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Abstract
Source-Free Unsupervised Domain Adaptation (SFUDA)
aims to adapt a pre-trained source model to an unlabeled
target domain without access to the original labeled source
domain samples. Many existing SFUDA approaches apply
the self-training strategy, which involves iteratively selecting
confidently predicted target samples as pseudo-labeled sam-
ples used to train the model to fit the target domain. However,
the self-training strategy may also suffer from sample selec-
tion bias and be impacted by the label noise of the pseudo-
labeled samples. In this work, we provide a rigorous the-
oretical analysis on how these two issues affect the model
generalization ability when applying the self-training strat-
egy for the SFUDA problem. Based on this theoretical anal-
ysis, we then propose a new Denoised Maximum Classifier
Discrepancy (D-MCD) method for SFUDA to effectively ad-
dress these two issues. In particular, we first minimize the
distribution mismatch between the selected pseudo-labeled
samples and the remaining target domain samples to alleviate
the sample selection bias. Moreover, we design a strong-weak
self-training paradigm to denoise the selected pseudo-labeled
samples, where the strong network is used to select pseudo-
labeled samples while the weak network helps the strong net-
work to filter out hard samples to avoid incorrect labels. In
this way, we are able to ensure both the quality of the pseudo-
labels and the generalization ability of the trained model on
the target domain. We achieve state-of-the-art results on three
domain adaptation benchmark datasets, which clearly vali-
dates the effectiveness of our proposed approach. Full code is
available at https://github.com/kkkkkkon/D-MCD.

Introduction
Benefiting from the large amount of labeled training data
available, deep neural networks have achieved promising
results in many computer vision tasks. However, it is of-
ten highly costly to build a large-scale labeled dataset for
deep neural network training. To this end, the Unsupervised
Domain Adaptation (UDA) was devised, the goal of which
to leverage a labeled source domain to help the training of
models on a new unlabeled target domain, thus saving the
cost of annotating training samples for the new domain.

While many methods have been proposed to solve the
UDA problem (Ganin and Lempitsky 2015; Long et al.

*Corresponding author.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2018; Saito et al. 2018; Dong et al. 2020; Liu et al. 2021;
Deng et al. 2021; Dong et al. 2021), these approaches is
needed to access the source domain data during the train-
ing process. This limits application of the UDA approach
in many real-world scenarios. For example, in visual recog-
nition tasks involving medical images, surveillance videos,
or fingerprint images, accessing these data often introduces
privacy issues.

To avoid accessing the source domain data in the do-
main adaptation process, a more challenging UDA setting
has been is proposed, named Source-Free Unsupervised Do-
main Adaptation (SFUDA) (Liang, Hu, and Feng 2020). Un-
der this setting, we are only given a source model pre-trained
on the source domain and unlabeled samples in the target do-
main; the goal is to improve the performance of the model
on the target domain without access to the original labeled
source domain data.

One straightforward way to address SFUDA is to apply a
self-training strategy, and many methods using this way have
been proposed (Liang, Hu, and Feng 2020; Chen et al. 2021;
Tian et al. 2021). The core concept involves using the trained
model to select a set of confidently predicted samples from
the target domain, which are likely to be correctly labeled,
and then use these selected pseudo-labeled samples to refine
the model. This process is then iterated such that the model
can be gradually improved.

However, there are also risks associated with the self-
training strategy. First, there exists a sample selection bias
when selecting pseudo-labeled samples from the target do-
main, which inevitably limits the model’s generalization
ability on the entire target domain. Second, the pseudo-
labeled samples often contain significant label noise, which
also harms the model performance. While several heuristics
designed have been proposed (Liang, Hu, and Feng 2020;
Chen et al. 2021) to improve the label quality, existing works
on this topic have not entirely resolved these two issues.

In this work, we provide a rigorous theoretical analysis of
how the sample selection bias and the label noise of pseudo-
labeled samples affect the target model’s generalization abil-
ity when the self-training strategy is applied for the SFUDA
problem. Building upon the generalization bound for the tra-
ditional UDA problem, we provide a generalization bound
for the SFUDA problem. We prove that the generalization
ability of the target model can be bounded by the target train-
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ing error with the pseudo-labeled samples, the label noise of
the pseudo-labeled samples, the distribution mismatch be-
tween the selected pseudo-labeled samples and the remain-
ing target samples, and other constant terms. This validates
our analysis of the two risks when using self-training for the
SFUDA problem.

Based on the generalization bound, we then propose a new
SFUDA approach called Denoised Maximum Classifier Dis-
crepancy (D-MCD). First, we remold the Bi-Classifier De-
terminacy Maximization (BCDM) to adapt the pre-trained
source model to the target domain using unlabeled target
domain samples, enabling us to obtain a good enough initial
target model for self-training. We then begin the self-training
process in which we explicitly consider the two risks dis-
cussed above. When training the target model with the se-
lected pseudo-label samples, we also pay attention to the
distribution mismatch between these selected samples and
the remaining target domain samples. The BCDM approach
is again applied during the self-training process to reduce
this distribution mismatch, such that the generalization abil-
ity can be guaranteed on the entire target domain.

Furthermore, we design a strong-weak self-training
paradigm to reduce the label noise in the selected pseudo-
label samples. As the initial target model trained with
pseudo-label samples often produces high-confidence but
incorrect predictions, we additionally train another model
from scratch with pseudo-label samples to help filter out
these hard samples. This approach is motivated by the fact
that a model tends to remember easy samples during the
early stage of the training process; accordingly, the newly
trained weak model is able to identify hard examples for the
strong initial target model, thereby reducing its production
of high-confidence and incorrect predictions. We implement
this by gradually ensembling the model parameters of the
weak model to the strong model until the weak model is suf-
ficiently strongly trained.

In summary, the contributions of this paper are as follows:
• We provide a generalization bound for the SFUDA prob-

lem, which reveals the impacts of sample selection bias
and the label noise of pseudo-labeled samples when ap-
plying self-training for the SFUDA problem.

• We propose a new D-MCD approach for the SFUDA
problem, in which we simultaneously reduce the data dis-
tribution mismatch between the selected pseudo-labeled
samples and the remaining target domain samples, and
improve the label quality of pseudo-labeled samples by
means of a strong-weak self-training paradigm.

• We evaluate our proposed approach on three domain
adaptation benchmark datasets and achieve state-of-the-
arts results.

Related Works
Unsupervised Domain Adaptation Conventional UDA
methods reduce the domain discrepancy between the source
and target domains in the feature space and rely on matching
the high-order moments of the source domain and the target
domain (Tzeng et al. 2014; Long et al. 2017; Gretton et al.
2012) or conducting adversarial training through the domain
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Figure 1: Overview of model adaptation. There are three
steps (i.e., step A, B, C) during the model adaptation, with
different colors of dashed-line boxes indicating either a
move backward or an update in the corresponding step.

discriminator to learn domain-invariant features (Ganin and
Lempitsky 2015; Long et al. 2018). In addition, there is also
a special kind of adversarial method that depends on the ad-
versarial training between the feature extractor and the clas-
sifier (Saito et al. 2018; Li et al. 2021; Lee et al. 2019; Lu
et al. 2020). These methods decouple the source and the tar-
get domain data during the training process; that is, they
enable estimation of the difference between the source do-
main and the target domain without having access to the
source domain data. In addition to the inter-domain align-
ment method, some methods consider intra-domain align-
ment (Pan et al. 2020) or fit the target distribution in a
straightforward manner (Wang and Breckon 2020; Liu et al.
2021). They are often dependent on the accuracy of proto-
type estimation and the accuracy of pseudo-label annotation.

Source-Free Unsupervised Domain Adaptation
SFUDA focuses on adapting the model to the target
domain without accessing the source domain data. Some
SFUDA methods (Qiu et al. 2021; Tian et al. 2021) mainly
focus on reconstructing the fake source distribution in the
feature space according to the source hypothesis and further
improve the generalization ability by aligning the target
domain samples with the pseudo source domain samples.
Another stream of SFUDA methods (Liang, Hu, and Feng
2020; Chen et al. 2021; Yang et al. 2020) exploit pseudo
label prediction from the source model or prototype to
adapt the model to the target domain so that the model is
well-fitted to the target domain distribution.

Noise Label Learning Noise label learning refers to re-
ducing the influence of noise labels and improving model
performance when dataset label noise is present. The reg-
ularization method involves a regularization term in the
training loss to avoid overfitting on noise labels (Wang
et al. 2019; Müller, Kornblith, and Hinton 2019). Previous
work (Arpit et al. 2017) has shown that deep networks tend
to memorize easy samples first, and then memorize hard
samples during the training process. Based on this obser-
vation, some approaches (Han et al. 2018; Yu et al. 2019)
have achieved good results by filtering labels to reduce the
accumulation of errors.
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Revisiting Self-training for Source-Free
Unsupervised Domain Adaptation

In the SFUDA problem, we are given a source model pre-
trained on the labeled source domain and an unlabeled target
domain D ; moreover, D̂ = {xt

i}
nt
i=1 where xt

i is sampling
from D and nt is the total number of samples in the target
domain. The goal of SFUDA is to adapt the source model to
the unlabeled target domain D without having access to the
original labeled source domain samples.

When applying the self-training strategy to solve the
SFUDA problem, the target domain is divided into two sub-
sets; a high-confidence sample set D̂h = {xh

i }
nh
i=1 and a

low-confidence sample set D̂l = {xl
i}

nl
i=1. Usually, we have

D̂ = D̂h ∪ D̂l and D̂h ∩ D̂l = ∅. Each high-confidence
sample xh

i in D̂h is then provided with a pseudo-label yi by
using the predictions made by a certain model (e.g., the pre-
trained source model or the target model from the previous
training stage). For ease of presentation, we here redefine the
high-confidence set as D̂h = {(xh

i , yi)}
nh
i=1 where yi corre-

sponds to the pseudo-label of xh
i .

At first glance, when applying the self-training strategy
for solving the SFUDA problem, we are facing a semi-
supervised learning problem(Wang, Li, and Gool 2019), as
we have a pseudo-labeled training set D̂h and an unlabeled
training set D̂l. However, the self-training problem poses
additional challenges. Specifically, the selection of pseudo-
labeled samples (i.e., the high-confidence set) inevitably in-
volves a sample selection bias; in other words, the sample
distributions of the high-confidence set D̂h and the low-
confidence set D̂l are usually different, meaning that a model
trained with these selected pseudo-labeled samples cannot
generalize well to the entire target domain. Moreover, as
the labels of the pseudo-labeled samples are obtained from
model predictions rather than human annotation, there is of-
ten considerable noise in these labels.

To verify our above analysis, we derive a generalization
error bound for the SFUDA problem. In more detail, fol-
lowing the terminology proposed by (Li et al. 2021), we
define h as a learnt hypothesis, and fp (resp., fh) as a la-
beling function that outputs the pseudo-labels (resp., ground
truth labels) for the high-confidence target samples. We fur-
ther define ED̂h

(h, fp) (resp., ED̂h
(fh, fp)) as the empirical

estimation of the discrepancy between the learnt hypothe-
sis h (resp., the ground-truth labeling function fh) and the
pseudo-labeling function fp on the high-confidence sam-
ples. Let us represent the generalization error on the target
domain of the learned hypothesis h as ED̂(h); thus, the gen-
eralization bound for the SFUDA problem can be described
as follows:
Theorem 1 Given any δ ≥ 0, for any hypothesis h ∈ H
where H is a hypothesis set, the following generalization
bound holds with at least a probability of 1− 3δ:

ED(h) ≤ ED̂h
(h, fp) + ED̂h

(fp, fh)+

(1− r)dh,H(D̂h, D̂l) + (1− r)λ+Ω,
(1)

where dh,H(D̂h, D̂l) represents the distribution mismatch

between the selected pseudo-labeled samples and the re-
maining target samples, λ and Ω are constant terms , and
r = nh

nt
is the samples selection ratio for D̂h.

The proof is provided in the Supplementary section. From
the generalization, we can observe that, in addition to the
constant term λ and Ω, the generalization error of the target
hypothesis h is bounded by three terms: the target training
error with the pseudo-labeled samples ED̂h

(h, fp), the label
noise of the pseudo-labeled samples ED̂h

(fp, fh), and the
distribution mismatch between the selected pseudo-labeled
samples and the remaining target samples dh,H(D̂h, D̂l).
This indicates that, in the process of self-training for the
SFUDA problem, in addition to minimizing the training er-
ror using the pseudo-labeled samples (i.e., the first term), it
is necessary to pay attention to the noise in the pseudo-labels
of the confidence samples (i.e., the second term), as well as
the distribution difference between the high-confidence and
low-confidence samples (i.e., the third term).

Denoised Maximum Classifier Discrepancy
Based on the analysis on the generalization bound for the
SFUDA problem, we propose a new SFUDA approach,
called Denoised Maximum Classifier Discrepancy (D-
MCD), in which we improve the self-training strategy by re-
ducing the noise in the pseudo-labels of the confidence sam-
ples along with the distribution difference between the con-
fidence and non-confidence samples. Specifically, we base
our D-MCD approach on the improved MCD (Saito et al.
2018) method BCDM (Li et al. 2021). As self-training usu-
ally requires an initial model that is strong enough to per-
form sufficiently well on the target domain, we first adapt
the pretrained source model to the target domain using un-
labeled target samples, referred to as the Model Adaptation
phase. We then begin the self-training and simultaneously
address the label noise and sample selection bias issues, re-
ferred to as the Model Self-Training phase.

Model Adaptation
The BCDM (Li et al. 2021) method was proposed to address
the traditional unsupervised domain adaptation problem, in
which the labeled source domain samples are available dur-
ing the training process. The generalization bound satisfies:

ET (h) ≤ EŜ(h) + dh,H(Ŝ, T̂ ) + λ+ Ω̂, (2)

where dh,H(S, T ) ≜ suph′∈H (disS (h′, h)− disT (h′, h)),
while λ and Ω̂ are constant terms.

The above bounds can be optimized by means of adver-
sarial training between the classifiers f and feature extractor
g. Therefore, the training process in the BCDM method can
be summarized by the following three steps:

Step A Optimize the cross-entropy loss ℓ1, ℓ2 calculate by
the model output for the source sample and source label to
keep EŜ(h) and disS (h′, h) small enough so that the gener-
alization bound in Eq. 2 still holds.

min
G,F1,F2

ℓ1 (F1 (G (xs)) ,ys) + ℓ2 (F2 (G (xs)) ,ys)
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Figure 2: The pipeline of the strong-weak self-training paradigm. The target images are first fed into the strong model (i.e., Gsr,
Fsr1 and Fsr2 ) to divide the target domain into a high-confidence and low-confidence sample split. These two sets of samples
are used to train the weak model (i.e., Gwe, Fwe1 and Fwe2 ) using BCDM (Li et al. 2021), meaning that it can also feed back
to help the strong model filter out hard samples and thus avoid incorrect labels by parameter smooth movement.

Step B Adopt the CDD distance (Li et al. 2021) as d(., .)
to measure the classifier output discrepancy (adversarial loss
Ladv). To maximize the CDD distance with the classifier and
train with ℓ1, ℓ2 to maintain stability.

min
F1,F2

ℓ1 + ℓ2 − γd(F1 (G (xt)) , F2 (G (xt)))

Step C To minimize the CDD distance with feature extrac-
tor G.

min
G

γd(F1 (G (xt)) , F2 (G (xt)))

Remolding BCDM for SFUDA In the SFUDA problem,
the labeled samples in the source domain are not accessible
during training; accordingly, the BCDM cannot be directly
applied to the SFUDA problem, since the loss ℓ1 and ℓ2 in
Steps A and B cannot be optimized due to the lack of avail-
able labeled source domain samples.

According to the setting of the SFUDA problem, as the
source model is trained on the source domain, it is reason-
able to assume that the error performance of the model on
the source domain is also extremely small, meaning that the
above generalization bound still holds. However, due to the
lack of original labeled source domain data, we cannot cal-
culate the loss function ℓ1, ℓ2 in Steps A and B. Training
only with steps B and C and without ℓ1, ℓ2 may cause the
model’s error on the source domain to increase. Thus, to
remold BCDM for SFUDA, we cannot only train with ad-
versarial training, it is also necessary to maintain the perfor-
mance of the model in the source domain. Specifically, as-
sume that we are given a pre-trained source domain includes
two branches of classification heads Fs1 , Fs2 , and a common
feature extractor Gs and we initialize model Fsr1 , Fsr2 , Gsr

with source model. To address this problem, we propose to
replace these loss functions with reverse cross-entropy loss
(RCE loss function):

ℓrce1 = −
K∑

k=1

p1(k|xt
i) log q1(k|xt

i)

ℓrce2 = −
K∑

k=1

p2(k|xt
i) log q2(k|xt

i)

(3)

where xt is target domain sample, while q1(k|xt) and
q2(k|xt) are the respective the outputs of the source model

from the classifier for the k-th class. Moreover, Fs1 and Fs2 ,
and the p1(k|xt) and p2(k|xt) are respectively the outputs of
the trained model from the branch classifier Fsr1 and Fsr2 .
As shown in Figure 1, we train Step A and Step B to opti-
mize the RCE loss function between the current model out-
put and the source model output.

By taking the soft labels from the pre-trained source
model, the traditional cross-entropy (CE) loss can also be
used as an alternative to the above RCE loss, because it can
be used as a regular term to keep the model from collapsing
during training. However, compared with the CE loss func-
tion, the RCE loss function pays attention not only to the
consistency of the output and the label, but also to the confi-
dence of the label. The RCE loss function has a large sample
gradient for high-confidence labels and a small sample gra-
dient for lower-confidence labels, as discussed below,

Properties of RCE Loss For distribution p, q, the RCE
loss function (Wang et al. 2019) is calculated as follows:

ℓrce = −
K∑

k=1

p(k|x) log q(k|x) (4)

we calculate the gradient of the RCE loss function to the
j-th element zj output by the neural network and fixing the
probability p to analyze the influence of q on the gradient,
we find that when the predicted probability q is a uniform
probability vector, such as [ 1

K , 1
K , ... , 1

K ], the gradient of
the RCE loss function is:

∂ℓrce
∂zj

= pj(
K∑

k=1

pk log qk − log qj)

= pj(
K∑

k=1

pk log
1

K
− log

1

K
) = 0

(5)

When the predicted probability q is a one-hot vector, the ab-
solute value of the gradient reaches its maximum. Moreover,
the gradient of the CE loss function to the j-th element zj
output by the neural network is as follows:

∂ℓce
∂zj

= pj − qj (6)
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This shows that the gradient of the CE loss function focuses
only on consistency while ignoring confidence. Therefore,
by optimizing the RCE loss function in each step, the model
can not only learn according to the confidence of the soft
label but is also able to maintain its performance on the high-
confidence samples.

Model Self-Training
After obtaining a sufficiently good initial model, we next
discuss how to improve the self-training process. In particu-
lar, when training the target model with the selected pseudo-
labeled high-confidence samples, we design a strong-weak
self-training paradigm, in which the strong and weak model
training helps to remove high-confidence but incorrect la-
bels, and also employ the BCDM (Li et al. 2021) method
to reduce the distribution mismatch between the high-
confidence and low-confidence samples. The overview of
model self-training is presented in Fig. 2.

Strong-Weak Self-Training Paradigm We represent the
strong model as Gsr, Fsr1 , Fsr2 with parameter θsr. As it
has been fine-tuned on the target domain, it typically outputs
confident predictions for the target domain samples, even
though a number of these predictions might be wrong. As
shown by the analysis in Theorem 1, this will significantly
increase the second noise label term in the generalization
bound, and thus degrade the generalization performance of
the model in the target domain.

To reduce the number of high-confidence but incorrect la-
bels, we additionally train a weak model Gwe, Fwe1 , Fwe2
with parameter θwe from a model that has not been trained
on either the source or the target domain e.g., an ImageNet
pre-trained model. Our motivation is based on the observa-
tion that deep networks tend to memorize correctly labeled
samples first (Arpit et al. 2017) and then memorize label
noise samples during the training process. Therefore, the
weak model will tend to first remember the high-confidence
and correct label during the training process while ignor-
ing the high-confidence but incorrect labels. We accord-
ingly use the weak model help the strong model to filter
out these high-confidence but incorrectly predicted samples.
More specifically, during the training process, we use the
method of smooth parameter movement to fuse the parame-
ters of the weak model with those of the strong model at the
end of each epoch.

θsr = αθsr + (1− α)θwe (7)

In this way, the addition of parameters from the weak model
helps to increase the confidence score of easy and correct
samples, thus encouraging them to enter the high-confidence
sample set. At the same time, the reduction of the origi-
nal parameter of the strong model helps to reduce the con-
fidence of high-confidence but incorrect samples, meaning
that these samples will tend to be filtered out of the high-
confidence sample set. After a period of training, due to the
reduction of the influence of noisy labels, the weak model
will continue to grow stronger, even to the extent that the
predictive accuracy of its high-confidence samples will ex-
ceed that of the original strong model. Thus we abandon the

original strong model and use the stronger current model for
training. Specifically, we set α = 1 when the model’s cross-
entropy loss function Lce < 0.5 for noise labels. By compar-
ing the accuracy of the false labels of a fixed proportion of
high-confidence samples before and after denoising on sev-
eral datasets, we can confirm the effectiveness of our method
(see Supplementary for the details).

Training process of D-MCD We separate the target do-
main D into a high-confidence domain Dh and a low-
confidence domain Dl. Moreover, we use the strong model
to assign pseudo-labels to Dh samples. Therefore, we can
use the UDA method BCDM (Li et al. 2021) to align the la-
beled domain Dh and the unlabeled domain Dl. We refer to
the steps A, B, C mentioned in the model adaptation chapter
and iteratively perform the following steps:

Step 1 Similar to the step A mentioned above, we re-
place the source domain sample xs and label ys with high-
confidence domain samples xh and pseudo-label yh.

Step 2 Similar to step B mentioned above, we replace the
source domain sample xs and label ys with high-confidence
domain samples xh and pseudo-label yh to calculate cross-
entropy loss. Moreover, we calculate CDD distance with
samples xl of low-confidence domain instead of samples
from all the target domain.

Step 3 Similar to the above-mentioned step C, we calcu-
late CDD distance with samples xl of low-confidence do-
main rather than all samples from all the target domain.

Details of Selecting High-confidence Samples After
model adaptation, we obtain a strong enough model
Gsr, Fsr1 , Fsr2 that can better predict results on the target
domain. To separate the target samples, we select CDD dis-
tance (Li et al. 2021) as the measure of the sample confi-
dence level, since CDD distance can measure the consis-
tency and confidence of the two classifier outputs.

Given a ranking of CDD distance for each sample in the
target domain, hyper-parameter r is introduced as a ratio
to separate the target images in a class-wise manner into
high-confidence and low-confidence domain. Specifically,
for each category, we select the top ratio r samples to con-
struct a high-confidence domain and the remaining samples
to construct a low-confidence domain.

In addition, to prevent the impact of unbalanced sam-
ple numbers when selecting by category, we estimate the
expected sample interval for each category. We define the
number of categories as K; thus, the expected number of
high-confidence samples for the i-th category is Ei(r) =
rnt

K . For each category, we construct an interval [ai, bi] =
[Ei(r − c), Ei(r + c)], where c represents the balance ratio.
So the number of samples selected for the i-th category as
ki = min(bi,max(ki, ai)). This operation helps to ensure
a balanced number of samples across each category in the
constructed high-confidence domain.

Experimental Setup
Datasets We evaluate our method on three widely used
UDA benchmark datasets: 1) VISDA (Peng et al. 2017), a
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Method Source-Free plane bcycl bus car horse knife mcyclperson plant sktbrd train truck Avg.
ResNet-101 (He et al. 2016) % 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
MCD (Saito et al. 2018) % 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
CDAN (Long et al. 2018) % 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
SWD (Lee et al. 2019) % 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
STAR (Lu et al. 2020) % 95.0 84.0 84.6 73.0 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7
BCDM (Li et al. 2021) % 95.1 87.6 81.2 73.2 92.7 95.4 86.9 82.5 95.1 84.8 88.1 39.5 83.4
SHOT (Liang, Hu, and Feng 2020) ! 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
MA (Li et al. 2020) ! 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6
G-SFDA (Yang et al. 2021) ! 96.1 88.3 85.5 74.1 97.1 95.4 89.5 79.4 95.4 92.9 89.1 42.6 85.4
SSNLL (Chen et al. 2021) ! 97.2 87.7 89.1 73.6 96.1 91.2 92.7 79.9 94.2 89.0 90.4 48.9 85.8
VDM-DA (Tian et al. 2021) ! 96.9 89.1 79.1 66.5 95.7 96.8 85.4 83.3 96.0 86.6 89.5 56.3 85.1
CPGA (Qiu et al. 2021) ! 95.6 89.0 75.4 64.9 91.7 97.5 89.7 83.8 93.9 93.4 87.7 69.0 86.0
D-MCD (ours) ! 97.0 88.0 90.0 81.5 95.6 98.0 86.2 88.7 94.6 92.7 83.7 53.1 87.5

Table 1: Classification accuracy (%) on the VISDA dataset (ResNet-101).!indicates the SFUDA method, and%indicates the
UDA method. Bold text indicates the best results.

Method Source-Free A → C
A → P

A → R
C → A

C → P
C → R

P → A
P → C

P → R
R → A

R → C
R → P

Avg.
ResNet-50 (He et al. 2016) % 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN (Ganin and Lempitsky 2015) % 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
DAN (Long et al. 2015) % 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
CDAN (Long et al. 2018) % 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
SPL (Wang and Breckon 2020) % 54.5 77.8 81.9 65.1 78.0 81.1 66.0 53.1 82.8 69.9 55.3 86.0 71.0
SHOT (Liang, Hu, and Feng 2020) ! 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
G-SFDA (Yang et al. 2021) ! 57.9 78.6 81.0 66.7 77.2 77.2 65.6 56.0 82.2 72.0 57.8 83.4 71.3
CPGA (Qiu et al. 2021) ! 59.3 78.1 79.8 65.4 75.5 76.4 65.7 58.0 81.0 72.0 64.4 83.3 71.6
D-MCD (ours) ! 59.4 78.9 80.2 67.2 79.3 78.6 65.3 55.6 82.2 73.3 62.8 83.9 72.2

Table 2: Classification accuracy (%) on the Office-Home dataset (ResNet-50).!indicates the SFUDA method, and%indicates
the UDA method. Bold text indicates the best results.

large-scale challenging dataset with 12 classes; 2) Office-
Home (Venkateswara et al. 2017), a medium-sized image
classification dataset with four distinctive domains (Art (A),
Clipart (C), Product (P), and RealWorld (R)); 3) Of-
fice31 (Saenko et al. 2010), a small-sized image classifi-
cation dataset comprising three different domains (Ama-
zon (A), DSLR (D), and Webcam (W))

Experiment Details We first train a model using the la-
beled source samples, then employ our proposed D-MCD
method to improve the target model performance on the tar-
get domain, where only unlabeled target samples are avail-
able while the labeled source samples are inaccessible. We
use the data transform method for high-confidence samples
adopts from (French, Mackiewicz, and Fisher 2018) and we
also adopt the consist loss for different data transform sam-
ples. For the Office31 dataset, we calculate probability us-
ing the ensemble of feature level probability and classifier
output probability, and we generate the prototype following
SHOT (Liang, Hu, and Feng 2020); moreover, to balance the
model obtained by Model Adaptation training and Model
Self-Training, the ensemble output of these two models will
be used as the result.

Network Architecture We follow the network architec-
ture presented in the BCDM (Li et al. 2021) method. The
feature extractor is initialized with the ResNet50/101 model
pre-trained on ImageNet (Deng et al. 2009), and we replace
the last fully connected layer with the bottleneck layer. A
classifier with three fully connected layers is used for the
VISDA dataset, and a classifier with two fully connected
layers is used for the Office-Home and Office31 datasets.

Network Hyper-parameters We set the following hyper-
parameters for RCE loss β = 0.1 for Office and β = 0.001
for VISDA, γ = 0.0025 in training step B and C, r = 0.4
and c = 0.2 for VISDA and Office-Home and r = 0.6,
c = 0.1 for Office31. We adopt the Stochastic Gradient
Descent optimizer (SGD) with momentum 0.9 and weight
decay 5 × 10−4 and the same learning rate scheduler η =
η0 · (1+ 10 · p)−0.75 where p is the training progress chang-
ing from 0 to 1. For the VISDA dataset, the learning rates
for the feature extractor and the feature classifier are set to
3 × 10−4 and 1 × 10−3 respectively. For the Office-Home
and Office31 datasets, learning rate of the feature extractor
is 3 × 10−3 and the learning rate of the feature classifier is
1×10−2. Moreover, we exploit the same entropy loss (Long
et al. 2016) following (Saito et al. 2018; Li et al. 2021)
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Method Source-Free A → D A → W D → A D → W W → A W → D Avg.
ResNet-50 (He et al. 2016) % 68.9 68.4 62.5 96.7 60.7 99.3 76.1
DANN (Ganin and Lempitsky 2015) % 79.7 82.0 68.2 96.9 67.4 99.1 82.2
DAN (Long et al. 2015) % 78.6 80.5 63.6 97.1 62.8 99.6 80.4
CDAN (Long et al. 2018) % 92.9 94.1 71.0 98.6 69.3 100.0 87.7
BCDM (Li et al. 2021) % 93.8 95.4 73.1 98.6 71.6 100.0 89.0
SHOT (Liang, Hu, and Feng 2020) ! 94.0 90.1 74.7 98.4 74.3 99.9 88.6
MA (Li et al. 2020) ! 92.7 93.7 75.3 98.5 77.8 99.8 89.6
VDM-DA (Tian et al. 2021) ! 93.2 94.1 75.8 98.0 77.1 100.0 89.7
CPGA (Qiu et al. 2021) ! 94.4 94.1 76.0 98.4 76.6 99.8 89.9
D-MCD (ours) ! 94.1 93.5 76.4 98.8 76.4 100.0 89.9

Table 3: Classification accuracy (%) on the Office-Home dataset (ResNet-50).!indicates the SFUDA method, and%indicates
the UDA method. Bold text indicates the best results.

Model
Adaptation

Matching
Distribution

Strong-Weak
Model

Acc.(%)

✓ ✓ 74.2
✓ ✓ 83.9
✓ ✓ 86.1
✓ ✓ ✓ 87.5

Table 4: Ablation study results on VISDA dataset.

Experimental Results
We list the classification accuracy results of the proposed
D-MCD method on the VISDA, Office-Home, and Of-
fice31 datasets in Table 1, 2, 3 respectively. The experi-
mental results show that the classification accuracy of our
method is higher than the current state-of-the-art SFUDA
approaches (Qiu et al. 2021; Liang, Hu, and Feng 2020; Li
et al. 2020) on the three benchmark datasets. Taking the
results on the VISDA dataset as an example, we can ob-
serve that our D-MCD method improves the ResNet-101
model by 30.1% in terms of accuracy. Furthermore, our
method achieves 87.5% accuracy, which outperforming the
SSNLL (Chen et al. 2021) by a notable margin of 1.7%.
This demonstrates that our method can effectively address
the sample selection bias by reducing the distribution mis-
match between high-confidence and low-confidence sam-
ples, while also eliminating the label noise in the high-
confidence sample by applying the strong-weak paradigm.
In addition, our method also improves the domain adapta-
tion accuracy compared with traditional UDA methods (i.e.,
83.4% v.s. 87.5%). A similar observation can be made for
the results on Office-Home and Office31 can be found.

Ablation Study
We conduct our ablation study by isolating each key part of
our D-MCD method: i.e., model adaptation, matching dis-
tribution, and strong-weak paradigm. The results are sum-
marized in Table 4. We can observe from the table that
each component of D-MCD contributes to the promotion of
model performance on the target domain. More specifically,
after removing the model adaptation component, the perfor-
mance decreases dramatically to 74.2%. This means that a

good enough initial target model is an essential part of the
self-training strategy and will significantly improve the ac-
curacy on the target domain. Moreover, removing the match-
ing distribution component also results in a decline in accu-
racy to 86.1%, which reveals that sample selection bias is a
primary obstacle to the self-training strategy. Furthermore,
when employing the strong-weak paradigm, the accuracy on
the target domain is improved from 83.9% to 87.5% , show-
ing that the strong-weak paradigm can effectively denoise
the pseudo-label, and thus further promote the their quality.

Qualitative Results

We visualize the output of the source domain model, the
model after model adaptation, and the model after model
self-training with method (Van der Maaten and Hinton
2008), as shown in Supplementary. We first conduct model
adaptation, each category presents a tighter cluster but is still
inevitably injected with some label noise. After the model
self-training, in which we reduce the label noise, the clus-
ters are tighter and cleaner.

Conclusion

In this paper, we address the SFUDA problem from the per-
spective of self-training and determine that the self-training
strategy for SFUDA typically suffers from sample selection
bias and the label noise of the pseudo-labeled samples. We
go on to conduct a rigorous theoretical analysis of how these
two risks affect the model generalization ability on the target
domain. Based on the theoretical analysis, we then propose a
novel Denoised Maximum Classifier Discrepancy (D-MCD)
approach for the SFUDA problem. Specifically, we first min-
imize the distribution mismatch between high-confidence
samples and the remaining target domain samples to alle-
viate the sample selection bias.Subsequently, we devise a
strong-weak self-raining paradigm to reduce the label noise
in the high-confidence samples. Benefiting from our pro-
posed D-MCD, we achieve state-of-the-art results on three
domain adaptation benchmark datasets, which demonstrates
the effectiveness of our proposed approach.
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