
PatchUp: A Feature-Space Block-Level Regularization Technique for
Convolutional Neural Networks

Mojtaba Faramarzi1, 2, Mohammad Amini1, 3, Akilesh Badrinaaraayanan1, 2, Vikas Verma1, 2, 4,
Sarath Chandar 1, 5

1Mila - Quebec AI Institute
2University of Montreal

3McGill University
4Aalto Univeristy, Finland

5École Polytechnique de Montréal

Abstract
Large capacity deep learning models are often prone to a high
generalization gap when trained with a limited amount of la-
beled training data. A recent class of methods to address this
problem uses various ways to construct a new training sam-
ple by mixing a pair (or more) of training samples. We pro-
pose PatchUp, a hidden state block-level regularization tech-
nique for Convolutional Neural Networks (CNNs), that is ap-
plied on selected contiguous blocks of feature maps from a
random pair of samples. Our approach improves the robust-
ness of CNN models against the manifold intrusion problem
that may occur in other state-of-the-art mixing approaches.
Moreover, since we are mixing the contiguous block of fea-
tures in the hidden space, which has more dimensions than
the input space, we obtain more diverse samples for train-
ing towards different dimensions. Our experiments on CI-
FAR10/100, SVHN, Tiny-ImageNet, and ImageNet using
ResNet architectures including PreActResnet18/34, WRN-
28-10, ResNet101/152 models show that PatchUp improves
upon, or equals, the performance of current state-of-the-art
regularizers for CNNs. We also show that PatchUp can pro-
vide a better generalization to deformed samples and is more
robust against adversarial attacks.

1 Introduction
Deep Learning (DL), particularly deep Convolutional Neu-
ral Networks (CNNs) have achieved exceptional perfor-
mance in many machine learning tasks, including object
recognition (Krizhevsky, Sutskever, and Hinton 2012), im-
age classification (Krizhevsky, Sutskever, and Hinton 2012;
Ren et al. 2015; He et al. 2015), speech recognition (Hinton
et al. 2012) and natural language understanding (Sutskever,
Vinyals, and Le 2014; Vaswani et al. 2017). However, in a
very deep and wide network, the network has a tendency
to memorize the samples, which yields poor generaliza-
tion for data outside of the training data distribution (Arpit
et al. 2017; Goodfellow, Bengio, and Courville 2016). To
address this issue, noisy computation is often employed dur-
ing the training, making the model more robust against in-
variant samples and thus improving the generalization of the
model (Achille and Soatto 2018). This idea is exploited in
several state-of-the-art regularization techniques.

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Such noisy computation based regularization tech-
niques can be categorized into data-dependent and data-
independent techniques (Guo, Mao, and Zhang 2018). Ear-
lier work in this area has been more focused on the
data-independent techniques such as Dropout (Srivastava
et al. 2014), Variational Dropout (Gal and Ghahramani
2016) and ZoneOut (Krueger et al. 2016), Information
Dropout (Achille and Soatto 2018), SpatialDropout (Tomp-
son et al. 2014a), and DropBlock (Ghiasi, Lin, and Le 2018).
Dropout performs well on fully connected layers (Srivas-
tava et al. 2014). However, it is less effective on convolu-
tional layers (Tompson et al. 2014b). One of the reasons
for the lack of success of dropout on CNN layers is per-
haps that the activation units in the convolutional layers
are correlated, thus despite dropping some of the activation
units, information can still flow through these layers. Spa-
tialDropout (Tompson et al. 2014b) addresses this issue by
dropping the entire feature map from a convolutional layer.
DropBlock (Ghiasi, Lin, and Le 2018) further improves Spa-
tialDropout by dropping random continuous feature blocks
from feature maps instead of dropping the entire feature map
in the convolutional layers.

Data-augmentation also is a data-dependent solution to
improve the generalization of a model. Choosing the best
augmentation policy is challenging. AutoAugment (Cubuk
et al. 2019) finds the best augmentation policies using rein-
forcement learning with huge computation overhead. Aug-
Mix (Hendrycks et al. 2020) reduces this overhead by
using stochasticity and diverse augmentations and adding
a Jensen-Shannon Divergence consistency loss to train-
ing loss. Recent works show that data-dependent regular-
izers can achieve better generalization for CNN models.
Mixup (Zhang et al. 2017), one such data-dependent regu-
larizer, synthesizes additional training examples by interpo-
lating random pairs of inputs xi, xj and their corresponding
labels yi, yj as:

x̃ = λxi + (1− λ)xj and ỹ = λyi + (1− λ)yj , (1)

where λ ∈ [0, 1] is sampled from a Beta distribution such
that λ ∼ Beta(α, α) and (x̃, ỹ) is the new example. By
using these types of synthetic samples, Mixup encourages
the model to behave linearly in-between the training sam-
ples. The mixing coefficient λ in Mixup is sampled from

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

589



Figure 1: PatchUp process for two hidden representations associated with two samples randomly selected in the mini-batch
(a, b). X1 = g

(i)
k (a) and X2 = g

(i)
k (b) where i is the feature map index. Right top shows Hard PatchUp output and the right

bottom shows the interpolated samples with Soft PatchUp. The yellow continuous blocks represent the interpolated selected
blocks.

a prior distribution. This may lead to the manifold intru-
sion problem (Guo, Mao, and Zhang 2018): the mixed syn-
thetic example may collide (i.e. have the same value in the
input space) with other examples in the training data, es-
sentially leading to two training samples which have the
same inputs but different targets. To overcome the mani-
fold intrusion problem, MetaMixUp (Mai et al. 2019) used
a meta-learning approach to learn λ with a lower possibility
of causing such collisions. However, this meta-learning ap-
proach adds significant computation complexity. Manifold-
Mixup (Verma et al. 2019) attempts to avoid the manifold in-
trusion problem by interpolating the hidden states (instead of
input states) of a randomly chosen layer at every training up-
date. Recently, Puzzle Mix (Kim, Choo, and Song 2020) ex-
plicitly exploits an optimized masking strategy for the Input
Mixup. It uses the saliency information and the underlying
statistics of pair of images to avoid manifold intrusion prob-
lems at each batch training step. Puzzle Mix adds computa-
tion overhead at training time to find an optimal mask policy
while improving the performance of the model in compari-
son to Mixup and ManifoldMixup.

Different from the interpolation-based regularizers dis-
cussed above, Cutout (DeVries and Taylor 2017) drops the
contiguous regions from the image in the input space. This
kind of noise encourages the network to learn the full context
of the images instead of overfitting to the small set of visual
features. CutMix (Yun et al. 2019) is another data-dependent
regularization technique that cuts and fills rectangular shape
parts from two randomly selected pairs in a mini-batch in-
stead of interpolating two selected pairs completely. Apply-
ing CutMix at the input space improves the generalization of
the CNN model by spreading the focus of the model across
all places in the input instead of just a small region or a small
set of intermediate activations. According to the CutMix pa-
per, applying CutMix at the latent space, Feature CutMix, is
not as effective as applying CutMix in the input space (Yun
et al. 2019).

In this work, we introduce a feature-space block-level

data-dependent regularization that operates in the hidden
space by masking out contiguous blocks of the feature map
of a random pair of samples, and then either mixes (Soft
PatchUp) or swaps (Hard PatchUp) these selected contigu-
ous blocks. Our regularization method does not incur sig-
nificant computational overhead for CNNs during training.
PatchUp improves the generalization of ResNet architec-
tures on image classification task (on CIFAR-10, CIFAR-
100, SVHN, and Tiny-ImageNet), deformed images classi-
fication, and against adversarial attacks. It also helps a CNN
model to produce a wider variety of features in the resid-
ual blocks compared to other state-of-the-art regularization
methods for CNNs such as Mixup, Cutout, CutMix, Mani-
foldMixup, and Puzzle Mix.

2 PatchUp
PatchUp is a hidden state block-level regularization tech-
nique that can be used after any convolutional layer in CNN
models. Given a deep neural network f(x) where x is the
input, let gk be the k-th convolutional layer. The network
f(x) can be represented as f(x) = fk(gk(x)) where gk is
the mapping from the input data to the hidden representation
at layer k and fk is the mapping from the hidden represen-
tation at layer k to the output (Verma et al. 2019). In every
training step, PatchUp applies block-level regularization at
a randomly selected convolutional layer k from a set of in-
termediate convolutional layers. appendix-B gives a formal
intuition for selecting k randomly.

Binary Mask Creation
Once a convolutional layer k is chosen, the next step is to
create a binary mask M (of the same size as the feature map
in layer k) that will be used to PatchUp a pair of examples
in the space of gk(x). The mask creation process is similar
to that of DropBlock (Ghiasi, Lin, and Le 2018). The idea is
to select contiguous blocks of features from the feature map
that will be either mixed or swapped with the same features

590



in another example. To do so, we first select a set of fea-
tures that can be altered (mixed or swapped). This is done
by using the hyper-parameter γ which decides the probabil-
ity of altering a feature. When we alter a feature, we also
alter a square block of features centered around that feature
which is controlled by the side length of this square block,
block size. Hence, the altering probabilities are readjusted
using the following formula (Ghiasi, Lin, and Le 2018):

γadj =
γ × (feature map’s area)

(block’s area)× (valid region to build block)
, (2)

where the area of the feature map and block are the
feat size2 and block size2, respectively, and the valid
region to build the block is (feat size − block size +
1)2. For each feature in the feature map, we sample from
Bernoulli(γadj). If the result of this sampling for feature
fij is 0, then Mij = 1. If the result of this sampling for fij
is 1, then the entire square region in the mask with the cen-
terMij and the width and height of the square of block size
is set to 0. Note that these feature blocks to be altered can
overlap which will result in more complex block structures
than just squares. The block structures created are called
patches. Fig.1 illustrates an example mask used by PatchUp.
The mask M has 1 for features outside the patches (which
are not altered) and 0 for features inside the patches (which
are altered). See Fig. 9 and 8 in Appendix for more details.

PatchUp Operation
Once the mask is created, we can use the mask to select
patches from the feature maps and either swap these patches
(Hard PatchUp) or mix them (Soft PatchUp).

Consider two samples xi and xj . The Hard PatchUp op-
eration at layer k is defined as follows:
φhard(gk(xi), gk(xj)) = M� gk(xi)+ (1−M)� gk(xj),

(3)
where � is known as the element-wise multiplication op-
eration and M is the binary mask described in section 2.
To define Soft PatchUp operation, we first define the mixing
operation for any two vectors a and b as follows:

Mixλ(a, b) = λ · a+ (1− λ) · b, (4)
where λ ∈ [0, 1] is the mixing coefficient. Thus, the Soft
PatchUp operation at layer k is defined as follows:
φsoft(gk(xi), gk(xj)) =M� gk(xi) + Mixλ[((1−M)

� gk(xi)), ((1−M)� gk(xj))],
(5)

where λ in the range of [0, 1] is sampled from a Beta distri-
bution such that λ ∼ Beta(α, α). α controls the shape of the
Beta distribution. Hence, it controls the strength of interpo-
lation (Zhang et al. 2017). PatchUp operations are illustrated
in Fig. 1 (see more details in Algorithm 1 in Appendix).

Learning Objective
After applying the PatchUp operation, the CNN model con-
tinues the forward pass from layer k to the last layer in the
model. The output of the model is used for the learning ob-
jective, including the loss minimization process and updat-
ing the model parameters accordingly. Consider the exam-
ple pairs (xi, yi) and (xj , yj). Let φk = φ(gk(xi), gk(xj))

be the output of PatchUp after the k-th layer. Mathemati-
cally, the CNN with PatchUp minimizes the following loss
function:
L(f) =E(xi, yi)∼P E(xj , yj)∼P Eλ∼Beta(α, α) Ek∼S

Mixpu [`(fk(φk), yi) , `(fk(φk), Y )]

+ `(fk(φk), W (yi, yj)),

(6)

where pu is the fraction of the unchanged features from fea-
ture maps in gk(xi) and S is the set of layers where PatchUp
is applied randomly. φ is φhard for Hard PatchUp and φsoft
for Soft PatchUp.
Y is the target corresponding to the changed features. In

the case of Hard PatchUp, Y = yj and in the case of Soft
PatchUp, Y = Mixλ(yi, yj). W (yi, yj) calculates the re-
weighted target according to the interpolation policy for yi
and yj . W for Hard PatchUp and Soft PatchUp is defined as
follows:

Whard(yi, yj) = Mixpu(yi, yj) (7)
Wsoft(yi, yj) = Mixpu(yi, Mixλ(yi, yj)). (8)

The PatchUp loss function has two terms where the first
term is inspired from the CutMix loss function and the sec-
ond term is inspired from the MixUp loss function (more
detail in Appendix-E).

PatchUp in Input Space
By setting k = 0, we can apply PatchUp to only the input
space. When we apply PatchUp to the input space, only the
Hard PatchUp operation is used, this is due to the reason
that, as shown in (Yun et al. 2019), swapping in the input
space provides better generalization compared to mixing.
Furthermore, we select only one random rectangular patch
in the input space (similar to CutMix) because the PatchUp
binary mask is potentially too strong for the input space,
which has only three channels, compared to hidden layers
in which each layer can have a larger number of channels
(more detail in section “4”).

3 Relation to Similar Methods
PatchUp Vs. ManifoldMixup: PatchUp and Manifold-
Mixup improve the generalization of a model by combin-
ing the latent representations of a pair of examples. Man-
ifoldMixup linearly mixes two hidden representations us-
ing Equation 4. PatchUp uses a more complex approach
ensuring that a more diverse subspace of the hidden space
gets explored. To understand the behaviour and the limita-
tion that exists in the ManifoldMixup, assume that we have
a 3D hidden space representation as illustrated in Fig.2. It
presents the possible combinations of hidden representations
explored via ManifoldMixup and PatchUp. Blue dots repre-
sent real hidden representation samples. ManifoldMixup can
produce new samples that lie directly on the orange lines
which connect the blue point pairs due to its linear inter-
polation strategy. But, PatchUp can select various points in
all dimensions, and can also select points extremely close to
the orange lines. The proximity to the orange lines depends
on the selected pairs and λ sampled from the beta distri-
bution. Fig.2 is a simple diagrammatic description of how

591



Figure 2: Left: ManifoldMixup interpolated samples for any
combination of the three blue hidden states selected only
from along orange line. Right: PatchUp can produce inter-
polated hidden representations for these three hidden states
in almost all possible places in all dimensions except the
samples which lie directly on the orange lines.

Figure 3: The two possible block selections from CutMix
for two samples (cat and dog) with a large background.
Swapping a similar part of the background or an essential
element correlated to the label in the selected images can
have a negative effect on the CutMix learning objective.

PatchUp constructs more diverse samples. Appendix-C pro-
vides a mathematical and real experimental justification.

PatchUp Vs. CutMix: The CutMix cuts and fills the rect-
angular parts of the randomly selected pairs instead of using
interpolation for creating a new sample in the input space.
Therefore, CutMix has less potential for a manifold intrusion
problem, however, CutMix may still suffer from a manifold
intrusion problem. Fig.3 shows two samples with small por-
tions that correspond to their labels. In this example, if only
the parts within the yellow bounding boxes are swapped,
then the label does not change. However, if the parts within
the white bounding boxes are swapped, then the entire label
is swapped. In both scenarios, CutMix only learns the inter-
polated target based on the fractions of the swapped part. In
contrast, these scenarios are less likely to occur in PatchUp
since it works in the hidden representation space most of the
time. Another difference between CutMix and PatchUp is
how the masks are created. PatchUp can create arbitrarily
shaped masks while CutMix masks can only be rectangular.
Fig. 8 (appx.) shows an example of CutMix and PatchUp
masks in input space and hidden representation space, re-
spectively. CutMix is more effective than Feature-CutMix
that applies CutMix in the latent space (Yun et al. 2019). The
learning objective of PatchUp and the binary mask selection
are both different from that of Feature-CutMix.

4 Experiments
This section presents the results of applying PatchUp to im-
age classification tasks using various benchmark datasets
such as CIFAR10, CIFfAR100 (Krizhevsky, Hinton et al.
2009), SVHN (the standard version with 73257 training
samples) (Netzer et al. 2011), Tiny-ImageNet (Chrabaszcz,
Loshchilov, and Hutter 2017), and with various bench-
mark architectures such as PreActResNet18/34 (He et al.
2016), and ResNet101, ResNet152, and WideResNet-28-
10 (WRN-28-10) (Zagoruyko and Komodakis 2017)1. We
used the same set of base hyper-parameters for all the
models for a thorough and fair comparison. The details
of experimental setup and the hyper-parameter tuning are
given in appendix-E. We set α to 2 in PatchUp. PatchUp

1The code is available: https://github.com/chandar-lab/PatchUp

has patchup prob, γ and block size as additional hyper-
parameters. patchup prob is the probability that PatchUp
is performed for a given mini-batch. Based on our hyper-
parameter tuning, Hard PatchUp yields the best perfor-
mance with patchup prob, γ, and block size as 0.7, 0.5,
and 7, respectively. Soft PatchUp achieves the best perfor-
mance with patchup prob, γ, and block size as 1.0, 0.75,
and 7, respectively.

Generalization on Image Classification
Table 2 shows the comparison of the generalization perfor-
mance of PatchUp with six recently proposed mixing based
or feature-level methods on the CIFAR10/100, and SVHN
datasets. Since Puzzle Mix clearly showed that both CutMix
and Puzzle Mix perform better than AugMix (Kim, Choo,
and Song 2020), we excluded it from our experiments. Ta-
bles 12 and 11 in appendix-I show test errors and NLLs. Our
experiments show that PatchUp leads to a lower test error for
all the models on CIFAR, SVHN, and Tiny-ImageNet with
a large margin. Specifically, Soft PatchUp outperforms other
methods on Tiny-ImageNet dataset using ResNet101/152,
and WRN-28-10 followed by Hard PatchUp. As explained
in appendix-C and shown in Fig. 10, both Soft and Hard
PatchUp produce a wide variety of interpolated hidden rep-
resentations towards different dimensions. However, Soft
PatchUp behaves more conservatively that helps to outper-
form other methods with a large margin in the case of a lim-
ited number of training samples per class and having more
targets.

Hard PatchUp provides the best performance in the CI-
FAR and Soft PatchUp achieves the second-best perfor-
mance except on the CIFAR10 with WRN-28-10 where
Puzzle Mix provides the second-best performance. In the
SVHN, ManifoldMixup achieves the second-best perfor-
mance in PreActResNet18 and 34 where Hard PatchUp pro-
vide the lowest top-1 error. Soft PatchUp performs reason-
ably well and comparable to ManifoldMixup for PreActRes-
Net34 on SVHN and leads to a lower test error followed
by Hard PatchUp for WRN-28-10 in the SVHN. We ob-
serve that the Mixup, ManifoldMixup, and Puzzle Mix are
sensitive to the α when we have more training classes. It
is notable that using the same α, that is used in CIFAR or
SVHN, leads to worst performance than No-Mixup in Tiny-

592



ResNet101 ResNet152 WideResnet-28-10
Error Loss Error Loss Eror Loss

No Mixup 46.18± 0.49 2.37± 0.03 45.22± 0.32 2.28± 0.08 36.76± 0.25 1.89± 0.02
Input Mixup (α = 1) 44.93± 0.34 2.25± 0.05 44.65± 0.11 2.23± 0.04 36.50± 0.29 1.88± 0.02
ManifoldMixup (α= 2) 44.54± 0.14 2.25± 0.01 44.13± 0.31 2.23± 0.02 35.96± 0.64 1.83± 0.06
Cutout 45.78± 0.35 2.35± 0.01 45.23± 0.19 2.34± 0.02 35.85± 0.11 1.83± 0.01
DropBlock 46.98± 0.53 2.27± 0.10 45.82± 0.22 2.17± 0.01 36.97± 0.38 1.89± 0.02
CutMix 42.04± 0.38 2.11± 0.01 41.71± 0.71 2.08± 0.03 35.81± 0.18 1.75± 0.08
Puzzle Mix 42.25± 0.19 2.13± 0.01 42.13± 0.31 2.13± 0.03 33.43± 0.22 1.65± 0.05
Soft PatchUp 38.68± 0.34 1.87± 0.01 38.11± 0.29 1.84± 0.02 29.81± 0.24 1.46± 0.04
Hard PatchUp 40.55± 0.15 1.94± 0.01 40.31± 0.18 1.93± 0.01 33.12± 0.11 1.57± 0.05

Table 1: Classification on Tiny-ImageNet. Best performance result is shown in bold, second best is underlined (five times).

ImageNet (Table 1) where others are almost stable (more
details in the Appendix). PatchUp and other methods reach
the reported performance with WRN-28-10 model on Tiny-
ImageNet after about 23 hours of training using one GPU
(V100). However, Puzzle Mix needs 53 hours for training
(more in Table 8-appx.).

PreActResNet18 CIFAR-10 CIFAR-100 SVHN
Test Error Test Error Test Error

No Mixup 4.80± 0.14 24.62± 0.36 3.04± 0.09
Input Mixup (α = 1) 3.63± 0.20 22.33± 0.32 2.93± 0.22
ManifoldMixup (α = 1.5) 3.39± 0.05 21.40± 0.38 2.44± 0.06
Cutout 4.22± 0.05 23.39± 0.19 2.79± 0.12
DropBlock 5.04± 0.15 25.02± 0.26 2.96± 0.11
CutMix 3.52± 0.90 22.18± 0.18 3.04± 0.05
Puzzle Mix 3.16± 0.11 20.65± 0.21 2.66± 0.04
Soft PatchUp 2.95± 0.12 19.95± 0.18 2.55± 0.06
Hard PatchUp 2.92± 0.13 19.12± 0.17 2.29± 0.08

PreActResNet34

No Mixup 4.64± 0.10 23.34± 0.27 3.09± 0.66
Input Mixup (α = 1) 3.26± 0.08 21.00± 0.44 2.86± 0.10
ManifoldMixup (α = 1.5) 2.93± 0.06 18.72± 0.31 2.42± 0.43
Cutout 3.69± 0.14 22.42± 0.08 2.65± 0.15
DropBlock 4.95± 0.19 23.74± 0.13 3.10± 0.08
CutMix 3.33± 0.07 19.94± 0.14 2.66± 0.05
Puzzle Mix 2.99± 0.07 19.97± 0.23 2.45± 0.08
Soft PatchUp 2.57± 0.06 18.63± 0.15 2.47± 0.08
Hard PatchUp 2.53± 0.05 17.69± 0.13 2.12± 0.02

WideResNet-28-10

No Mixup 4.24± 0.14 22.44± 0.23 2.83± 0.08
Input Mixup (α = 1) 3.27± 0.35 18.73± 0.15 2.64± 0.16
ManifoldMixup (α = 1.5) 3.25± 0.18 18.35± 0.38 2.43± 0.10
Cutout 3.13± 0.12 20.16± 0.35 2.48± 0.15
DropBlock 4.18± 0.07 22.36± 0.15 2.73± 0.06
CutMix 3.15± 0.12 18.32± 0.19 2.43± 0.05
Puzzle Mix 2.56± 0.07 17.53± 0.22 2.43± 0.07
Soft PatchUp 2.61± 0.05 16.73± 0.11 2.08± 0.07
Hard PatchUp 2.53± 0.07 16.13± 0.19 2.09± 0.06

Table 2: Image classification error rates on CIFAR10/100
and SVHN (five runs). The best performance result is shown
in bold, the second-best is underlined. The lower is better.

Since ManifoldMixup and Puzzle Mix show that they
perform better than No-Mixup and Input Mixup on affine
transformation and against adversarial attacks (Verma et al.
2019), we exclude No-Mixup and Input Mixup for the

tasks in the following sections. Table 3 shows that PatchUp
achieves a better error rate compared to other methods in the
ImageNet2012 dataset (Russakovsky et al. 2015). To have
a fair comparison, we used the same experiment setup pro-
posed in the CutMix paper (300 epochs). For Soft PatchUp
we set the gamma, patchup block, and patchup prob to 0.6,
7, and 1.0, respectively. For Hard PatchUp we set them to
0.5, 7, and 0.6, respectively.

Method Top-1 Error (%) Top-5 Error (%)

Vanilla∗ 23.68 7.05
Input Mixup∗ 22.58 6.40
Cutout∗ 22.93 6.66
ManifoldMixup∗ 22.50 6.21
FeatureCutMix∗ 21.80 6.06
CutMix∗ 21.40 5.92
PuzzleMix∗∗ 21.24 5.71
Soft PatchUp 21.06 5.57
Hard PatchUp 20.75 5.29

Table 3: Classification error rates on on the ILSVRC2012
(ImageNet2012) dataset. We include results from (Yun et al.
2019)∗ and (Kim, Choo, and Song 2020)∗∗.

Robustness to Common Corruptions
The common corruption benchmark helps to evaluate the ro-
bustness of models against the input corruptions (Hendrycks
and Dietterich 2019). It uses the 75 corruptions in 15
categories such that each has five levels of severity. We
compare the methods robustness in Tiny-ImageNet-C for
ResNet101/152, and WRN-28-10. So, we compute the sum
of error denoted as Efc where s is the level of severity and
c is corruption type such that Efc =

∑5
s=1E

f
s,c (Hendrycks

and Dietterich 2019). Fig.4 shows Soft PatchUp leads the
best performance in Tiny-ImageNet-C and Hard PatchUp
achieves the second-best. Figures 15a and b in Appendix
show the comparison results in ResNet101 and 152.

Generalization on Deformed Images
Affine transformations on the test set provide novel de-
formed data that can be used to evaluate the robustness of a
method on out-of-distribution samples (Verma et al. 2019).
We trained PreActResNet34 and WRN-28-10 on the CI-
FAR100. Then, we created deformed test from CIFAR100

593



Transformation cutout CutMix ManifoldMixup Puzzle Mix Soft PatchUp Hard PatchUp

Rotate (-20, 20) 37.45± 0.53 35.42± 0.33 35.44± 0.57 31.70± 0.66 31.14± 0.52 30.41± 0.52
Rotate (-40, 40) 58.75± 0.10 57.83± 0.59 54.42± 0.95 54.04± 0.80 53.42± 0.42 49.96± 0.80
Shear (-28.6, 28.6) 36.55± 0.49 34.15± 0.47 34.15± 0.42 31.63± 0.69 28.98± 0.50 29.57± 0.41
Shear (-57.3, 57.3) 57.74± 0.57 53.64± 0.59 55.44± 0.68 52.49± 0.39 49.10± 0.53 50.32± 0.62
Scale (0.6) 72.99± 1.23 54.30± 1.27 78.99± 1.13 59.70± 1.24 46.25± 1.20 50.06± 2.69
Scale (0.8) 35.09± 0.86 29.38± 0.58 34.62± 0.37 30.37± 0.36 23.94± 0.21 25.34± 0.33
Scale (1.2) 42.31± 0.71 49.52± 2.04 41.32± 0.64 47.40± 1.44 43.41± 0.65 38.01± 0.70
Scale (1.4) 69.40± 0.90 78.66± 1.85 65.94± 0.75 77.59± 0.97 77.07± 1.19 66.34± 1.22

Table 4: Error rates in the test set on samples subject to affine transformations for PreActResNet34 trained on CIFAR100
(repeated each test for five trained models). Best in bold, second best is underlined. The lower number is better.

by applying some affine transformations. Table 4 shows
that PatchUp provides the best performance on affine trans-
formed test and better generalization in PreActResNet34.
Table 10 (F-appx.) shows that the quality of representations
is improved by PatchUp and it shows better generalization
in deformed test on WRN-28-10. Generalization is signif-
icantly improved by PatchUp over existing methods by a
large margin, as is the quality of representations.

Figure 4: Errors in Tiny-ImageNet-C for WRN-28-10. The
y-axis is the sum of error rates for each category. The x-axis
represents the corruptions. The lower is better (five runs).

(a) CIFAR100. (b) Tiny-ImageNet.

Figure 5: WRN-28-10 robustness to FGSM attack (five
runs). The y-axis is the accuracy against FGSM attack. The
x-axis is the magnitude that controls the perturbation (ε).

Robustness to Adversarial Examples
Neural networks, trained with ERM, are often vulnerable
to adversarial examples (Szegedy et al. 2013). Certain data-

dependent methods can alleviate such fragility to adversarial
examples by training the models with interpolated data. So,
the robustness of a regularized model to adversarial exam-
ples can be considered as a criterion for comparison (Zhang
et al. 2017; Verma et al. 2019). Fig.5 compares the perfor-
mance of the methods on CIFAR100 and Tiny-ImageNet
with adversarial examples created by the FGSM attack de-
scribed in (Goodfellow, Shlens, and Szegedy 2014). Fig 13-
appx. contains further comparison on PreActResNet18/34
and WRN-28-10 for CIFAR10 and SVHN with FGSM at-
tacks. Table 5 shows the robust accuracy (in the range
of [0, 1]) for the Foolbox benchmark (Rauber, Brendel,
and Bethge 2018) against the 7-steps DeepFool (Moosavi-
Dezfooli, Fawzi, and Frossard 2016), Decoupled Direc-
tion and Norm (DDN) (Rony et al. 2019), Carlini-Wagner
(CW) (Carlini and Wagner 2017), and PGDL∞ (Madry et al.
2019) attacks with ε = 8

255 . We observe that PatchUp
is more robust to adversarial attacks compared to other
methods. While Hard PatchUp achieves better performance
in terms of classification accuracy, Soft PatchUp seems to
trade-off a slight loss of accuracy in order to achieve more
robustness.

Methods DeepFool DDN CW PGDL∞

No Mixup 0.17± 0.01 0.18± 0.01 0.18± 0.01 0.17± 0.01
Input Mixup 0.19± 0.01 0.20± 0.01 0.20± 0.01 0.19± 0.01
ManifoldMixup 0.20± 0.01 0.20± 0.01 0.20± 0.01 0.19± 0.01
Cutout 0.18± 0.01 0.185± 0.01 0.19± 0.01 0.18± 0.01
DropBlock 0.18± 0.01 0.186± 0.01 0.19± 0.01 0.18± 0.01
CutMix 0.17± 0.01 0.171± 0.01 0.17± 0.01 0.17± 0.01
Puzzle Mix 0.19± 0.01 0.191± 0.01 0.19± 0.01 0.19± 0.01
Soft PatchUp 0.19± 0.01 0.20± 0.01 0.20± 0.01 0.19± 0.01
Hard PatchUp 0.18± 0.01 0.19± 0.01 0.19± 0.01 0.18± 0.01

Table 5: Robust Accuracy of WRN-28-10 in the Tiny-
ImageNet dataset against adversarial 7-steps attacks with
ε = 8

255 . The α is 0.2 for Mixup, ManifoldMixup, and Puz-
zle Mix. Best performance result is shown in bold, second
best is underlined. The higher number is better (five runs).

Effect on Activations
To study the effect of the methods on the activations in the
residual blocks, we compared the mean magnitude of feature
activations in the residual blocks following (DeVries and
Taylor 2017) in WRN-28-10 for CIFAR100 test set. We train

594



the models with each method and then calculate the magni-
tudes of activations in the test set. The higher mean mag-
nitude of features shows that the models tried to produce a
wider variety of features in the residual blocks (DeVries and
Taylor 2017). Our WRN-28-10 has a conv2d module fol-
lowed by three residual blocks. We selected k randomly such
that k ∈ {0, 1, 2, 3}. And, we apply the ManifoldMixup and
PatchUp in either input space, the first conv2d, the first or
second residual blocks (results in Fig.7). Figure 6 shows

Figure 6: 1st (left) and 2st (right) Residual Block.

Figure 7: The effect of the methods on activations in WRN-
28-10 for CIFAR100 test set on the first and second Residual
Blocks. Each curve is the magnitude of the feature activa-
tions, sorted in descending value, and averaged over all test
samples. The higher magnitude indicates a wider variety of
the produced features by the model at each block.

that PatchUp produces more diverse features in the layers
where we apply PatchUp. Fig. 14-appx. shows the results in
first conv2d, first residual, second residual and third residual
blocks. Since we are not applying the PatchUp in the third
residual block, the mean magnitude of the feature activations
are below, but very close to, Cutout and CutMix. This also
shows that producing a wide variety of features can be an
advantage for a model. But, according to our experiments, a
larger magnitude of activations does not always lead better
performance. Fig.7 shows that for ManifoldMixup, the mean
magnitude of the feature activations is less than others. But,
it performs better than Cutout and CutMix in most tasks.

Significance of loss terms and analysis of k
PatchUp uses the loss that is introduced in Equation 6. We
can paraphrase the PatchUp learning objective for this abla-
tion study as follow:

L(f) = E(xi,yi)∼P
E(xj ,yj)∼P

Eλ∼Beta(α,α)Ek∼S (L1 + L2)

(9)

where L1 = Mixpu [`(fk(φk), yi), `(fk(φk), Y )] and L2 =
`(fk(φk),W (yi, yj)). We also show the effect of L1 and L2

in PatchUp loss. Table 6 shows the error rate on the vali-
dation set for WRN-28-10 on CIFAR100. This shows the
summation of the L1 and L2 reduces error rate by .1% in
PatchUp. We conducted an experiment to show the impor-
tance of random layer selection in PatchUp. Table 7 shows
the contribution of the random selection of the layer in the

overall performance of the method. In the left-most col-
umn 1/2/3 refers to PatchUp being applied to only one layer
(more details in the section “B” in appx.).

As noted in section “2”, the PatchUp mask is “too strong”
for the input space. Fig.8 shows that the PatchUp mask of-
ten drastically destroys the semantic concepts in the input
images. Thus, we select one random rectangular patch in the
input space (similar to CutMix). However, the learning ob-
jective in (k = 0) is still the PatchUp objective that is differ-
ent from CutMix. The last row in table 7 shows the negative
effect of applying PatchUp mask in the input space.

Simple Error Rate:
WRN-28-10 23.26± 0.59

Error with L1 Error with L2 Error with L(f)

Soft PatchUp 16.86± 0.67 16.87± 0.34 16.75± 0.29

Hard PatchUp 16.14± 0.23 16.79± 0.46 16.02± 0.36

Table 6: The validation error on CIFAR100 for WRN-28-10
with Hard and Soft PatchUp. The lower is better (five runs).

layer Val Error Test Error Test NLL

1 18.43± 0.44 17.86± 0.16 0.73± 0.01

2 22.54± 0.80 21.42± 0.28 0.85± 0.01

3 26.17± 0.50 25.25± 0.14 1.14± 0.03

Random selection
16.38± 0.47 16.13± 0.20 0.66± 0.02

PatchUp Masks in
k = 0 16.98± 0.34 16.90± 0.0.21 0.67± 0.01

Table 7: WRN-28-10 using Hard PatchUp on CIFAR100
(five runs).

Figure 8: (top) Original samples. (bottom) Hard PatchUp
output using PatchUp Binary Mask on input images.

5 Conclusion
We presented PatchUp, a simple and efficient regularizer
scheme for CNNs that alleviates some of the drawbacks
of the previous mixing-based regularizers. Our experimen-
tal results show that with the proposed approach, PatchUp,
we can achieve state-of-the-art results on image classifica-
tion tasks across different architectures and datasets. Similar
to previous mixing based approaches, our approach also has
the advantage of avoiding any added computational over-
head. The strong test accuracy achieved by PatchUp, with
no additional computational overhead, makes it particularly
appealing for practical applications.

595



Acknowledgments
We would like to acknowledge Compute Canada and Cal-
cul Quebec for providing computing resources used in this
work. The authors would also like to thank Damien Scieur,
Hannah Alsdurf, Alexia Jolicoeur-Martineau, and Yassine
Yaakoubi for reviewing the manuscript. SC is supported by
a Canada CIFAR AI Chair and an NSERC Discovery Grant.

References
Achille, A.; and Soatto, S. 2018. Information Dropout:
Learning Optimal Representations Through Noisy Compu-
tation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 40(12): 2897–2905.
Arpit, D.; Jastrzebski, S.; Ballas, N.; Krueger, D.; Bengio,
E.; Kanwal, M. S.; Maharaj, T.; Fischer, A.; Courville, A.;
Bengio, Y.; et al. 2017. A closer look at memorization
in deep networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, 233–
242. JMLR. org.
Carlini, N.; and Wagner, D. 2017. Towards evaluating the
robustness of neural networks. In 2017 ieee symposium on
security and privacy (sp), 39–57. IEEE.
Chrabaszcz, P.; Loshchilov, I.; and Hutter, F. 2017. A Down-
sampled Variant of ImageNet as an Alternative to the CIFAR
datasets. arXiv:1707.08819.
Cubuk, E. D.; Zoph, B.; Mane, D.; Vasudevan, V.; and Le,
Q. V. 2019. AutoAugment: Learning Augmentation Policies
from Data. arXiv:1805.09501.
DeVries, T.; and Taylor, G. W. 2017. Improved Regu-
larization of Convolutional Neural Networks with Cutout.
arXiv:1708.04552.
Gal, Y.; and Ghahramani, Z. 2016. A theoretically grounded
application of dropout in recurrent neural networks. In
Advances in neural information processing systems, 1019–
1027.
Ghiasi, G.; Lin, T.; and Le, Q. V. 2018. DropBlock: A
regularization method for convolutional networks. CoRR,
abs/1810.12890.
Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep
learning. MIT press.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014.
Explaining and Harnessing Adversarial Examples.
arXiv:1412.6572.
Guo, H.; Mao, Y.; and Zhang, R. 2018. MixUp as
Locally Linear Out-Of-Manifold Regularization. CoRR,
abs/1809.02499.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Deep Residual
Learning for Image Recognition. CoRR, abs/1512.03385.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Identity Map-
pings in Deep Residual Networks. arXiv:1603.05027.
Hendrycks, D.; and Dietterich, T. 2019. Benchmarking Neu-
ral Network Robustness to Common Corruptions and Pertur-
bations. arXiv:1903.12261.

Hendrycks, D.; Mu, N.; Cubuk, E. D.; Zoph, B.; Gilmer, J.;
and Lakshminarayanan, B. 2020. AugMix: A Simple Data
Processing Method to Improve Robustness and Uncertainty.
arXiv:1912.02781.
Hinton, G.; Deng, L.; Yu, D.; Dahl, G. E.; Mohamed, A.;
Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath,
T. N.; and Kingsbury, B. 2012. Deep Neural Networks
for Acoustic Modeling in Speech Recognition: The Shared
Views of Four Research Groups. IEEE Signal Processing
Magazine, 29(6): 82–97.
Kim, J.-H.; Choo, W.; and Song, H. O. 2020. Puzzle Mix:
Exploiting Saliency and Local Statistics for Optimal Mixup.
arXiv:2009.06962.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning Multiple
Layers of Features from Tiny Images. Master’s thesis, De-
partment of Computer Science, University of Toronto.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
ageNet Classification with Deep Convolutional Neural Net-
works. In Pereira, F.; Burges, C. J. C.; Bottou, L.; and Wein-
berger, K. Q., eds., Advances in Neural Information Process-
ing Systems 25, 1097–1105. Curran Associates, Inc.
Krueger, D.; Maharaj, T.; Kramár, J.; Pezeshki, M.; Ballas,
N.; Ke, N. R.; Goyal, A.; Bengio, Y.; Courville, A.; and Pal,
C. 2016. Zoneout: Regularizing rnns by randomly preserv-
ing hidden activations. arXiv preprint arXiv:1606.01305.
Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and
Vladu, A. 2019. Towards Deep Learning Models Resistant
to Adversarial Attacks. arXiv:1706.06083.
Mai, Z.; Hu, G.; Chen, D.; Shen, F.; and Shen, H. T.
2019. MetaMixUp: Learning Adaptive Interpolation Policy
of MixUp with Meta-Learning. arXiv:1908.10059.
Moosavi-Dezfooli, S.-M.; Fawzi, A.; and Frossard, P. 2016.
Deepfool: a simple and accurate method to fool deep neural
networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2574–2582.
Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; and
Ng, A. Y. 2011. Reading Digits in Natural Images with Un-
supervised Feature Learning. In NIPS Workshop on Deep
Learning and Unsupervised Feature Learning 2011.
Rauber, J.; Brendel, W.; and Bethge, M. 2018. Foolbox:
A Python toolbox to benchmark the robustness of machine
learning models. arXiv:1707.04131.
Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster
R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks. In Cortes, C.; Lawrence, N. D.; Lee,
D. D.; Sugiyama, M.; and Garnett, R., eds., Advances in
Neural Information Processing Systems 28, 91–99. Curran
Associates, Inc.
Rony, J.; Hafemann, L. G.; Oliveira, L. S.; Ayed, I. B.;
Sabourin, R.; and Granger, E. 2019. Decoupling Direc-
tion and Norm for Efficient Gradient-Based L2 Adversar-
ial Attacks and Defenses. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR).
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.;
Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.;

596



Berg, A. C.; and Fei-Fei, L. 2015. ImageNet Large Scale
Visual Recognition Challenge. arXiv:1409.0575.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: A Simple Way to Pre-
vent Neural Networks from Overfitting. Journal of Machine
Learning Research, 15: 1929–1958.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to
Sequence Learning with Neural Networks. In Proceedings
of the 27th International Conference on Neural Information
Processing Systems - Volume 2, NIPS14, 31043112. Cam-
bridge, MA, USA: MIT Press.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2013. Intriguing proper-
ties of neural networks. arXiv preprint arXiv:1312.6199.
Tompson, J.; Goroshin, R.; Jain, A.; LeCun, Y.; and Bregler,
C. 2014a. Efficient Object Localization Using Convolutional
Networks. CoRR, abs/1411.4280.
Tompson, J.; Goroshin, R.; Jain, A.; LeCun, Y.; and Bre-
gler, C. 2014b. Efficient Object Localization Using Convo-
lutional Networks. CoRR, abs/1411.4280.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention Is All You Need. CoRR, abs/1706.03762.
Verma, V.; Lamb, A.; Beckham, C.; Najafi, A.; Mitliagkas,
I.; Lopez-Paz, D.; and Bengio, Y. 2019. Manifold Mixup:
Better Representations by Interpolating Hidden States. In
Chaudhuri, K.; and Salakhutdinov, R., eds., Proceedings of
the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research,
6438–6447. Long Beach, California, USA: PMLR.
Yun, S.; Han, D.; Oh, S. J.; Chun, S.; Choe, J.; and Yoo,
Y. 2019. CutMix: Regularization Strategy to Train Strong
Classifiers with Localizable Features. arXiv:1905.04899.
Zagoruyko, S.; and Komodakis, N. 2017. Wide Residual
Networks. arXiv:1605.07146.
Zhang, H.; Cisse, M.; Dauphin, Y. N.; and Lopez-Paz,
D. 2017. mixup: Beyond Empirical Risk Minimization.
arXiv:1710.09412.

597


