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Abstract

This work aims at improving instance retrieval with self-
supervision. We find that fine-tuning using the recently devel-
oped self-supervised learning (SSL) methods, such as Sim-
CLR and MoCo, fails to improve the performance of in-
stance retrieval. In this work, we identify that the learnt
representations for instance retrieval should be invariant to
large variations in viewpoint and background etc., whereas
self-augmented positives applied by the current SSL. meth-
ods can not provide strong enough signals for learning ro-
bust instance-level representations. To overcome this prob-
lem, we propose InsCLR, a new SSL method that builds
on the instance-level contrast, to learn the intra-class in-
variance by dynamically mining meaningful pseudo positive
samples from both mini-batches and a memory bank dur-
ing training. Extensive experiments demonstrate that InsCLR
achieves similar or even better performance than the state-of-
the-art SSL methods on instance retrieval. Code is available
at https://github.com/zeludeng/insclr.

Introduction

Large-scale instance-level image retrieval (also known as
particular object retrieval) has been studied for over two
decades. Given an image with a query object, the goal is
to retrieve all the images containing the query object in a
large corpus of images. A key challenge is to design or learn
image-level descriptors for the accurate search. Recently,
several works show that fine-tuning the pretrained network
on large-scale instance-retrieval datasets can significantly
improve the performance (Gordo et al. 2016; Noh et al.
2017; Weyand et al. 2020). However, annotating large-scale
data is time-consuming and requires huge human labour. Al-
ternatively, image labels can be generated by using the re-
constructed 3D models obtained from a traditional retrieval
system (Radenovi¢, Tolias, and Chum 2016, 2018), and the
advanced Structure-from-Motion (SfM) pipeline (Schon-
berger and Frahm 2016). It can be considered as training
networks without human annotation, but using supervision
information generated from other computer vision systems
which are also expensive to implement.
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Figure 1: Top: example images from ImageNet and Google
Landmarks Dataset v2 (GLDv2). In GLDv2, images of the
same class (i.e. those in the same row) have much larger
variations in viewpoint and background. Bottom: the per-
formance of instance retrieval on ROxf (medium proto-
col), with a number of self-supervised learning methods, in-
cluding SimCLR, MoCov2, PCL, SWAV and our InsCLR.
ResNet-101 pretrained on ImageNet is used for all methods,
and then self-supervised learning is performed on GLDv2.

In this work, we aim to explore a more generic setting:
can we improve the retrieval quality by using images only,
without human annotations or other computer vision sys-
tems? Formally, the goal is to close the performance gap
between a network trained on a general-purpose dataset (i.e.
ImageNet) and a network fine-tuned with full-supervision on
instance-retrieval datasets, by using unlabeled images only.
Notably, this work focus on the fine-tuning stage instead of



training from scratch. A recent approach described in (Iscen
et al. 2018) works with such assumptions. It constructs pos-
itive and negative samples using a manifold similarity (Is-
cen et al. 2017) computed from a similarity graph which is
built on Euclidean distance. However, it focuses on design-
ing an offline preprocessing of the images to generate the
corresponding image labels, and the training procedure re-
mains the same as the standard supervised training. In this
work, we go beyond such offline preprocessing, and pro-
vide a more dynamic solution that generates self-supervised
learning signals in an online manner during training, with
minimal offline computation.

Recent self-supervised learning (SSL) methods, such as
MoCo (He et al. 2020) and SimCLR (Chen et al. 2020a),
train networks by learning instance discrimination between
self-image (or self-augmented image) and other images.
However, for the task considered in this work, we find that
simply applying these state-of-the-art SSL methods to learn
image-level representations for instance retrieval is far from
ideal. As Figure 1 shows, performing self-supervised learn-
ing with SimCLR or MoCov2 (Chen et al. 2020b) with
an ImageNet-pretrained network on the recently released
Google Landmarks Dataset v2 (Weyand et al. 2020) (with-
out using ground-truth labels) can not obtain the expected
performance on the public benchmark for instance retrieval:
revisited Oxford (Radenovic et al. 2018).

As Figure 1 (top) shows, different from ImageNet, objects
in instance retrieval may have large variance in viewpoint,
background clutter, occlusion and illumination conditions
etc.. Therefore, an important capability for instance retrieval
is to learn strong object representations that are robust to the
large intra-class variation, and to focus on discriminating ob-
ject instances rather than images. However, existing image-
level SSL methods (such as MoCov2 and SimCLR) can not
fully explore the intra-class information which is particu-
larly useful to instance retrieval in datasets like GLDv2.

Consequently, we introduce an instance-level SSL
method that learns to capture the abovementioned proper-
ties from instance-retrieval datasets. The proposed method
explores contrastive learning signals explicitly from intra-
class pairs by mining cross-image pseudo positives from
both the mini-batches and a memory bank along the train-
ing. It encourages the model to pull the images of the same
class but having different viewpoints or backgrounds closer
in the feature space. The mined positives provide much more
meaningful learning signals than the self-augmented image
pairs, particularly on learning robust intra-class represen-
tations. The proposed method is code-named InsCLR. We
make the following contributions:

— We identify the limitation of state-of-the-art image-level
SSL methods such as MoCov2 and SimCLR, and propose
InsCLR for instance-level SSL which is able to learn strong
instance representations robust to large intra-class variance.

— To build meaningful instance-level contrastive infor-
mation, we propose new algorithms to dynamically mine
pseudo positives from both mini-batches and the memory
bank in the contrastive learning framework.

— Extensive experiments across three public benchmarks
(revisited Oxford, Paris and INSTRE) demonstrate that the
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proposed InsCLR surpasses all other self-supervised meth-
ods, and even outperforms many recent supervised meth-
ods. In particular, as Figure 1 shows, our InsCLR achieves
73.1 mAP on the revisited Oxford (medium), significantly
closing the gap between the unsupervised fine-tuning and
the best-performing supervised counterpart (Weyand et al.
2020) (76.2 mAP) on instance retrieval.

Related Work

Image representations for instance-level image retrieval.
In image retrieval, representing images with image-level
(i.e. global) features is particularly favoured in practice
due to its run-time efficiency. In the era of deep learn-
ing, global features can be generated by aggregating CNNs
features (Babenko and Lempitsky 2015; Tolias, Sicre, and
Jégou 2015; Arandjelovic et al. 2016; Gordo et al. 2016;
Radenovié, Tolias, and Chum 2016; Tolias, Avrithis, and
Jégou 2016; Noh et al. 2017; Radenovié, Tolias, and Chum
2018). Apart from global features, local features are also
used to perform spatial verification (Philbin et al. 2007; Noh
etal. 2017; Cao, Araujo, and Sim 2020), which incorporates
the geometric information of objects and results in a more
reliable matching. In this work, we focus on learning global
image descriptors with self-supervision due to its simplicity,
and leave local descriptors for future work.

Self-supervised representation learning. Recently,
prominent performance in image classification is achieved
by contrastive learning (Oord, Li, and Vinyals 2018; He
et al. 2020; Chen et al. 2020a,b; Caron et al. 2020). In
particular, MoCo (He et al. 2020; Chen et al. 2020b),
SimCLR (Chen et al. 2020a) and SWAV (Caron et al. 2020)
further reduce the performance gap between self-supervised
networks and fully-supervised networks. Different from
MoCo and SimCLR that learn by the image discrimination,
SCAN (Van Gansbeke et al. 2020) and InterCLR (Xie et al.
2020) reveal that more important semantic information can
be explored across images. Recent works, such as PCL (Li
et al. 2020) and SwAV (Caron et al. 2020), were developed
to learn intra-class information implicitly by assigning
similar images to same prototypes/clusters. In this work, we
show that the intra-class information can be better explored
by explicitly finding cross-image positive pairs with a
pairwise learning paradigm.

Feature memory bank. In contrastive learning frame-
work, memory banks can be used in both supervised (Li
et al. 2019; Wang et al. 2020) and unsupervised learning (He
et al. 2020; Chen et al. 2020b) with different motivations.
Different from them, we propose to mine both positive and
negative samples in the memory for unsupervised learning,
which has never been explored before.

The Proposed InsCLR

In this section, we present details of the proposed InsCLR
which is able to learn strong image representations for in-
stance retrieval by mining pseudo positives and negatives in
a self-supervised manner. We start from an overview of the
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Figure 2: Overview of InsCLR. During training, each image is fed to the network in two forms: with and without random
data augmentations (DA). The former (red) contributes to the back-propagation, while the latter (yellow) is used for the robust
positive mining. Step 1: the images are encoded by the network, and the output features are first used to update those in the
corresponding memory banks. Step 2: positives are selected within the mini-batch. The selected positive features without DA
form a query set. Step 3: with the query set, pseudo positives are mined from the memory features corresponding to the candidate
pool of the anchor. The features that are not selected as positives become negatives. Step 4: a contrastive loss is computed based

on the anchor, the mined positives and negatives (with DA).

method, including a formal definition of the task, the net-
work architecture and the setup for training samples. Then,
we describe details of mining positives in mini-batches and
the memory bank, and the training loss.

Overview

Problem definition. We follow the line of work that rep-
resents images by global features (Babenko and Lempitsky
2015; Tolias, Sicre, and Jégou 2015; Gordo et al. 2016; Cao,
Araujo, and Sim 2020) extracted from CNNs. Image re-
trieval is then performed by computing a cosine similarity
between a query image and a set of gallery images in the fea-
ture space: S;; = cos(f;, f;), where f denotes the image fea-
ture extracted by the CNN. In this case, the retrieval quality
entirely depends on image-level representations computed
from CNNs. Given an ImageNet-pretrained network and an
instance-retrieval-oriented dataset, the objective of this work
is to learn strong image representations for instance retrieval
by using the dataset in a self-supervised learning (SSL) man-
ner. As discussed previously, the state-of-the-art SSL meth-
ods are mainly designed for image classification, and fail to
capture the large intra-class invariance (such as viewpoint,
background etc.) for instance retrieval. In this work, we pro-
pose InsCLR to close this gap by mining informative cross-
image positives during training, and manage to match the
performance of fully-supervised methods.

The learning framework of InsCLR. As illustrated in
Figure 2, InsCLR mainly consists of a network to encode
images, memory banks to store image features, and the pro-
posed methods to mine pseudo positives from both mini-
batches and the memory bank. For each anchor image, the
mined positives as well as the negatives are used to com-
pute a contrastive loss for training the network. We briefly
describe the adopted network architecture and our training
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sample configuration in the following.

Network architecture. To make a fair comparison, we
adopt s simple network architecture to produce image-level
features. As shown in Figure 2 (top-middle), it consists of
three components: a backbone network, a spatial pooling
layer and an embedding module.

Memory bank. We leverage memory banks to store a
large amount of sample representations during training,
which provide more diverse yet meaningful hard samples
apart from those in mini-batches. Different from previous
image-level SSL methods (Wu et al. 2018; He et al. 2020)
that regard all the features in the memory bank as negative
samples, we propose to mine pseudo positive samples from
the memory bank. Although an additional momentum en-
coder (He et al. 2020) can be used to alleviate the problem of
inconsistency between the features in the memory, we only
maintain one encoder (similar to (Wang et al. 2020)) due to
its efficiency and simplicity.

Setup for training samples. SCAN (Van Gansbeke et al.
2020) simply collects positives for each mini-batch by com-
puting the nearest neighbours of an anchor image, using a
pre-trained model. The nearest neighbours are computed of-
fline, and are fixed during the whole training process. This
inspired us to first compute the nearest neighbours for each
image using a pre-trained model, which can be used in the
subsequent step as prior knowledge for dynamically select-
ing positives during training. Specifically, we construct a
pre-computed candidate pool for each image, which con-
tains the potential positives as well as the hard negatives
(with a high similarity). The candidate pool for each image
is obtained by computing its P nearest neighbours in the
whole training set using only the global features extracted
by ImageNet-pretrained networks in an offline manner. A



training tuple is formed by an anchor image with its IV}
top-ranked images from its candidate pool. Anchors are ran-
domly selected from the whole training set. A mini-batch
is then constructed by multiple such tuples, e.g. 16 training
tuples with N, = 3 form a mini-batch of 64.

Positive Selection in Mini-Batches

To identify more informative positives during training, we
investigate various approaches to dynamically collect posi-
tives from each tuple, which are described as follows.

We consider taking all the N, images in the tuple as
positives, referred as nn (similar to (Van Gansbeke et al.
2020)), as a baseline. We then investigate four threshold-
based strategies to select the positives from the [V, images.
Given a threshold T, the four methods are defined as fol-
lows.

(1) Augmented similarity. We adopt a threshold to select
the positives, i.e. computing feature similarities between the
anchor and N, neighboring images in the training tuple, and
only considering the images with a similarity over the pre-
defined threshold as pseudo positives: Si’:j’ 4 > T,. However,
this similarity is highly unreliable since it is computed using
the images after random augmentations. (2) Unaugmented
similarity. To overcome this limitation, the second strategy
is to feed the original images without any data augmentation,

and apply the threshold on their similarities: SZ-’;-/ oPA ST,
Note that the unaugmented version is only used for similar-
ity computation, and does not contribute to the training loss.
(3) Sample-relative similarity. A universal threshold may
not work reliably to all anchor images. Some classes may
have smaller intra-class variance, and thus require larger
thresholds. We further develop the third strategy that selects
the positives by using sample-relative similarities. Namely,
the similarities are scaled by dividing by the largest similar-
ity in each training tuple: S{f‘l > Tp. (4) Multi-scale sim-
ilarity. Lastly, based on the second strategy, we intend to
improve the similarity by feeding the unaugmented images
with multiple scales, which is the fourth strategy: S > T,

With these mining approaches, we can select pseudo pos-
itives dynamically within each mini-batch. For example, a
training tuple with N, = 7 may have 3 images selected as
positives, based on one of the proposed methods, and the
other 4 are then regarded as negatives. We empirically com-
pare the four strategies in ablation study.

Mining Positives from Memory Bank

Benefits. Apart from learning the discrimination between
positives and negatives in mini-batches, we also wish to
collect more positives from the memory bank. The bene-
fit of finding positives from the memory bank is two-fold.
First, mining more positives from the memory bank will
encourage the model to pull potential positives closer, in-
stead of pushing them away by default (i.e. considering them
as negatives in the memory). This sets our method apart
from image-level SSL like MoCo (He et al. 2020) or Sim-
CLR (Chen et al. 2020a). Second, by excluding the selected
positives, the rest of the images in the candidate pool are
considered as hard negatives, since they often have high of-
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Figure 3: Mining positives in the memory bank. The similar-
ities S between each image in the candidate pool and the
whole query set are computed by pairwise similarity com-
putation followed by aggregation. The positive selection is
based on Ss.; and the mined images become part of the new

query set.

fline similarities with the anchor image (comparing to other
images in the dataset).

Mining with query sets. The selected positives within the
mini-batch are assumed to be of the same class as the an-
chor, with a high confidence. Therefore, we can consider the
anchor image and its selected positives from the mini-batch
as a query set, and then cast the task of mining positives
from the memory bank into a retrieval problem with a set of
query images, instead of a single query image. To this end,
we propose a new algorithm that can effectively explore the
underlying image relation on-the-fly during training. This
procedure is presented in the bottom part of Figure 2. The
whole mining process should be performed on the image
features extracted without any random augmentation, while
the augmented images are used for representation learning.
To be specific, our method consists of two steps: similarity
computation and aggregation, which are performed on ev-
ery training tuple in a mini-batch. The method is shown in
Figure 3.

Step 1: similarity computation. To make use of every
query at hand, we first compute the similarity between the
features of each query image and that of memory images.
Each image in the pool now has NV,, similarity scores, where
N, denotes the size of the query set (). As an optional step,
we can disregard the similarity scores below a threshold. In-
tuitively, it is possible to have an image which may not look
similar to all the images of the same class, e.g. even though
images contain the same object, they may not have a low
global similarity due to different viewpoint and background
clutter etc. Mathematically, we have:

S(ZvQ) = ¢(S(i7QI)7S(Z’7q2)7 . . '7S(i>QNp))7

where ¢ is the optional discarding step and g € Q.

(D



Step 2: similarity aggregation. For each image in the
candidate pool, we measure its similarity to the whole query
set by Sset. Sset 15 Obtained by aggregating its similarities
to each image in the query set. In this work, two aggregation
functions are considered: average and maximum:

Sset = 7/1(5(17@))7 (2)

where 1 is the aggregation function. We then re-rank the
images in the candidate pool based on S,.;. Given the re-
ranked of candidate images, we can determine the pseudo
positives either using a threshold 7;,, or the top-k rule. The
mined positives can be added to the query set () and we can
repeat the above two steps for several times to gather more
positives if desired. Apart from the mined positives, the rest
of the candidate pool is then used as negatives.

Efficient online graph traversal. The proposed method
can be considered as an online graph traversal in the image
manifold of the query set and the candidate pool. It has two
advantages comparing to the standard offline graph traversal
methods like (Iscen et al. 2017, 2018; Chang et al. 2019).
First, it can be applied during training without introducing
much computational overhead. Second, it is an online ap-
proach and the image manifolds can become more reliable
along the training, in contrast to (Iscen et al. 2018) in which
the image labels are generated in the fixed image manifolds
before training.

Loss

We adopt a simple contrastive loss (Hadsell, Chopra, and
LeCun 2006). Concretely, the loss function L for a training
tuple is:

1 Np | Niter Niter
L:VZ Zsijfzsij ; €
Pli=1 |yiy; Yi=y;

where IV, is the size of query set after memory mining. For
a training iteration, N, is a collection of all images in
the mini-batch and the candidate pool for the anchor image.
y; # y; indicates a negative pair while y; = y; denotes a
positive pair. S;; is the cosine similarity between features.

Experiments and Results
Implementation Details

Network architecture. Following (Weyand et al. 2020),
ResNet-101 (He et al. 2016) is used as the backbone net-
work, and only the first four convolutional blocks are kept.
The channel size of the backbone output feature map is
2048. For the spatial pooling layer, we adopt the Generalized
Mean pooling (Radenovié, Tolias, and Chum 2018) (GeM)
with the parameter p fixed to be 3. Similar to (Gordo et al.
2017; Cao, Araujo, and Sim 2020), we use a fully-connected
layer as the embedding module with an output dimension of
2048, without a careful tuning.

Training details. The training data is a subset of
GLDv2 (Ozaki and Yokoo 2019). The dataset contains 1.2M
images from 27k landmarks. Unless specified, the size of the
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Medium Hard
Method  Batch/Mem. "y ¢/ ppar ROxf/RPar
ImageNet 23.0/52.0 6.5/25.9
ImageNet + PCA 40.9/65.6 30.5/41.7
ImageNet + PCA* 45.0/70.7 17.7/48.7
Supervised-Arc' 76.2 / 86.8 55.1/72.5
A nn/- 57.6/68.1 30.3/43.7
B nn / neg. 61.0/73.4 35.4/52.6
C ours / neg. 65.2/75.1 39.9/55.7
D ours / anc. 67.4/75.6 42.2/56.5
E ours / ours 73.1/77.6 48.3/59.5

Table 1: Ablation on pseudo positive mining. All methods
use ResNet-101 with GeM pooling. nn denotes that taking
all the images in the training tuple as positives without selec-
tion. neg. means that all of the 10° features randomly sam-
pled from the memory bank are considered as negatives. * is
from (Radenovié et al. 2018), and { is from (Weyand et al.
2020) trained with ArcFace loss (Deng et al. 2019).

offline-computed candidate pool P is set to be 500 for every
image, and N, is set to be 3 for all networks. More details
can be found in the supplementary material.

Ablation Study

We conduct ablation study on two public benchmarks: Ox-
ford and Paris with revisited annotations (Radenovié et al.
2018), denoted by ROxf and RPar, respectively.

Candidate pool size. We empirically find that the perfor-
mance increases along with P until around 250, after which
the performance improves marginally. This is probably be-
cause only the hard negatives with similarity higher than 0.4
contribute to the loss, and increasing the size of the pool over
200 brings minimal hard negatives.

Positive selection in mini-batches. As Figure 4 shows,
the proposed pseudo positive selection strategies improve
the performance over the nearest-neighbour baseline nn in
general. In particular, applying an absolute threshold on the
unaugmented similarity performs better than others, only
beaten by its multi-scale variant on /RPar. Furthermore, the
similarity based on the augmented images is unreliable and
harms the retrieval performance. This proves the importance
of feeding a version without data augmentation for each im-
age during training. Based on the unaugmented similarity,
we experiment on several values of NV, (i.e. 1, 3, 5, 7), and
find that N, = 3 is the optimal choice. In the rest of the
experiments, a threshold of 73, = 0.65 with the unaugmented
similarity is adopted, with N, = 3.

Performance gain of each component. We compare our
method with several baselines and show the performance
gain brought by each proposed component in Table 1.
Firstly, the ImageNet-pretrained network can be seen as a
lower bound. As reported in (Radenovic et al. 2018), apply-
ing a PCA/whitening on the features can significantly in-
crease the performance. Notably, the rest of the results in
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Table 1 do not involve PCA post-processing. Training with
offline-computed nn positives in the mini-batch (denoted by
method A) raises the performance to a relatively high level,
i.e. above 60 with medium setup. Method B is method A
with a memory bank in which features are only regarded as
negatives. This gives notable gains in both ROxf and RPar.
Method C replaces the nn with the proposed pseudo positive
selection, which improves the mAP by around 4 and 3 points
in ROxf and RPar, respectively. If the proposed memory
mining is adopted (denoted by method E), the performance
is further boosted prominently. However, if we perform the
mining in the memory only using the anchor image itself
(i.e. without the selected positives in the training tuple), the
performance drops significantly (method D). This validates
the importance of mining with a query set.

Details in memory mining. In Table 2, we compare the
different options in the design of memory mining. For the
similarity aggregation methods, mean and max perform bet-
ter in ROxf and RPar, respectively. As the selection strat-
egy, topk performs better than threshold. This is in contrast
to the case in mini-batches, where threshold is better. It is
because the potential positives from mini-batches are the
top-ranked images from the candidate pool, which are very
likely to be easy positives. Hence, the taking thresholds on
the similarity is relatively reliable. Whereas in the memory
bank, mining is more difficult and similarities become less
reliable. In terms of sparsity, the performance seems not sen-
sitive. This is probably because the size of the query set is
relatively small. The last conclusion to draw from Table 2
is that the mAP increases with the mining iterations, while
bringing negligible computational overhead. In the rest of
the experiments, avg and topk are adopted with 4 iterations
in the mining.

Mining accuracy at training. We analyze the precision
of positive mining along the training, which is defined as the
ratio between the true positives mined and the total num-
ber of mined pseudo positives. We find that the precision of
mining in both mini-batches and the memory bank increases
gradually along the training. The plots of the precision are
displayed in the supplementary material.
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Medium Hard
Aggre.  Selection oo ¢/ Rpar  ROXf/RPar
avg topk 71.3/77.0 45.5/58.3
avg topk w/ spa.  70.4/77.1 44.8 /1 58.8
avg threshold 68.4/76.3 42.0/57.4
max topk 70.6/77.2 44.5/58.7
max topk w/ spa.  70.4/77.2 44.0/58.5
max threshold 61.1/71.5 349/47.6
avg topk 1x 69.5/76.2 42.8/57.2
avg topk 4 x 73.1/77.6 48.3/59.5

Table 2: Ablation on mining positives in the memory bank.
topk denotes taking the top k = 5 images in the ranked can-
didate pool. T},, = 0.6 for threshold. spa. refers to retaining
only the similarity scores above 0.6 to enforce the sparsity.
1x or 4x means that the mining is performed for one or four
iterations (otherwise two iterations).

Comparison with Other Methods

We compare InsCLR with the state-of-the-art methods in Ta-
ble 3, including the large-scale retrieval results by adding
R1IM. Following the convention in image retrieval and for
a fair comparison, all the self-supervised methods (includ-
ing SimCLR, MoCov2, SwAV etc.) start with ImageNet-
pretrained networks and are used to fine-tune on GLDv2.

Supervised methods. Table 3 shows that InsCLR
achieves outstanding mAP on ROxf and RPar for both
medium and hard setup. In particular, the mAP of InsCLR
on ROxf medium is on par with the state-of-the-art super-
vised methods. Namely, only RI0I-GeM (GLDv2-clean)
performs better than InsCLR on both ROxf and RPar, when
spatial verification (SP) is not considered. In particular,
with the same architecture, InsSCLR enhances the mAP on
ROxf medium/hard from 45.0/17.7 (ImageNet pretrained)
to 73.1/48.3, comparing to 76.2/55.1 attained with full
supervision. Even with SP, DELF-R-ASMK+SP (GLD) only
performs better than InsCLR when R1M is added. However,
SP is much slower at run-time and memory-consuming.



Method

Medium Hard
ROxf/RIM  RPar/RIM ROxf/RIM RPar/RIM

Supervised training

R101 - GeM (ImageNet) (Radenovié et al. 2018) 45.0/25.6 70.7/46.2 17.714.7 48.7/20.3
R101 - R-MAC (Gordo et al. 2017) 60.9/39.3 78.9/54.8 3247125 59.4/28.0
R101 - GeM - AP (Revaud et al. 2019) 67.5/47.5 80.1/52.5 42.8/23.2 60.5/25.1
R101 - GeM - AP (GLD) (Revaud et al. 2019) 66.3 /- 80.2 /- 42,5/ - 60.8 /-

R101 - DELG (Cao, Araujo, and Sim 2020) 73.2/54.8 82.4/61.8 51.2/30.3 64.7/35.5
R101 - GeM (GLDv2-clean) (Weyand et al. 2020) 76.2 / - 86.8 /- 55.1/- 72.5/ -

DELF - ASMK + SP (Radenovi¢ et al. 2018) 67.8/53.8 76.9/57.3 43.1/31.2 5541264
DELF - R-ASMK + SP (GLD) (Teichmann et al. 2019) 76.0/64.0 80.2/59.7 52.4/38.1 58.6/29.4

Self-supervised training based on automatic annotation
VGG16 - MAC (Radenovié, Tolias, and Chum 2016) 58.4/39.1 66.8/42.4 30.5/17.9 42.0/17.7
R101 - GeM (GLD) (Radenovi¢, Tolias, and Chum 2018) 64.7/45.2 77271523 38.5/19.9 56.3/24.7
R101 - GeM (Siméoni, Avrithis, and Chum 2019) 65.3/46.1 77.3/52.6 39.6/22.2 56.6/24.8
R101 - GeM + DSM (Siméoni, Avrithis, and Chum 2019)  65.3/47.6 77.41752.8 39.2/23.2 56.2/25.0
Self-supervised training

DeepCluster (Caron et al. 2018) 29.8/9.8 49.1/13.3 9.0/0.9 26.0/3.2
SimCLR (Chen et al. 2020a) 222/9.4 50.5/14.4 6.3/22 19.6/1.1
MoCov2 (Chen et al. 2020b) 27.3/11.0 65.1/174 6.1/0.8 38.4/3.2
BYOL (Grill et al. 2020) 11.0/1.9 28.4/3.7 2.3/0.1 8.8/0.2

PCL (Li et al. 2020) 29.2/10.3 59.3/17.6 7.91/70.5 28.9/2.6
SwAV (Caron et al. 2020) 19.9/7.1 38.5/10.4 3.7/0.1 10.5/0.4
InsCLR (ours) 73.1/56.2 77.6/56.7 48.3/29.6 59.5/29.2

Table 3: Comparison to state-of-the-art methods on large-scale retrieval. Automatic annotation means additional computer
vision systems are used to annotate the images before training. SP refers to the spatial verification using local features. Results
of all the unsupervised methods are obtained using their official code with careful hyper-parameter tuning, with the same
network architecture as InsCLR. Note that all the methods in this table are built on ImageNet-pretrained networks.

Method Labels Valset Test set
(Weyand et al. 2020) Yes 23.30 25.57
ImageNet pretrained No 0.89 0.52
InsCLR No 13.39 13.71

Table 4: Retrieval task on GLDV2 (% mAP@100).

Method Labels INSTRE
ImageNet (w/o PCA) - 32.7
(Iscen et al. 2018) No 57.7
InsCLR w/o PM. (nn=1) No 55.6
InsCLR No 76.2

Table 5: Evaluation on INSTRE. 1 denotes the result of
method (Gordo et al. 2017) implemented by (Iscen et al.
2017). PM. denotes the positive mining in InsCLR.

Self-supervised methods. In the self-supervised regime,
InsCLR surpasses all the self-supervised methods. We at-
tempted to train SCAN on our task but it failed to con-
verge in the clustering step. Lastly, although clustering-
based methods like DeepCluster, PCL and SwAV implicitly
take into account the intra-class variation into the represen-
tation learning, they hardly bring improvements. It shows
that learning intra-class invariance explicitly from positive
and negative pairs is superior for the task at hand.

Evaluation on More Benchmarks

GLDvV2 retrieval task. We directly evaluate the trained
InsCLR model on the GLDV2 retrieval task. As shown in Ta-
ble 4, InsCLR can achieve performance 13.39% and 13.71%
on validation and test set, respectively. This is a surprisingly
large improvement comparing to the ImageNet-pretrained
baseline, given that no labels are used.

INSTRE benchmark. To showcase the generalization of
InsCLR, we fine-tune an ImageNet-pretrained ResNet-50
with GeM (p = 3) on another instance retrieval benchmark:
INSTRE (Wang and Jiang 2015). As shown by Table 5, In-
sCLR significantly outperforms (Iscen et al. 2018). More-
over, the proposed positive mining within mini-batches and
the memory again boosts the performance by a large margin
(i.e. 55.6t0 76.2).

Conclusion

We present a new SSL method built on the instance-
level constrastive learning for instance retrieval. This sets
it apart from existing SSL methods that commonly learn
from image-level contrast. InsCLR can learn intra-class in-
variance by mining informative positives from both mini-
batches and memory bank during training. Extensive experi-
ments demonstrate that InsCLR can achieve comparable per-
formance to supervised methods on instance retrieval.
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