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Abstract

Omnidirectional images, also called 360◦ images, have at-
tracted extensive attention in recent years, due to the rapid
development of virtual reality (VR) technologies. During om-
nidirectional image processing including capture, transmis-
sion, consumption, and so on, measuring the perceptual qual-
ity of omnidirectional images is highly desired, since it plays
a great role in guaranteeing the immersive quality of expe-
rience (IQoE). In this paper, we conduct a comprehensive
study on the perceptual quality of omnidirectional images
from both subjective and objective perspectives. Specifically,
we construct the largest so far subjective omnidirectional im-
age quality database, where we consider several key influen-
tial elements, i.e., realistic non-uniform distortion, viewing
condition, and viewing behavior, from the user view. In addi-
tion to subjective quality scores, we also record head and eye
movement data. Besides, we make the first attempt by using
the proposed database to train a convolutional neural network
(CNN) for blind omnidirectional image quality assessment.
To be consistent with the human viewing behavior in the VR
device, we extract viewports from each omnidirectional im-
age and incorporate the user viewing conditions naturally in
the proposed model. The proposed model is composed of two
parts, including a multi-scale CNN-based feature extraction
module and a perceptual quality prediction module. The fea-
ture extraction module is used to incorporate the multi-scale
features, and the perceptual quality prediction module is de-
signed to regress them to perceived quality scores. The ex-
perimental results on our database verify that the proposed
model achieves the competing performance compared with
the state-of-the-art methods.

Introduction
With the advancement of 5G commercialization, virtual re-
ality (VR) has been used in many applications with new
vitality, and omnidirectional images have drawn much at-
tention. Omnidirectional images are taken by cameras with
multiple lenses covering the entire 360◦ scene. Multiple im-
ages captured simultaneously by different lenses are then
stitched together to form an omnidirectional image. An om-
nidirectional image is shown in spherical form covering
360×180 viewing range, and thus we can freely explore the
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scene with the help of head-mounted displays (HMDs). Dur-
ing the exploration, we can get the quality of experience as
if we are in the real world. However, this immersive expe-
rience puts high demands on the fidelity and resolution of
omnidirectional images, bringing a huge burden on storage
and transmission. In each stage of omnidirectional image
processing (Wang and Rehman 2017), distortions may be
introduced due to the diverse environmental conditions, al-
gorithm defects, etc., leading to a degradation of the users’
Quality of Experience (QoE). How to measure the quality
of omnidirectional images accurately plays a critical role in
system optimization.

The research on omnidirectional image quality assess-
ment (OIQA) can be divided into two categories: subjec-
tive and objective OIQA. Subjective OIQA refers to con-
structing large-scale databases as well as collecting hu-
man ratings. There have been several omnidirectional image
quality (OIQ) databases proposed, e.g. (Upenik, Řeřábek,
and Ebrahimi 2016), (Sun et al. 2017), and (Duan et al.
2018). Most of the existing OIQA databases focus on the
visual quality of omnidirectional images with uniformly dis-
tributed distortions, while ignoring the impact of user view-
ing behavior. Existing objective OIQA methods can be clas-
sified into three categories: sampling-related (Yu, Laksh-
man, and Girod 2015; Sun, Lu, and Yu 2017; Zakharchenko,
Choi, and Park 2016), patch-based (Kim, Lim, and Ro 2020;
Lim, Kim, and Ra 2018) and viewport-based (Sun et al.
2020; Xu, Zhou, and Chen 2021). Sampling-related meth-
ods are mainly designed based on existing 2D quality met-
rics such as peak signal to noise ratio (PSNR) and structural
similarity (SSIM), which are feasible with available refer-
ence information. Patch-based methods ignore the fact that
subjects explore an omnidirectional image from viewports
rather than patches. Although viewport-based methods can
well solve the aforementioned issue, most of the viewport-
based methods do not regard the exploration of omnidirec-
tional images as a continuous process, which may lead to un-
satisfied results. (Sui et al. 2020) made an initial attempt to
investigate the relationship between user viewing behavior
and the perceived quality of omnidirectional images. They
built an OIQ database and designed an OIQA method by
taking full advantage of the temporal properties. However,
the scale of this dataset is small, and the omnidirectional im-
ages are only with two types of distortions, while does not
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Dataset Year No.Ref No.Dist Resolution Format Distortion Type
OIQA (Duan et al. 2018) 2018 16 320 11332×5666,13320×6660 PNG, JPG JPEG, JP2K, GB, GN
CVIQD (Sun et al. 2017) 2018 16 528 4096×2048 PNG JPEG, H.264/AVC, H.265/HEVC

MVAQD (Jiang et al. 2021) 2021 15 300 4K, 5K, 6K, 7K, 8K, 10K, 12K BMP JPEG, JP2K, HEVC, WN, GB
IQA-ODI (Yang et al. 2021) 2021 120 960 7680×3840 JPG JPEG, Projection

SOLID (Xu et al. 2018) 2018 6 276 8192×4096 PNG JPEG, BPG

LIVE 3D VR IQA (Chen et al. 2020) 2019 15 450 4096×2048 PNG GB, GN, Downsampling,
VP9 compression, Stitching, H.265

Ours 2021 258 1032 8192×4096 PNG GB, GN, BD, ST

Table 1: Summary of the existing omnidirectional image quality assessment databases.

take into account the non-uniform distortions caused by non-
synchronization between different lenses of the camera. The
objective method will be limited when the user’s browsing
data is not available. To tackle the aforementioned issues,
in this paper, we establish a large-scale OIQ database with
diverse content and propose a convolutional neural network
(CNN) based blind OIQA method by considering viewing
behaviors and viewing conditions.

Our contributions include:

• A large-scale OIQ database with diverse content is built.
The proposed OIQ database consists of 258 reference im-
ages with rich scenes, and associated 1032 non-uniform
distorted images which are generated by considering re-
alistic factors.

• An extensive subjective experiment is conducted. We
collect both subjective ratings and human viewing be-
havior data under different conditions. Specifically, rig-
orous data processing operations are performed to ensure
the authenticity of the proposed database, and the rela-
tionship between viewing conditions, non-uniform dis-
tortions and subjective quality scores are analyzed to fur-
ther understand the process by which humans perceive
the quality of omnidirectional images.

• A novel CNN-based blind OIQA model is proposed.
Both viewing behaviors and viewing conditions are taken
into account to get a more reasonable result. Through
comparing with the state-of-the-arts, we demonstrate the
superiority of the proposed model.

Related Work
In this section, we first introduce current public subjective
omnidirectional image quality (OIQ) databases, and then we
describe objective OIQA models in detail.

Subjective OIQ Databases
To facilitate the development of OIQA, constructing OIQ
database has always been the previous step before designing
objective OIQA models. A subjective OIQ database can be
used as: 1) a platform for physiological experiments, whose
findings are often used as the guidance for designing ob-
jective OIQA models; 2) a benchmark for testing objective
OIQA models. (Upenik, Řeřábek, and Ebrahimi 2016) built
an OIQ database to study the effect of compression and pro-
jection on the visual quality of omnidirectional images. (Sun
et al. 2017) constructed an OIQ database with a focus on the

influence of coding scheme. This database contains 16 origi-
nal images and 528 distorted images, and 20 subjects are in-
vited in subjective experiments. (Duan et al. 2018) proposed
an OIQ database with more comprehensive information.
Specifically, this database contains 16 original omnidirec-
tional images and 320 distorted omnidirectional images with
associated subjective ratings. Besides, this database provides
subjects’ head movement and eye movement data. (Yang
et al. 2021) constructed an OIQ database, which mainly con-
siders the impact of JPEG compression and mapping for-
mat on OIQ. This database contains 120 high-quality ref-
erence omnidirectional images, which are used to generate
960 distorted omnidirectional images with four mapping for-
mats. Considering the re-projected distortion changes be-
tween equirectangular projection (ERP) image and spherical
projection image, (Jiang et al. 2021) built an OIQ database
with multi-distortion. In addition to commonly used gen-
eral 2D omnidirectional images, researchers have also stud-
ied the visual quality of 3D omnidirectional images. 3D
omnidirectional image differs from general 2D omnidirec-
tional image in that it consists of two views (left- and right-
views). (Xu et al. 2018) proposed a 3D OIQ database, which
contains 6 high-quality 8K stereoscopic omnidirectional im-
ages and 276 distorted versions with two distortion types
and three depth levels. (Chen et al. 2020) proposed a 3D OIQ
database, which contains 16 pristine 3D omnidirectional im-
ages and 450 distorted 3D omnidirectional images. The dis-
tortion types include Gaussian noise, Gaussian blur, down-
sampling, stitching, VP9 compression, and H.265 compres-
sion. Table 1 summaries and compares existing databases for
omnidirectional images.

Objective OIQA Models
In the past few years, many OIQA methods, such as S-
PSNR (Yu, Lakshman, and Girod 2015), WS-PSNR (Sun,
Lu, and Yu 2017), and CPP-PSNR (Zakharchenko, Choi,
and Park 2016), were proposed by combining 2D quality
evaluation methods (SSIM (Wang et al. 2004) or PSNR)
with the characteristics of omnidirectional images. However,
PSNR related method does not fully accord with the ac-
tual perception of the human visual system (HVS). Some
researchers further choose SSIM which is more suitable
for human eye perception to evaluate omnidirectional im-
age quality, such as S-SSIM (Chen et al. 2018) and WS-
SSIM (Zhou et al. 2018). Both S-PSNR and S-SSIM meth-
ods calculate the local quality scores of omnidirectional
images based on spherical projection. WS-PSNR and WS-
SSIM try to reduce the influence of distortion introduced by
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(a) Market (b) Museum (c) Night Scene

(d) Academic Building (e) Shop (f) Activity Place

Figure 1: Sample images in our database.

the mapping transformation from sphere to the 2D plane on
the calculation of quality score by introducing the weight-
ing factor. CPP-PSNR projects the omnidirectional image
to the Craster parabolic projection plane and then calculates
the PSNR. This method ensures the uniformity of sampling
density, but the computational cost is relatively high.

(Kim, Lim, and Ro 2020) proposed an OIQA method
which consists of two parts, including a predictor mod-
ule and a guider module. The guider module is trained
to distinguish the predicted score and ground truth accu-
rately, and the predictor module predicts the score under
the supervision of the guider. Considering that users ex-
plore omnidirectional images through viewports rather than
patches, many viewport-based approaches have been pro-
posed for OIQA. (Zhou et al. 2021a) designed a no-reference
OIQA model which uses multi-frequency information as
well as local and global features to measure quality degra-
dation of omnidirectional images. (Sun et al. 2020) pro-
posed a viewport-based multi-channel CNN-based model.
This method maps the omnidirectional image into six cube-
map faces of equal size. Then, six parallel networks are de-
signed for feature extraction, which is further used for qual-
ity prediction of the omnidirectional image. (Zhou et al.
2021b) proposed a distortion discrimination assisted dual-
stream network for omnidirectional image quality assess-
ment. Different from the above methods, some researchers
considered the interaction between different viewports when
people browse 360-degree scenes. (Xu, Zhou, and Chen
2021) assumed that people would generate local and global
impressions when observing 360-degree images. Thus, they
proposed to use graph convolutional networks to obtain the
relationship between different viewports and incorporated
this into the local perception feature extraction module. Be-
sides, a top-performing 2D IQA approach (Zhang et al.
2020) is used to extract global features from ERP images.

Benchmark
Database Construction
We collect 258 reference images with diverse content us-
ing an Insta360 Pro2 camera. As shown in Figure 2, the
proposed database contains 16 different scenes, including
night scene, market, museum, etc. Some visual examples are

Figure 2: Percentage of various scenarios in the proposed
omnidirectional image database.

(a) OIQA Database (b) CVIQD Database (c) Our Database

Figure 3: The scatter diagram of Spatial Information (SI) and
Colorfulness (CF) of three omnidirectional image databases.

shown in Figure 1. To give a more intuitive comparison on
diversity against the existing OIQ databases, we also pro-
vide the scatter plots of spatial information and color infor-
mation, which are quantified by SI (Spatial Information) (P
1999) and CF (Colorfulness) indexes (Hasler and Suesstrunk
2003) respectively. From Figure 3, we can clearly observe
that the proposed OIQ database is more diverse than other
existing ones. There are many aspects involved in the overall
QoE of omnidirectional images due to the additional immer-
sive content. The immersive experience can be achieved by
using the head-mounted display (HMD) to access the view-
port containing the content of interest through head move-
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ment. The distorted local regions (with non-uniform distor-
tion) in the omnidirectional image are much eye-catching,
and even affect the perceptual quality of the whole image,
since the user concentrates on the viewport (a small part of
the omnidirectional image). The goal of our subjective ex-
periment is to study how non-uniform distortion, viewing
behavior and viewing condition affect the perceived qual-
ity of omnidirectional images. Therefore, four types of non-
uniform distortion are considered in our database, includ-
ing Gaussian blur, Gaussian noise, brightness discontinuity
and stitching, with 3 levels of each type. Gaussian blur and
Gaussian noise are used to simulate the distortion produced
by the camera during shooting. Since they are usually gener-
ated by the camera sensor, we add these two kinds of noise
to an image of a lens that contains a salient object sepa-
rately, and then stitch them back together to form an omnidi-
rectional image. Brightness discontinuity usually manifests
as a large difference in brightness between adjacent camera
lenses. We simulate it by adding three different degrees of
brightness distortion to the image of a lens and then stitch-
ing the multi-lens images into a whole. Stitching distortion
usually occurs when the stitching algorithm does not suc-
cessfully handle the inconsistencies among the cameras in
the multicamera rig. In our database, we use Nuke (a popu-
lar stitching software) to generate different levels of stitch-
ing distortion. More specifically, six fisheye images are im-
ported into Nuke to generate a stitched image, and then we
adjust the distortion parameters of a camera lens to obtain
the distorted images.

Conditions
To analyze the effect of the starting point on the perception
of visual quality, for each scene, we set two viewing start-
ing points: a good starting point and a bad starting point.
The bad starting point means that each user starts viewing
the omnidirectional image from the distorted area, while the
good starting point means that each user starts viewing from
the high-quality area (located at the opposite of the distortion
area). In order to investigate the changes of viewing behav-
ior during the exploration of scenes, the viewing process of a
single scene is further divided into two phases: five seconds
and fifteen seconds. Totally, there are four viewing condi-
tions.

Procedure
Subjective experiments are performed based on the single
stimulus continuous quality evaluation method (BT 2002).
The equipment used to show the subjects of the omnidi-
rectional image content includes an HTC VIVE VR head-
set for tracking the users’ head movement data and a high-
performance computer to support the operation of the Unity
game engine. We invite more than 120 subjects aged from
18 to 26 to participate in our subjective experiments, where
each subject is asked to sit in a swivel chair to observe the
scenes. Before starting the experiments, subjects can freely
calibrate the HMD and are verbally informed about the pro-
cedure of the experiment. After that, a training phase is
conducted to familiarize subjects with distortion types and
the scoring procedure. Subjects are divided into two groups

(a) Overall score of images for starting point I and II

5s
15s
5s
15s

(b) Starting point I

5s
15s
5s
15s

(c) Starting point II

Figure 4: MOSs under different viewing conditions.

and rate the quality of the omnidirectional image from two
different starting point sequences. Notably, each image is
viewed for 15 seconds, and when the subject watches for
five seconds, a tone in the HMD prompts the subject to give
a judgment on the quality of this period. After fifteen sec-
onds, the subject has to give the overall perceived quality of
the image. Images are rated on a continuous rating scale in
[1, 5], where 1 represents the worst quality.

Subjective Data Analysis
Figure 4 (a) shows the overall score of each image after
viewing for 15 seconds from starting point I (i.e., the good
starting point) and starting point II (i.e., the bad starting
point) respectively. From this figure, we can find a signif-
icant difference between the overall scores obtained from
the same image when viewed from different starting points.
This indicates that the starting point has an effect on the
perception of image quality. A combination of multiple fac-
tors often determines differences in MOSs, thus we employ
ANOVA to further analyse the effect of multiple factors on
the overall score of the images (viewed for 15 seconds). As
can be seen from the Table 2, the p value obtained from
ANOVA analysis for distortion type, starting point and scene
are statistically significant (p<0.05), which means these fac-
tors significantly affect the overall visual scores. Addition-
ally, the interaction of both distortion type and starting point
also affects the perception of image quality. Sub-figures (b)
and (c) in Figure 4 show the boxplots of MOSs under dif-
ferent distortion types and different viewing conditions. As
can be seen from the sub-figures, the median line in three
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Source SS d.f. MS F p

Distortion Type 3.622 3 1.207 6.93 ≈ 0
Starting Point 253.6 1 253.6 1456.29 ≈ 0

Scene 10.012 15 0.667 3.83 ≈ 0
Distortion Type×

Starting Point 4.961 3 1.654 9.5 ≈ 0

Distortion Type×
Scene 10.174 45 0.226 1.3 0.0896

Starting Point×
Scene 1.176 15 0.078 0.45 0.9638

Distortion Type×
Starting Point×

Scene
3.734 45 0.083 0.48 0.9988

Error 337.137 1936 0.174
Total 632.695 2063

Table 2: ANOVA results for MOSs for the viewing time of
15 seconds. SS: sum of squares. MS: mean square. d.f.:
degree of freedom. F : F value. p: p value.

dark blue boxes (corresponding to three different levels of
distortion) of various distortion types is very close to each
other when viewed for 5 seconds from starting point I, while
the light blue ones vary with the level of distortion. When
viewed from starting point II, the median line of the dark
blue boxes in each distortion type is more variable. It indi-
cates that the distortion levels have much more impact on
the subjective quality of 5 seconds in each distortion type of
starting point II.

The Proposed OIQA Model
Based on the proposed database, we make the first attempt to
train a CNN for blind OIQA. The framework of the proposed
model is illustrated in Figure 5. Specifically, several view-
ports extracted from an omnidirectional image are adopted
as inputs of the proposed model. A multi-scale CNNs-based
feature extraction module and a perceptual quality predic-
tion module in the proposed model are used to extract the
multi-scale features and regress them to the perceived qual-
ity score, respectively.

Viewport Extraction
When humans view an omnidirectional image using a VR
device, the equirectangular image is transformed into a 3D
sphere with spherical coordinates, and the visual content
is then rendered as a viewport which is determined by the
viewing angle and the field of view (FOV) of the VR de-
vice. With the human’s head moving, the visible content
will be changed. Inspired by human viewing behaviors, we
opt to extract viewport images to assess the perceptual qual-
ity of the omnidirectional images. Rectilinear projection is
adopted to generate viewports and the detailed procedure
can be found in (Ye, Alshina, and Boyce 2017). Consisted
with the FOV provided in HTC VIVE, we set the FOV as
110◦. As suggested in (Xu et al. 2019), we obtain 20 view-
ports for an omnidirectional image by extracting viewports
uniformly distributed over the sphere. In order to incorporate
the user viewing conditions naturally in the proposed model,

a starting point ϕ and an exploration time T for an omnidi-
rectional image are also used. In brief, the training data is
composed of D =

{
OIn, V PI1n, · · · , V PIMn , ϕn, Tn

}N

n=1
,

where M and N denote the number of the extracted view-
ports of an omnidirectional image and the training data, re-
spectively. M is set to 20.

Model Construction
CNNs have achieved success in many research fields, such
as image recognition (He et al. 2016), detection (Fang et al.
2019) and segmentation (Yan et al. 2021), and some CNNs
based models have been proposed for different visual tasks
in recent years. Due to the excellent generalization ability
of these models, they are applied to extract visual features
for image quality assessment (Ding et al. 2020; Zhang et al.
2021; Su et al. 2020; Sun et al. 2020). We choose a variant of
ResNet-50 (He et al. 2016) as the backbone for constructing
the multi-scale feature extraction network S, which is used
to extract multi-scale content features in (Su et al. 2020).
Given an omnidirectional image OI and the corresponding
viewport images {V PIm}Mm=1, we model the procedure of
multi-scale feature extraction as follows:

fm = S(V PIm, θs) (1)

where θs denotes the network parameters of the multi-scale
feature extraction module. The multi-scale content features
include local and global features. More detail of semantic
feature extraction network structure can be found in (Su
et al. 2020). However, different from (Su et al. 2020), we
only use the semantic feature extraction network for feature
extraction and remove the subsequent network by taking into
account the characteristics of omnidirectional images. The
extracted multi-scale features are then concatenated with the
user viewing conditions, which will further instruct the train-
ing of perceptual quality prediction network R. The pre-
dicted scores of all viewports in an omnidirectional image
are generated by a simple quality prediction network con-
sisting of two fully connected layers. We model the task of
quality prediction as follows:

qm = R(concat(fm, ϕ, T ), θr) (2)

where θr represents the network parameters of the percep-
tual quality prediction module. Finally, the overall percep-
tual quality of an omnidirectional image can be calculated
by averaging the predicted scores of all viewports, which
can be described as:

q =
1

M

M∑
m=1

qm (3)

According to user’s viewing conditions and behaviors in
the VR device (Fang, Zhang, and Lmamoglu 2018; Sui et al.
2020), the importance of each viewport image extracted
in an omnidirectional image is different for the final per-
ceived quality score. Therefore, some pooling policies can
be adopted to assign weights for different viewport images
in the image quality regression (Sui et al. 2020). Here, as
shown in Eq. 3, we employ the averaging pooling as the
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Figure 5: The framework of our proposed method. It consists of two main modules. The multi-scale feature extraction module
is used to extract multi-scale content features from viewports, and the perceptual quality prediction module regresses the
concatenated features to the perceived quality scores. The final omnidirectional image quality score is obtained by using simple
average pooling strategy. Specifically, MS represents multi-scale subblock that is composed of a series of operations.

default pooling strategy. Note that other advanced tempo-
ral pooling strategies (Li, Jiang, and Ming 2019; Fang et al.
2021; Yan et al. 2021) can also be adopted here.

We minimize L1 loss for network optimization, and the
loss function over the training set is defined as follows:

L =
1

N

N∑
n=1

∥∥∥∥∥ 1

M

M∑
m=1

R(S(V PImn , θs), θr)− q̂n

∥∥∥∥∥
1

(4)

where q̂n refers to the MOS of the n-th traning omnidirec-
tional image.

Implementation Details

We use 80% omnidirectional images of the proposed
database for training and the rest 20% for testing. We take
10 times of random train-test splitting operation and report
the median performance to reduce any bias. During the train-
ing stage, we utilize the weight of ResNet-50 pre-trained on
ImageNet (Deng et al. 2009) for feature extraction network
initialization. The weight of other network parts is randomly
initialized. The proposed model is implemented with Py-
Torch on an NVIDIA GeForce GTX 1080 Ti machine. We
adopt Adam (Kingma and Ba 2017) optimizer with weight
decay 5× 10−4 and set mini-batch size to 4 for training 100
epochs, where the learning takes roughly a half-day. The ini-
tial learning rate is set to 10−4 and reduced by a decay fac-
tor 0.1 for 50 epochs. The size of input viewport images is
224× 224× 3. During the testing stage, the final prediction
quality score of a test omnidirectional image is computed
by averaging all the corresponding viewport images predic-
tions.

Experiments
We first introduce the evaluation criteria, and then measure
the prediction results of the proposed methods and several
state-of-the-art IQA and OIQA methods on the proposed
database. Finally, we carry out the performance comparison
by analysing the experimental results.

Evaluation Criteria
Three standard performance criteria, including Pearson’s
linear correlation coefficient (PLCC), Spearman’s rank or-
der correlation coefficient (SRCC) and root mean square er-
ror (RMSE), are used to measure the prediction monotonic-
ity and accuracy. OIQA model with better performance has
higher values of PLCC and SRCC and lower RMSE val-
ues. As suggested in (VQEG 2000), the predicted scores are
first mapped to subjective ratings before calculating PLCC
for maximizing the correlation between them and a four-
parameter logistic function is adopted.

Performance Comparison
To demonstrate the effectiveness of the proposed models,
several state-of-the-art IQA and OIQA models are used for
comparison, which can be classified: traditional 2D FR-
IQA metrics, i.e., SSIM (Wang et al. 2004), FSIM (Zhang
et al. 2011), VIF (Sheikh and Bovik 2006), VSI (Zhang,
Shen, and Li 2014) and DISTS (Ding et al. 2020); 2D NR-
IQA metrics, i.e., NIQE (Mittal, Soundararajan, and Bovik
2013) and IL-NIQE (Zhang, Zhang, and Bovik 2015); tra-
ditional FR-OIQA metrics i.e., S-PSNR (Yu, Lakshman,
and Girod 2015), WS-PSNR (Sun, Lu, and Yu 2017), CPP-
PSNR (Zakharchenko, Choi, and Park 2016), WS-SSIM
(Zhou et al. 2018) and a learning-based NR-OIQA met-
ric named MC360IQA (Sun et al. 2020). We implement all
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Type Metrics BD GB GN ST Overall
PLCC SRCC RMSE PLCC SRCC RMSE PLCC SRCC RMSE PLCC SRCC RMSE PLCC SRCC RMSE

FR-
IQA

SSIM 0.275 0.247 0.738 0.243 0.216 0.837 0.278 0.221 0.742 0.056 0.022 0.728 0.133 0.057 0.780
FSIM 0.329 0.297 0.725 0.251 0.223 0.836 0.208 0.181 0.773 0.051 0.019 0.729 0.144 0.069 0.779
VIF 0.246 0.219 0.744 0.219 0.181 0.842 0.255 0.214 0.747 0.076 0.055 0.727 0.179 0.109 0.774
VSI 0.283 0.249 0.736 0.264 0.236 0.833 0.253 0.196 0.747 0.003 0.001 0.730 0.060 0.067 0.786

DISTS 0.276 0.247 0.738 0.287 0.258 0.827 0.298 0.267 0.737 0.130 0.100 0.723 0.166 0.090 0.776
NR-
IQA

NIQE 0.056 0.004 0.767 0.022 0.008 0.863 0.096 0.067 0.769 0.046 0.021 0.729 0.047 0.039 0.786
IL-NIQE 0.065 0.026 0.766 0.061 0.051 0.862 0.069 0.070 0.771 0.054 0.054 0.729 0.045 0.045 0.786

FR-
OIQA

S-PSNR 0.295 0.259 0.734 0.214 0.188 0.843 0.307 0.245 0.735 0.056 0.048 0.728 0.128 0.039 0.780
WS-PSNR 0.294 0.257 0.734 0.212 0.186 0.844 0.309 0.250 0.734 0.056 0.048 0.728 0.126 0.038 0.781
CPP-PSNR 0.294 0.257 0.734 0.212 0.186 0.844 0.308 0.248 0.735 0.056 0.048 0.728 0.127 0.039 0.781
WS-SSIM 0.229 0.206 0.747 0.171 0.144 0.851 0.326 0.287 0.730 0.045 0.033 0.729 0.117 0.098 0.782

NR-
OIQA

MC360IQA 0.265 0.224 0.724 0.070 0.153 0.862 0.166 0.076 0.780 0.161 0.157 0.755 0.151 0.135 0.784
Ours 0.738 0.738 0.507 0.340 0.252 0.813 0.149 0.143 0.782 0.170 0.176 0.754 0.642 0.617 0.608

Table 3: Performance comparison of state-of-the-art IQA and OIQA methods on the proposed database. In each column, the
best results are highlighted in bold.

compared methods on the proposed database by using the
public codes from the respective authors. To make a fair
comparison, we retrain the MC360IQA (Sun et al. 2020) by
using the same training/testing split scheme. Table 3 sum-
marizes the performance on the proposed database.

According to the quantitative results from the table, we
have several interesting observations. First, it’s obvious that
all traditional 2D FR and NR IQA models fail when they
are directly applied to assess the quality of the proposed
database. The performance of the former is higher due to the
presence of reference content. Although DISTS (Ding et al.
2020) has comparable results by means of a CNN-based
multi-scale overcomplete representation, the results indicate
that current 2D IQA models do not work well on OIQA and
the properties of omnidirectional images are ignored. Sec-
ond, compared with traditional 2D FR-IQA methods, there
is no significant improvement or even a decrease for cur-
rent FR-OIQA models for the overall database. This also
suggests recent advanced 2D IQA methods may be intro-
duced into VR research rather than just relying on existing
standard metrics. Third, the latest CNN-based MC360IQA
(Sun et al. 2020) model performs poorly on the proposed
database. Nevertheless, as observed in Table 3, the proposed
model achieves significant performance improvements from
the overall database or individual distortions compared to
state-of-the-art OIQA methods. This may be benefited from
the established content-aware network framework and full
use of human information, including viewing conditions and
behaviors. The proposed model cannot efficiently handle
various distortions and it is still challenging to cover each
non-uniform distortion for OIQA. In brief, the experimen-
tal results on the proposed database show that the proposed
method achieves the best prediction performance among the
existing 2D IQA and OIQA methods, which further proves
the effectiveness of the proposed method and the complexity
of the proposed database.

Ablation Study
We test the performance of the proposed method with dif-
ferent pooling ways (Li, Jiang, and Ming 2019). From Ta-

Strategies SRCC PLCC RMSE
AP 0.642 0.617 0.608
TP 0.532 0.490 0.672

Table 4: Performance comparison between the proposed
methods with different pooling strategies. AP: average pool-
ing. TP: temporal pooling.

ble 4, we find that the proposed model using average pool-
ing performs better than that using temporal pooling. This
is reasonable and explicable, since the viewports we extract
are obtained by sampling directly from omnidirectional im-
ages, rather than the user viewing behavior (i.e. scanpaths).
It would be unreasonable that we use the temporal pooling
strategy for quality computation. Therefore, we use the av-
erage pooling method in the proposed metric.

Conclusion

In this paper, we conduct a comprehensive study on per-
ceptual quality assessment of omnidirectional images from
both subjective and objective perspectives. Specifically, we
construct a large-scale OIQ database, where we find that
the interaction of both distortion type and starting point
has a significant impact on the perception of image qual-
ity. Furthermore, we propose a new OIQA model that in-
cludes a multi-scale feature extraction module and a per-
ceptual quality prediction module, emphasizing the incor-
poration of viewing conditions into the process of quality
assessment. Experimental results on the proposed database
validate the promising performance of the proposed method
compared with state-of-the-art methods. However, experi-
ments also show that there is still plenty of room for im-
provement. In the future, more important aspects such as
rational viewport extraction, authentic scanpath prediction,
and advanced subjective-inspired temporal pooling strate-
gies will be considered to develop objective models with
high robustness and efficiency.
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