-down view alone. However, in future
work, one could investigate incorporating the visual infor-
mation from the camera view. Furthermore, one could also
examine whether jointly predicting the referred object and
destination in a multi-task end-to-end fashion can yield ben-
efits to the individual tasks.
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