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Abstract

In point cloud compression, sufficient contexts are significant
for modeling the point cloud distribution. However, the con-
texts gathered by the previous voxel-based methods decrease
when handling sparse point clouds. To address this prob-
lem, we propose a multiple-contexts deep learning frame-
work called OctAttention employing the octree structure, a
memory-efficient representation for point clouds. Our ap-
proach encodes octree symbol sequences in a lossless way
by gathering the information of sibling and ancestor nodes.
Expressly, we first represent point clouds with octree to re-
duce spatial redundancy, which is robust for point clouds
with different resolutions. We then design a conditional en-
tropy model with a large receptive field that models the
sibling and ancestor contexts to exploit the strong depen-
dency among the neighboring nodes and employ an attention
mechanism to emphasize the correlated nodes in the context.
Furthermore, we introduce a mask operation during train-
ing and testing to make a trade-off between encoding time
and performance. Compared to the previous state-of-the-art
works, our approach obtains a 10%-35% BD-Rate gain on
the LiDAR benchmark (e.g. SemanticKITTI) and object point
cloud dataset (e.g. MPEG 8i, MVUB), and saves 95% coding
time compared to the voxel-based baseline. The code is avail-
able at https://github.com/zb12138/OctAttention.

Introduction
The point cloud is an essential data structure for 3D repre-
sentation. It has been used in many fields such as virtual re-
ality, smart city, robotics, and autonomous driving (Schwarz
et al. 2018). Since massive point clouds are generated, effi-
cient compression techniques are necessary for point cloud
storage and transmission. However, point clouds are un-
ordered and have various distributions; it is relatively dif-
ficult to compress point clouds compared with 2D images.
Fortunately, several schemes for point cloud geometry and
attribute compression such as voxel-based, image-based and
tree-based algorithms have been proposed and applied in re-
search works (Chou, Koroteev, and Krivokuća 2019; Shao
et al. 2017, 2018) and standard specification (3DG 2021).

The MPEG point cloud geometry compression standard
(G-PCC) (Schwarz et al. 2018) adopted a hand-crafted
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context-adaptive arithmetic encoder for bit allocation, which
can be seen as a prediction for the currently encoding node
based on the coded information. Recently, entropy encoders
based on deep learning have been shown to outperform
hand-crafted ones on rate-distortion performance. Among
them, some methods partition point clouds into voxels, then
adopt 3D convolution to learn and predict the occupancy of
each voxel (Wang et al. 2021; Nguyen et al. 2021a; Quach,
Valenzise, and Dufaux 2019; Que, Lu, and Xu 2021). Voxel-
based models are capable of exploiting the local geometric
patterns (e.g., planes, surfaces). However, they are not ro-
bust to point cloud resolution. These methods have to di-
vide blocks into different scales for point clouds with vary-
ing point densities to find the optimal voxel size. Mean-
while, receptive fields are limited by the computational cost,
i.e., they only extract features from voxels within a narrow
range. Other works encode the point cloud into an octree,
then encode the occupancy of octree nodes based on their
ancestor nodes (Huang et al. 2020; Biswas et al. 2020). The
octree-based model is robust to resolution, and it also utilizes
a broader range of contexts than voxel-based ones. How-
ever, prior methods ignore that sibling nodes (i.e., nodes in
the same octree level) provide low-level local geometry fea-
tures, which are significant to exploit the geometry redun-
dancy. In general, prior voxel-based and octree-based meth-
ods do not fully use much spatial context information.

In this work, we propose a point cloud compression
method called OctAttention which generates and utilizes
a large-scale context. Voxel is inefficient for representing
sparse point clouds; thus, we encode the point cloud into an
octree. Subsequently, we improve the predictability of the
occupancy of each octree node based on large-scale context,
which contains features from ancestor nodes of the current
node, sibling nodes, and ancestors of sibling nodes. How-
ever, it should be noted that the side effect of expanding
context is to introduce redundant and irrelevant informa-
tion. For example, different sibling nodes may have the same
ancestors, but they are repeated multiple times in the con-
text; sibling nodes far from the current node may be worth-
less for prediction. To tackle this problem, we employ tree-
structured attention to weight and explicitly express the con-
tributions of different nodes in the prediction. The siblings in
the context disable the parallelization strategy in prior works
(Huang et al. 2020; Que, Lu, and Xu 2021), hence we pro-
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Figure 1: LiDAR point cloud quantized by octree with the max depth of 6, 7, 8, 9. Points in the octree leaf nodes decrease with
increased depth. The receptive field of voxel-based approach is limited.

pose a mask operation to encode multiple nodes in parallel.
We compare the proposed model with state-of-the-art

methods on the 3D LiDAR dataset SemanticKITTI (Behley
et al. 2019), object point cloud dataset MVUB (Charles
et al. 2016) and MPEG 8i (Eugene et al. 2017). The experi-
ments show that our method outperforms these state-of-the-
art methods, which are only designed for a specific category
of point clouds.

The contributions of our work can be summarized as:

• We propose a tree-structured attention mechanism to
model the dependency of nodes in a large-scale context,
which is achieved by extending the receptive field of con-
text and exploiting features from sibling nodes and their
ancestors.

• We employ a mask operation to encode octree in parallel
to alleviate the drawbacks of introducing siblings in the
large-scale context.

• Our generic model of point cloud geometry compression
for both LiDAR and object point clouds achieves state-
of-the-art performance on several large-scale datasets.

Related Work

Voxel-Based Point Cloud Compression

Voxel-based methods quantize the point cloud and classify
the voxel occupancy by neural networks. Voxel-based meth-
ods outperform G-PCC (3DG 2021) on lossless geometric
compression (Nguyen et al. 2021a; Quach, Valenzise, and
Dufaux 2019), lossy geometric compression (Quach, Valen-
zise, and Dufaux 2019, 2020; Wang et al. 2021) and progres-
sive compression (Guarda, Rodrigues, and Pereira 2020).
Compared to an octree, geometric patterns can be naturally
preserved in the voxel representation. Yet, the side effect is
voxel-based networks are sensitive to the density variation
and may fail for the sparse point clouds. All of the above
methods are applied to dense point clouds (e.g. MPEG 8i)
and may suffer tremendous computing and memory costs on
sparse LiDAR point clouds. The proposed method directly
processes the octree occupancy code to overcome the den-
sity variation problem.

Tree-Based Point Cloud Compression

Tree structures effectively reduce geometric redundancy by
merging the common coordinates of point clouds. Numer-
ous algorithms (Lasserre, Flynn, and Qu 2019; Zhang, Gao,
and Liu 2020; Schwarz et al. 2018; Kammerl et al. 2012;
Kathariya et al. 2018b; Gao et al. 2019) compressed point
cloud based on tree structures such as octree (Schnabel
and Klein 2006), quadtree (Kathariya et al. 2018a), KD
tree(Devillers and Gandoin 2000), prediction tree (Gumhold
et al. 2005), etc. Recently, many works have focused on
designing octree context for arithmetic coding to compress
bitstream. (Song et al. 2021) aggregated voxels in reduced
space by removing free regions and acquires a compact con-
text model for LiDAR compression. (Garcia and de Queiroz
2018) reordered the node sequences to improve the intra-
frames lossless geometric compression.

All of the above methods model the context by hand-
crafted features. (Lei, Akhtar, and Mian 2019; Riegler, Os-
man Ulusoy, and Geiger 2017; Wang et al. 2017) mainly
introduce new convolution methods under the octree frame-
work. OctSqueeze (Huang et al. 2020) is the first octree-
based deep learning entropy model by modeling the depen-
dency among node and its multiple ancestor nodes. MuS-
CLE (Biswas et al. 2020) reduced the temporal redundancy
by exploiting spatio-temporal relationships across LiDAR
sweeps. Both methods avoid high computational complex-
ity, yet the strong dependency among sibling nodes is ig-
nored. VoxelContext-Net (Que, Lu, and Xu 2021) partly
solved this problem by employing voxel and octree hybrid
structure to learn the context in the previous octree depth.
However, features from higher resolution (i.e., from sibling
nodes) are still ignored. Besides, as shown in Fig. 1, given
a fixed-size voxel-based context, its receptive field shrinks
with the increased octree depth. Due to the computational
overhead, the receptive field of the voxel-based approach is
limited, which restricts the ability to model the context. Our
proposed method can acquire more than 500 × 500 × 500
voxels receptive field (9 × 9 × 9 in VoxelContext-Net).
Meanwhile, we introduce sibling nodes and their ancestors
in the context. The extended context contains more poten-
tially helpful information to model the distribution of octree
nodes.
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Figure 2: The overview architecture of OctAttention (Left). The number in the node indicates the corresponding occupancy code
in decimal. The point cloud is first encoded into an octree, in which an octree node is characterized by its occupancy code, level,
and octant. These 3 features are embedded separately. For example, we construct a context window (red) with length N = 8.
The involvement of 3 layers of ancestors in the context window is marked green (i.e. the context window height K = 4). While
encoding a node (blue), the context in the window is then fed into a masked context attention module (Right) and eventually
utilized to model the occupancy code distribution by multi-layer perceptron (MLP). Finally, we use the estimated distribution
to encode the serialized occupancy code into the final compressed bit stream by the arithmetic encoder.

Methodology
We propose an extended context and a tree-structured atten-
tion mechanism, which is shown in Fig. 2. Intuitively, nodes
with similar ancestors and siblings tend to follow a similar
distribution. Therefore, the proposed context exploits fea-
tures from siblings and their ancestors, which are benefi-
cial for inference. To achieve accurate and flexible predic-
tion with a large-scale context, we employ a tree-structured
attention mechanism to determine the importance of each
node in the context. Finally, we infer the occupancy of each
octree node based on the attention context. We further pro-
pose a mask operation to counteract the increased coding
time caused by the involvement of the sibling context.

Octree Structure
Octree is an efficient approach to organizing a point cloud
(see Fig. 1). Given a point cloud P , we translate the point
cloud by an offset = (min(Px),min(Py),min(Pz)), and
quantize it by quantization step qs:

PQ = round

(
P − offset

qs

)
(1)

qs ≥ max(P )−min(P )

2L − 1
(2)

An octree divides the cube space along the maximum side
length of the bounding box of PQ into 8 equal octants re-
cursively. The occupancy status of 8 children cubes consti-
tutes an 8-bit binary occupancy code. Only the nonempty
child cubes will be flagged as 1 and be further subdivided.
Other unoccupied cubes will be flagged as 0. The divi-
sion will be terminated at the given depth L. At the leaf
nodes, an 8-bit occupancy code represents 8 cubes whose

side length equals the quantization step qs. Points in the
P are aligned and merged with the nearest corresponding
cube. The point cloud is reconstructed by inverse quantiza-
tion: P̂ = PQ ∗ qs + offset. Given the reconstructed point
cloud P̂ , the reconstruction error will be controlled in:

e = max
i

||P̂i − Pi||∞ ≤ qs

2
(3)

The geometric compression loss of our method only comes
from quantization error in Eq. (3). Therefore, we are allowed
to increase the octree depth L to achieve the arbitrary re-
quired accuracy.

Context Model
According to Shannon’s source coding theorem (Shan-
non 2001), given an octree in breadth-first search fash-
ion x = {x1, . . . , xi, . . .}, its bitrate is lower bounded
by its information entropy. Since the ground truth dis-
tribution P (x) is high-dimensional and unknown, we es-
timate a probability Q(x) by a network with prior in-
formation to guide the arithmetic coder. The closer the
estimated probability is to ground truth, the closer the
actual bitrate Ex∼P [− log2 Q(x)] is to its lower bound
Ex∼P [− log2 P (x)]. Therefore, we aim to estimate accu-
rate occupancy distribution to reduce the bitrate. We be-
lieve that exploiting more features in the context benefits
this goal. Large-scale context is significant in extending the
receptive field of context and searching for dependency in
a wide range. Sibling nodes also serve as a complement of
low-level local geometry features. For example, leaf sibling
nodes are likely to distribute on the neighboring surface in
the point cloud and have similar geometry patterns, which
the sibling context can capture.
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We propose an expanded large-scale context to achieve
more accurate probability estimation. We first traverse the
octree in a breadth-first order. Then for each currently en-
coding node ni in the sequence, we construct a context win-
dow {ni−N+1, . . . , nk, . . . , ni−1, ni} with the length of N
(see Fig. 2 Left). The currently encoding node is at the end
of the window, and the local context window slides forward
with the currently encoding node moving forward. In this
manner, we select N − 1 sibling nodes to exploit the strong
dependency among the nodes at the same depth. Consider-
ing the dependency between the nodes and their ancestor
nodes, we further introduce K − 1 ancestors of the N nodes
in the context window, respectively. In summary, we inte-
grate N ∗K related nodes and greatly expand the contexts.
Specifically, we factorize distribution Q(x) into a product of
conditional probabilities of each occupancy symbol xi as:

Q(x) =
∏
i

qi
(
xi | f i−N+1, . . . ,fk, . . . ,f i;w

)
(4)

where xi ∈ {1, 2, . . . , 255} is the occupancy symbol of cur-
rently encoding node ni. High-dimensional vector fk =

[h
(0)
k ,h

(1)
k ,h

(2)
k , ...,h

(K−1)
k ] denotes the concatenation of

embedding features of nodes nk and features of its K − 1
ancestors, which are defined as the embedding of their oc-
cupancy, depth and octant. w denotes the context model pa-
rameters.

Voxel-based methods naturally exploit the low-level ge-
ometry features preserved by a voxel representation. How-
ever, in an octree, these low-level features are hidden in the
octree nodes. We employ an embedding for each node in
the context window to reveal these features. Node informa-
tion is embedded to a fixed-length vector respectively and
then concatenated as hk = [SkW1, LkW2, OkW3], where
Sk, Lk, Ok are one-hot coded occupancy, level index and
octant index, and W is their respective embedding matrix.
Embedding also serves as normalization for the three dif-
ferent scale variables. It should be noted that the depth and
octant of ni are already available while decoding ni, yet its
occupancy code xi is unknown, so we pad it with xi−1.

In this manner, we utilize the features from sibling nodes
and their ancestors, which are significant to prediction. Pre-
vious octree-based works (Huang et al. 2020; Biswas et al.
2020) ignored it. In these works, node ni is assumed to
be conditional independence under the condition f i. We
strengthen this condition by expanding the context. Thus we
make a more general assumption. Meanwhile, we avoid the
inefficient sparse context and tremendous incremental com-
putations caused by expanding the context in previous voxel-
based works (Que, Lu, and Xu 2021). The receptive field of
the proposed context can exceed 1000 octree nodes, which
is extremely difficult to be achieved in voxel-based methods.

Tree-Structured Attention
By expanding the context, more information is available for
inference. However, a portion of nodes in the context is
worthless. See Fig. 2 (Right). We adopt the self-attention
mechanism (Vaswani et al. 2017) to discover similarity and
strong dependency among the nodes, filter out irrelevant

nodes, and emphasize useful ones. Since self-attention ef-
fectively tackles long-range dependence, it is also appropri-
ate in a large-scale context. Meanwhile, attention achieves
flexible inference by evaluating weights varying with the in-
put. Intuitively, nodes having similar ancestors and siblings
tend to follow similar distribution, hence it is reasonable to
estimate the occupancy based on similarity among siblings
to the estimated node ni. We omit shortcuts and normaliza-
tion for brief illustration. In the head t (t = 0, 1, ...,K − 1),
the attention score scalar in attention map between the mth

and nth sibling node in the context window is defined as:

a(t)m,n =
exp(MLP1(h

(t)
m ) · MLPT

2 (h
(t)
n ))∑m

k=i−N+1 exp(MLP1(h
(t)
m ) · MLPT

2 (h
(t)
k ))

(5)

where n ≤ m,m = i−N + 1, ..., i. The summation for
node nm ends at m since a mask operation is applied to the
attention map to achieve fast encoding, which is discussed
in the next section. With attention mechanism, we can draw
weighted context as:

C
(t)
i =

i∑
k=i−N+1

a
(t)
i,k · MLP3(h

(t)
k ) (6)

In summary, the contexts are fed to 2 layers of multi-head
self-attention MultiHead(f , i) = MLP([C(0)

i , ...,C
(K−1)
i ])

and multi-layer perception (MLP) successively, and finally
outputs a 255-dimensional probability for ni:

qi (· | f ;w) = softmax(MLP(MultiHead(2)(f , i))) (7)

Mask operation
The estimated probability is adopted to guide the arithmetic
coder, which codes the octree nodes sequentially in a loss-
less way. Previous methods (Huang et al. 2020; Que, Lu,
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Figure 3: Illustration of mask operation. The vertical line
represents the involvement of octant and level information.
(a) Without mask. N0 = 1 and receptive field of encoded
nodes is 6. (b) With mask. N0 = 3 and receptive fields of
encoded nodes are 4,5,6. Meanwhile, it reduces encoding
time by 3 times compared to (a).

628



and Xu 2021) excluded siblings from contexts and only de-
pend on ancestors. Hence they can naturally parallelize en-
coding and decoding within each level. Without mask opera-
tion, as shown in Fig. 3(a), given a sliding window, we adopt
all N − 1 siblings in the context to predict the last node in
the context window. It is difficult to achieve the same par-
allelization since we can only encode the last node in one
propagation. To reduce encoding time, we introduce a mask
operation in Eq. (5) which assigns a varied-length recep-
tive field for each node. Each node is restricted to the ac-
cess of the previous nodes in the context window at training
and testing. As shown in Fig. 3(b), in this way, Eq. (7) can
equally apply to the last N0 nodes. Hence we are allowed to
encode them simultaneously in one propagation. While en-
coding the jth node in the window, only j nodes are available
for inference. Compared to the way of maximum receptive
field in Fig. 3(a), on average, the receptive field of each node
shrinks from N to (2N −N0 +1)/2. Nevertheless, the cod-
ing time reduces by N0 times. The parameter N0 balances
the receptive field and coding time. Although the receptive
field shrinks, we find there is negligible performance loss as
the result of the mask operation during the training.

Learning
We optimize the cross-entropy between the predicted occu-
pancy code and ground-truth, which is defined as:

ℓ = −
∑
i

log qi (xi | f ;w) (8)

Here, qi (xi | f ;w) is the estimated probability of occu-
pancy code xi at node ni, which is defined in Eq. (7).

Experiments
Datasets
LiDAR Dataset SemanticKITTI (Behley et al. 2019) is
a large sparse LiDAR dataset for self-driving. It is col-
lected from a Velodyne HDL-64E sensor and contains 43552
scans with 4549 million points. Following VoxelContext-
Net (Que, Lu, and Xu 2021), we normalize the raw data into
[−1, 1]3 as reference point cloud and use sequences 00 to 10
(including 23201 scans) for training, and sequences 11 to 21
(including 20351 scans) for testing.

Object Point Cloud Dataset Microsoft Voxelized Upper
Bodies (MVUB) (Charles et al. 2016) is a dynamic vox-
elized point cloud dataset containing five half-body subjects
sequences with 9 and 10-bit precision. 8i Voxelized Full
Bodies (MPEG 8i) (Eugene et al. 2017) includes sequences
of smooth surface and complete human shape point clouds
with 10 and 12-bit precision. Following the setting of Vox-
elDNN (Nguyen et al. 2021a), we use Andrew10, David10,
Sarah10 sequences in MVUB, Soldier10 and Longdress10
sequences in MPEG 8i for training. We select several point
cloud sequences with different resolutions for testing. All
testing point clouds were not used during training.

Experimental Details
Baseline In the static LiDAR lossy compression experi-
ment, we quantize the point cloud P by Eq. (1), and set

L from 8 to 12 to perform RD control. We compare our
method against state-of-the-art methods VoxelContext-Net
(Que, Lu, and Xu 2021) and Octsqueeze (Huang et al.
2020) in LiDAR compression. Since the source codes of the
above methods are not publicly available, we keep our train-
ing/testing setting consistent with VoxelContext-Net and use
the results in the paper.

In object point cloud compression, we set qs = 1 in
Eq. (1) to perform lossless compression. We compare our
method with the hand-crafted inter-frame octree-based con-
texts model P(full) (Garcia et al. 2019), state-of-the-art com-
pression method VoxelDNN (Nguyen et al. 2021a) and its
fast version MSVoxelDNN (Nguyen et al. 2021b). We set the
training condition following VoxelDNN and test the models
on different depth data. In addition, we also compare against
the most usual hand-crafted methods: G-PCC from MPEG
standard in the latest version (TMC13 v14.0) (MPEG 2021).

Training and Testing Strategy For the static LiDAR
compression, we train a single model with the max octree
depth of 12 as our model can learn the distribution of all lay-
ers in one model. While testing, we truncate the octree over
8-12 levels to evaluate our model at different bitrates. For
object dataset compression, we train one model using the
octree sequence data converted from point clouds at depths
9 and 10. We also evaluate our model on data with differ-
ent geometry precision to verify robustness. We implement
our model in PyTorch and perform the training/testing with
Xeon E5-2637 CPU and one NVIDIA TITAN Xp GPU (12G
memory). We use batch sizes of 32, epochs of 8 and Adam
optimizer with a learning rate of 1e−3. It takes 2 days to
train our model in each experiment. Occupancy, level index,
and octant index are embedded into 128, 6, and 4 dimen-
sions, respectively. We set K = 4, N = N0 = 1024 and use
2 layers and 4 heads in multi-head self-attention in experi-
ments unless otherwise specified.

Evaluation Metrics It is important to adopt the same eval-
uation metrics to make a fair comparison. Following the
MPEG standards (Schwarz et al. 2018), we use two stan-
dard metrics which measure geometry reconstruction quality
named point to point PSNR (D1 PSNR) and point to plane
PSNR (D2 PSNR) in lossy geometry compression. Both of
them can be calculated by the MPEG tool pc error. We esti-
mate the normal at each point using the MATLAB function
pcnormals. We also report chamfer distance (CD) and set
PSNR peak value r = 1 following VoxelContext-Net. We
correct its results from correspondence with the authors by
eliminating inconsistencies in the PSNR formula. As for the
object dataset, we adopt the official default configuration in
TMC13. We use bits per point (bpp) to measure the perfor-
mance. Unless otherwise specified, all distortion curves and
bitrates are obtained by averaging over sequence.

Experiment Results
Results for Static LiDAR Compression The rate-
distortion curves of LiDAR compression are shown in Fig.
4. We compare our method with VoxelContext-Net with-
out coordinate refinement model (i.e., VoxelContext-Net w/o
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Figure 4: Experimental results of different methods on SemanticKITTI at different bitrates.

Point Cloud Frames P(full) G-PCC VoxelDNN MSVoxelDNN OctAttention
(ours)

Gain over
G-PCC

Microsoft Voxelized Upper Bodies (MVUB)
Phil9 245 1.43 1.23 0.92 - 0.83 -32.60%

Phil10 245 - 1.07 0.83 1.02 0.79 -25.97%
Ricardo9 216 1.34 1.04 0.72 - 0.72 -31.20%
Ricardo10 216 - 1.07 0.75 0.95 0.72 -32.53%
Average - 1.34 0.95 0.81 0.99 0.76 -30.58%

8i Voxelized Full Bodies (MPEG 8i)
Loot10 300 1.03 0.95 0.64 0.73 0.62 -35.12%

Redandblack10 300 1.23 1.09 0.73 0.87 0.73 -32.84%
Boxer9/10 1 - 0.96/0.94 0.76/- -/0.70 0.60/0.59 -37.94%

Thaidancer9/10 1 - 0.99/0.99 0.81/- -/0.85 0.64/0.65 -34.51%
Average - 1.13 0.99 0.73 0.79 0.64 -35.10%

Table 1: Average bits per point (bpp) results of different methods on MVUB and MPEG 8i.

CRM) for fairness, as post-processing is irrelevant to com-
pression performance evaluation. Our method outperforms
other baselines at all bitrates. On average, our approach
(i.e., OctAttention) saves 25.4% bitrates on SemanticKITTI
compared with G-PCC, while OctSqueeze only saves less
than 4% bitrates. Our method achieves more than 11% rela-
tive reduction in bitrate versus the state-of-the-art method
VoxelContext-Net at high bitrates. It may be due to the
voxel-based method failing in the sparse scenario that lacks
occupied voxels. The experiment results demonstrate the ef-
fectiveness of our large receptive field context model.

Results for Object Point Cloud Compression In Table 1,
we provide the bpp results for lossless compression on ob-
ject point clouds. Our method outperforms VoxelDNN and
achieves a 32.8% gain over G-PCC on average.

Ablation Study and Analysis
Context Window Length We perform an ablation experi-
ment on SemanticKITTI to demonstrate the effectiveness of
a large receptive field context. We set N0 = N so that each
node is predicted only once and the average receptive field is
(N+1)/2. We then alter the context window size N , and the
number of parameters in our model remains unchanged. As
shown in Table 2, we can save 14% bitrates by enlarging the
context window size from 8 to 1024. The encoding time de-
creases with increased context window size due to our mask
operation, where we decrease I/O by N0 times. Decoding

Size N
Bpp on SemanticKITTI time / K nodes (s)
D=8 D=10 D=12 encode decode

8 0.160 1.086 4.371 0.1628 1.5091
16 0.158 1.081 4.334 0.0828 1.5218
32 0.148 1.008 4.069 0.0387 1.5272
256 0.142 0.959 3.823 0.0055 1.5336
512 0.142 0.956 3.806 0.0028 1.5949

1024 0.139 0.939 3.740 0.0015 1.6093

Table 2: Performance and runtime when using various con-
text window size N . ‘D’ stands for the max octree depth and
‘time’ is the duration for coding per 1000 octree nodes.

time does not increase significantly since the time consump-
tion is primarily in I/O. To balance the decoding time and
performance, we set N = 1024.

Effectiveness of Attention and Sibling Context As the
visualization in Fig. 5, the attention mechanism discovers
the similarity among points in a context window accord-
ing to geometry patterns such as line, plane, surface, and
curvature. The node with the highest attention score to the
currently encoding nodes (red points) is colored in yellow.
It confirms that the attention mechanism can predict occu-
pancy by integrating similar features from sibling nodes in
a large-scale context. In Table 3, we set N = 256 and re-
moved the attention and sibling features respectively for the
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currently encoding point

uncoded point

coded point

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

attention score

Figure 5: Attention score visualization. Each subfigure is a context window with size N = 1024. Points in the currently
encoding octree node i voxel are colored in red, and other points in node k are colored as their normalized attention score ai,k
to node i. Unavailable points (i.e., they have not been coded yet) are colored in grey.

Backbone Sibling Bpp on SemanticKITTI
D=8 D=9 D=10 D=11 D=12

MLP 0.195 0.533 1.315 2.847 5.246
✓ 0.163 0.450 1.117 2.438 4.512

Attention 0.197 0.530 1.289 2.767 5.073
✓ 0.142 0.391 0.959 2.074 3.823

Table 3: Performance ablation study on backbone and sib-
ling context. Backbone ‘MLP’ stands for the shared multi-
layer perception architecture like OctSqueeze.
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Figure 6: Performance at different geometry precision.

ablation study. The results further illustrate the effectiveness
of attention mechanism and sibling-involved context.

Robustness to Varying Point Densities To evaluate Oc-
tAttention robustness to varying point densities, we test point
clouds with additional geometry precisions and point densi-
ties. See Fig. 6. VoxelDNN only outperforms G-PCC on the
geometry precision of 10. Its performance drops on sparse
point clouds due to the lack of occupied voxels in the con-
text. Since we adopt an octree structure with a fixed-length
context window, our method’s performance is shown to be

Average encoding time (s)
Methods G-PCC VoxelDNN MSVoxelDNN Ours
MPEG 8i 0.35 2459 54 0.41
MVUB 0.31 4124 85 0.38

Average decoding time (s)
Methods G-PCC VoxelDNN MSVoxelDNN Ours
MPEG 8i 0.19 6274 58 769
MVUB 0.16 10332 92 659

Table 4: Coding time (in seconds) on object point clouds.

stable with varying point densities.

Runtime The number of parameters in our model is
2.67M. See table 4. Our method saves 95% encoding time
and 91% decoding time compared with VoxelDNN (Nguyen
et al. 2021a). Our approach can be applied to real-time point
cloud encoding and offline point cloud decompression. We
believe it is possible to speed up the decoding by dividing the
octree into disjoint subtrees and developing a GPU-based al-
gorithm like an arithmetic encoder.

Conclusion
We proposed a novel octree-based entropy model called Oc-
tAttention for sparse and dense point cloud geometry com-
pression by exploiting large-scale contexts. Specifically, we
extend the context and introduce sibling nodes in the octree.
We employ the attention mechanism to emphasize the sig-
nificant nodes to utilize these abundant features. We further
propose a mask operation to achieve parallel encoding under
the condition of introducing siblings in the context. We eval-
uate our method on both the LiDAR and object point cloud
datasets. The results demonstrate that the proposed method
achieves state-of-the-art on both types of datasets.
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